Effect of Sacubitril/Valsartan on Exercise-Induced Lipid Metabolism in Patients With Obesity and Hypertension

Stefan Engeli, Rudi Stinkens, Tim Heise, Marcus May, Gijs H Goossens, Ellen E Blaak, Bas Havekes, Thomas Jax, Diego Albrecht, Parasar Pal, Uwe Tegtbur, Sven Haufe, Thomas H Langenickel, Jens Jordan, Stefan Engeli, Rudi Stinkens, Tim Heise, Marcus May, Gijs H Goossens, Ellen E Blaak, Bas Havekes, Thomas Jax, Diego Albrecht, Parasar Pal, Uwe Tegtbur, Sven Haufe, Thomas H Langenickel, Jens Jordan

Abstract

Sacubitril/valsartan (LCZ696), a novel angiotensin receptor-neprilysin inhibitor, was recently approved for the treatment of heart failure with reduced ejection fraction. Neprilysin degrades several peptides that modulate lipid metabolism, including natriuretic peptides. In this study, we investigated the effects of 8 weeks' treatment with sacubitril/valsartan on whole-body and adipose tissue lipolysis and lipid oxidation during defined physical exercise compared with the metabolically neutral comparator amlodipine. This was a multicenter, randomized, double-blind, active-controlled, parallel-group study enrolling subjects with abdominal obesity and moderate hypertension (mean sitting systolic blood pressure ≥130-180 mm Hg). Lipolysis during rest and exercise was assessed by microdialysis and [1,1,2,3,3-2H]-glycerol tracer kinetics. Energy expenditure and substrate oxidation were measured simultaneously using indirect calorimetry. Plasma nonesterified fatty acids, glycerol, insulin, glucose, adrenaline and noradrenaline concentrations, blood pressure, and heart rate were also determined. Exercise elevated plasma glycerol, free fatty acids, and interstitial glycerol concentrations and increased the rate of glycerol appearance. However, exercise-induced stimulation of lipolysis was not augmented on sacubitril/valsartan treatment compared with amlodipine treatment. Furthermore, sacubitril/valsartan did not alter energy expenditure and substrate oxidation during exercise compared with amlodipine treatment. In conclusion, sacubitril/valsartan treatment for 8 weeks did not elicit clinically relevant changes in exercise-induced lipolysis or substrate oxidation in obese patients with hypertension, implying that its beneficial cardiovascular effects cannot be explained by changes in lipid metabolism during exercise.

Clinical trial registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01631864.

Keywords: exercise-induced lipolysis; hypertension; lipid metabolism; natriuretic peptide, neprilysin; obesity; sacubitril/valsartan.

© 2017 The Authors.

Figures

Figure 1.
Figure 1.
Comparison of local adipose tissue lipolysis (dialysate glycerol) variable during exercise following 8 weeks of treatment with sacubitril/valsartan and amlodipine. Error bars indicate 95% confidence interval. †P=0.003 vs baseline.
Figure 2.
Figure 2.
Whole-body lipolysis during exercise: comparison of rate of glycerol appearance between treatments (A) and plasma concentration of nonesterified fatty acid (NEFA; B). Error bars indicate 95% confidence interval. †P=0.026, *P=0.012, ‡P=0.035 vs baseline; **P=0.002, ***P<0.001 vs 45 minutes of rest.
Figure 3.
Figure 3.
Oxidative metabolism: comparison of respiratory quotient between resting and exercise status, carbon dioxide:oxygen ratio. Error bars indicate 95% confidence interval. ***P<0.01, exercise versus rest.
Figure 4.
Figure 4.
Analysis of plasma biomarkers during exercise: adrenaline (A) and noradrenaline (B). Error bars indicate 95% confidence interval. †P=0.044, *P=0.022, **P=0.019, ***P<0.001 vs baseline; aP=0.012 vs amlodipine.

References

    1. Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44 suppl 1:S87–S96. doi: 10.1007/s40279-014-0154-1.
    1. Bevilacqua S, Bonadonna R, Buzzigoli G, Boni C, Ciociaro D, Maccari F, Giorico MA, Ferrannini E. Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism. 1987;36:502–506.
    1. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97:2859–2865. doi: 10.1172/JCI118742.
    1. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, Bayazeed B, Baron AD. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–1239. doi: 10.1172/JCI119636.
    1. Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371:2237–2238. doi: 10.1056/NEJMc1412427.
    1. Stinkens R, Goossens GH, Jocken JW, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev. 2015;16:715–757. doi: 10.1111/obr.12298.
    1. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077.
    1. Schling P, Schäfer T. Human adipose tissue cells keep tight control on the angiotensin II levels in their vicinity. J Biol Chem. 2002;277:48066–48075. doi: 10.1074/jbc.M204058200.
    1. Moro C. Natriuretic peptides and fat metabolism. Curr Opin Clin Nutr Metab Care. 2013;16:645–649. doi: 10.1097/MCO.0b013e32836510ed.
    1. Goossens GH. The renin-angiotensin system in the pathophysiology of type 2 diabetes. Obes Facts. 2012;5:611–624. doi: 10.1159/000342776.
    1. Jordan J, Stinkens R, Jax T, Engeli S, Blaak EE, May M, Havekes B, Schindler C, Albrecht D, Pal P, Heise T, Goossens GH, Langenickel TH. Improved insulin sensitivity with angiotensin receptor neprilysin inhibition in individuals with obesity and hypertension. Clin Pharmacol Ther. 2017;101:254–263. doi: 10.1002/cpt.455.
    1. Kario K, Sun N, Chiang FT, Supasyndh O, Baek SH, Inubushi-Molessa A, Zhang Y, Gotou H, Lefkowitz M, Zhang J. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension. 2014;63:698–705. doi: 10.1161/HYPERTENSIONAHA.113.02002.
    1. Boschmann M, Adams F, Schaller K, Franke G, Sharma AM, Klaus S, Luft FC, Jordan J. Hemodynamic and metabolic responses to interstitial angiotensin II in normal weight and obese men. J Hypertens. 2006;24:1165–1171. doi: 10.1097/01.hjh.0000226207.11184.5f.
    1. Boschmann M, Jordan J, Adams F, Christensen NJ, Tank J, Franke G, Stoffels M, Sharma AM, Luft FC, Klaus S. Tissue-specific response to interstitial angiotensin II in humans. Hypertension. 2003;41:37–41.
    1. Goossens GH, Blaak EE, Saris WH, van Baak MA. Angiotensin II-induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. J Clin Endocrinol Metab. 2004;89:2690–2696. doi: 10.1210/jc.2003-032053.
    1. Townsend RR. The effects of angiotensin-II on lipolysis in humans. Metabolism. 2001;50:468–472. doi: 10.1053/meta.2001.21021.
    1. Goossens GH, Moors CC, van der Zijl NJ, Venteclef N, Alili R, Jocken JW, Essers Y, Cleutjens JP, Clément K, Diamant M, Blaak EE. Valsartan improves adipose tissue function in humans with impaired glucose metabolism: a randomized placebo-controlled double-blind trial. PLoS One. 2012;7:e39930. doi: 10.1371/journal.pone.0039930.
    1. Wang TJ, Larson MG, Keyes MJ, Levy D, Benjamin EJ, Vasan RS. Association of plasma natriuretic peptide levels with metabolic risk factors in ambulatory individuals. Circulation. 2007;115:1345–1353. doi: 10.1161/CIRCULATIONAHA.106.655142.
    1. Moors CC, Blaak EE, van der Zijl NJ, Diamant M, Goossens GH. The effects of long-term valsartan treatment on skeletal muscle fatty acid handling in humans with impaired glucose metabolism. J Clin Endocrinol Metab. 2013;98:E891–E896. doi: 10.1210/jc.2012-4067.
    1. Mangiafico S, Costello-Boerrigter LC, Andersen IA, Cataliotti A, Burnett JC., Jr Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur Heart J. 2013;34:886–893c. doi: 10.1093/eurheartj/ehs262.
    1. Kobalava Z, Kotovskaya Y, Averkov O, Pavlikova E, Moiseev V, Albrecht D, Chandra P, Ayalasomayajula S, Prescott MF, Pal P, Langenickel TH, Jordaan P, Rajman I. Pharmacodynamic and pharmacokinetic profiles of sacubitril/valsartan (LCZ696) in patients with heart failure and reduced ejection fraction. Cardiovasc Ther. 2016;34:191–198. doi: 10.1111/1755-5922.12183.
    1. Eriksson AK, van Harmelen V, Stenson BM, Aström G, Wåhlén K, Laurencikiene J, Rydén M. Endothelin-1 stimulates human adipocyte lipolysis through the ET A receptor. Int J Obes (Lond) 2009;33:67–74. doi: 10.1038/ijo.2008.212.
    1. Mori MA, Sales VM, Motta FL, et al. Kinin b1 receptor in adipocytes regulates glucose tolerance and predisposition to obesity. PLoS One. 2012;7:e44782.
    1. Bertin E, Arner P, Bolinder J, Hagström-Toft E. Action of glucagon and glucagon-like peptide-1-(7-36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo. J Clin Endocrinol Metab. 2001;86:1229–1234. doi: 10.1210/jcem.86.3.7330.
    1. Villanueva-Peñacarrillo ML, Márquez L, González N, Díaz-Miguel M, Valverde I. Effect of GLP-1 on lipid metabolism in human adipocytes. Horm Metab Res. 2001;33:73–77.
    1. Sengenès C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J. 2000;14:1345–1351.
    1. Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J Clin Endocrinol Metab. 2005;90:3622–3628. doi: 10.1210/jc.2004-1953.
    1. Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Tank J, Diedrich A, Schroeder C, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J. Beta-adrenergic and atrial natriuretic peptide interactions on human cardiovascular and metabolic regulation. J Clin Endocrinol Metab. 2006;91:5069–5075. doi: 10.1210/jc.2006-1084.
    1. Sengenès C, Zakaroff-Girard A, Moulin A, Berlan M, Bouloumié A, Lafontan M, Galitzky J. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol Regul Integr Comp Physiol. 2002;283:R257–R265. doi: 10.1152/ajpregu.00453.2001.
    1. Birkenfeld AL, Adams F, Schroeder C, Engeli S, Jordan J. Metabolic actions could confound advantageous effects of combined angiotensin II receptor and neprilysin inhibition. Hypertension. 2011;57:e4–e5. doi: 10.1161/HYPERTENSIONAHA.110.165159.
    1. Toal CB, Meredith PA, Elliott HL. Long-acting dihydropyridine calcium-channel blockers and sympathetic nervous system activity in hypertension: a literature review comparing amlodipine and nifedipine GITS. Blood Press. 2012;21(suppl 1):3–10. doi: 10.3109/08037051.2012.690615.
    1. Stankovic S, Panz V, Klug E, Di Nicola G, Joffe BI. Amlodipine and physiological responses to brisk exercise in healthy subjects. Cardiovasc Drugs Ther. 1999;13:513–517.
    1. de Champlain J, Karas M, Assouline L, Nadeau R, LeBlanc AR, Dubé B, Larochelle P. Effects of valsartan or amlodipine alone or in combination on plasma catecholamine levels at rest and during standing in hypertensive patients. J Clin Hypertens (Greenwich) 2007;9:168–178.
    1. Latini R, Masson S, Anand I, Judd D, Maggioni AP, Chiang YT, Bevilacqua M, Salio M, Cardano P, Dunselman PH, Holwerda NJ, Tognoni G, Cohn JN Valsartan Heart Failure Trial Investigators. Effects of valsartan on circulating brain natriuretic peptide and norepinephrine in symptomatic chronic heart failure: the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2002;106:2454–2458. doi: 10.1161/.
    1. Anand IS, Fisher LD, Chiang YT, Latini R, Masson S, Maggioni AP, Glazer RD, Tognoni G, Cohn JN Val-HeFT Investigators. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2003;107:1278–1283. doi: 10.1161/01.CIR.0000054164.99881.00.
    1. Moro C, Klimcakova E, Lafontan M, Berlan M, Galitzky J. Phosphodiesterase-5A and neutral endopeptidase activities in human adipocytes do not control atrial natriuretic peptide-mediated lipolysis. Br J Pharmacol. 2007;152:1102–1110. doi: 10.1038/sj.bjp.0707485.
    1. Seferovic JP, Claggett B, Seidelmann SB, Seely EW, Packer M, Zile MR, Rouleau JL, Swedberg K, Lefkowitz M, Shi VC, Desai AS, McMurray JJV, Solomon SD. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 2017;5:333–340. doi: 10.1016/S2213-8587(17)30087-6.

Source: PubMed

3
購読する