A Phase 1 Randomized Placebo-Controlled Study to Assess the Safety, Immunogenicity and Genetic Stability of a New Potential Pandemic H7N9 Live Attenuated Influenza Vaccine in Healthy Adults

Irina Kiseleva, Irina Isakova-Sivak, Marina Stukova, Marianna Erofeeva, Svetlana Donina, Natalie Larionova, Elena Krutikova, Ekaterina Bazhenova, Ekaterina Stepanova, Kirill Vasilyev, Victoria Matyushenko, Marina Krylova, Julia Galatonova, Aleksey Ershov, Dmitry Lioznov, Erin Grace Sparrow, Guido Torelli, Larisa Rudenko, Irina Kiseleva, Irina Isakova-Sivak, Marina Stukova, Marianna Erofeeva, Svetlana Donina, Natalie Larionova, Elena Krutikova, Ekaterina Bazhenova, Ekaterina Stepanova, Kirill Vasilyev, Victoria Matyushenko, Marina Krylova, Julia Galatonova, Aleksey Ershov, Dmitry Lioznov, Erin Grace Sparrow, Guido Torelli, Larisa Rudenko

Abstract

This study describes a double-blind randomized placebo-controlled phase I clinical trial in healthy adults of a new potential pandemic H7N9 live attenuated influenza vaccine (LAIV) based on the human influenza virus of Yangtze River Delta hemagglutinin lineage (ClinicalTrials.gov Identifier: NCT03739229). Two doses of H7N9 LAIV or placebo were administered intranasally to 30 and 10 subjects, respectively. The vaccine was well-tolerated and not associated with increased rates of adverse events or with any serious adverse events. Vaccine virus was detected in nasal swabs during the 6 days after vaccination or revaccination. A lower frequency of shedding was observed after the second vaccination. Twenty-five clinical viral isolates obtained after the first and second doses of vaccine retained the temperature-sensitive and cold-adapted phenotypic characteristics of LAIV. There was no confirmed transmission of the vaccine strain from vaccinees to placebo recipients. After the two H7N9 LAIV doses, an immune response was observed in 96.6% of subjects in at least one of the assays conducted.

Keywords: H7N9 influenza; LAIV; cellular immunity; clinical trial; humoral immunity; immune response; potential pandemic vaccine; safety; stability.

Conflict of interest statement

The authors declare no conflict of interest. Some staff members from the funder, E.G.S. and G.T., also participated in designing the experiments, analyzed the data and critically reviewed the manuscript.

Figures

Figure 1
Figure 1
Growth restriction of H7N9 LAIV clinical isolates at different temperatures. The results are expressed as the reduction in virus titer at 40 °C or 26 °C from the titer at the optimum temperature of 32 °C. Black circles—isolates obtained after the first vaccine dose; blue circles—isolates obtained after the second vaccine dose; red triangle—H7N9 WT virus; green square—H7N9 LAIV candidate; gray—the limit of virus detection (1.2 log10 EID50/mL).
Figure 2
Figure 2
Hemagglutination inhibition and neutralizing antibody titers in subjects immunized with H7N9 LAIV or placebo. (A) HAI antibody titers. (B) MN antibody titers. Data were analyzed by Wilcoxon Matched Pairs Test (left and middle panels) and two-way ANOVA followed by a Bonferroni multiple comparison test (right panel).
Figure 3
Figure 3
Virus-specific serum IgG and IgA antibody titers and nasal secretory IgA antibody levels in subjects immunized with H7N9 LAIV or placebo. (A) Serum IgG titers. (B) Serum IgA titers. (C) Nasal secretory IgA antibody levels. Data were analyzed by Wilcoxon Matched Pairs Test (left and middle panels) and two-way ANOVA followed by a Bonferroni multiple comparison test (right panel).
Figure 4
Figure 4
Cell-mediated immune responses in subjects before and after administration of H7N9 LAIV or placebo (given on day 0 and day 28). (A) CD4+ T-cell responses. (B) CD8+ T-cell responses. Individual data are shown, along with means ± 95% CI. T cell levels at different time-points were compared using the Wilcoxon matched-pairs test. The exact two-sided p values are shown.
Figure 5
Figure 5
Different populations of IFNγ-producing CD4+ (A) and CD8+ (B) T cells in subjects immunized with H7N9 LAIV. Individual data are shown, along with means ± 95% CI. T cell levels at different time-points were compared using the Wilcoxon matched-pairs test.
Figure 6
Figure 6
Different populations of cytokine-producing CD4 (A) and CD8 (B) T cells in subjects who received placebo. Individual data are shown, along with means ± 95% CI. T cell levels at different time-points were compared using the Wilcoxon matched-pairs test.

References

    1. World Health Organization Coronavirus. [(accessed on 14 May 2020)]; Available online: .
    1. Mossad S.B. The resurgence of swine-origin influenza A (H1N1) Cleve. Clin. J. Med. 2009;76:337–343. doi: 10.3949/ccjm.76a.09047.
    1. The Centers for Disease Control Information on Avian Influenza. [(accessed on 14 May 2020)]; Available online: .
    1. World Health Organization Human Infection with Influenza A (H7N9) Virus in China. [(accessed on 14 May 2020)]; Available online:
    1. Gao R., Cao B., Hu Y., Feng Z., Wang D.-Y., Hu W., Chen J., Jie Z., Qiu H., Xu K., et al. Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. N. Engl. J. Med. 2013;368:1888–1897. doi: 10.1056/NEJMoa1304459.
    1. Kageyama T., Fujisaki S., Takashita E., Xu H., Yamada S., Uchida Y., Neumann G., Saito T., Kawaoka Y., Tashiro M. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill. 2013;18:20453.
    1. World Health Organization Antigenic and Genetic Characteristics of Zoonotic Influenza A Viruses and Development of Candidate Vaccine Viruses for Pandemic Preparedness. [(accessed on 14 May 2020)];2019 Sep 30; Available online: .
    1. Chung K.Y., Coyle E.M., Jani D., King L., Bhardwaj R., Fries L., Smith G., Glenn G.M., Golding H., Khurana S. ISCOMATRIX™ adjuvant promotes epitope spreading and antibody affinity maturation of influenza A H7N9 virus like particle vaccine that correlate with virus neutralization in humans. Vaccine. 2015;33:3953–3962. doi: 10.1016/j.vaccine.2015.06.047.
    1. Fries L.F., Smith G.E., Glenn G.M. A Recombinant Viruslike Particle Influenza A (H7N9) Vaccine. N. Engl. J. Med. 2013;369:2564–2566. doi: 10.1056/NEJMc1313186.
    1. Nakamura K., Shirakura M., Suzuki Y., Naito T., Fujisaki S., Tashiro M., Nobusawa E. Development of a high-yield reassortant influenza vaccine virus derived from the A/Anhui/1/2013 (H7N9) strain. Vaccine. 2016;34:328–333. doi: 10.1016/j.vaccine.2015.11.050.
    1. Rudenko L., Isakova-Sivak I., Naykhin A., Kiseleva I., Stukova M., Erofeeva M., Korenkov D., Matyushenko V., Sparrow E., Kieny M.-P. H7N9 live attenuated influenza vaccine in healthy adults: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect. Dis. 2015;16:303–310. doi: 10.1016/S1473-3099(15)00378-3.
    1. Shcherbik S., Pearce N., Balish A., Jones J., Thor S., Davis C.T., Pearce M., Tumpey T., Cureton D., Chen L.-M., et al. Generation and Characterization of Live Attenuated Influenza A(H7N9) Candidate Vaccine Virus Based on Russian Donor of Attenuation. PLoS ONE. 2015;10:e0138951. doi: 10.1371/journal.pone.0138951.
    1. Sobhanie M., Matsuoka Y., Jegaskanda S., Fitzgerald T., Mallory R., Chen Z., Luke C., Treanor J., Subbarao K. Evaluation of the Safety and Immunogenicity of a Candidate Pandemic Live Attenuated Influenza Vaccine (pLAIV) Against Influenza A(H7N9) J. Infect. Dis. 2016;213:922–929. doi: 10.1093/infdis/jiv526.
    1. Suzuki Y., Odagiri T., Tashiro M., Nobusawa E. Development of an Influenza A Master Virus for Generating High-Growth Reassortants for A/Anhui/1/2013(H7N9) Vaccine Production in Qualified MDCK Cells. PLoS ONE. 2016;11:e0160040. doi: 10.1371/journal.pone.0160040.
    1. Wu U.-I., Hsieh S.-M., Lee W.-S., Wang N.-C., Kung H.-C., Ou T.-Y., Chen F.-L., Lin T.-Y., Chen Y.-C., Chang S.-Y. Safety and immunogenicity of an inactivated cell culture-derived H7N9 influenza vaccine in healthy adults: A phase I/II, prospective, randomized, open-label trial. Vaccine. 2017;35:4099–4104. doi: 10.1016/j.vaccine.2017.06.044.
    1. Zheng D., Gao F., Zhao C., Ding Y., Cao Y., Yang T., Xu X., Chen Z. Comparative effectiveness of H7N9 vaccines in healthy individuals. Hum. Vaccines Immunother. 2018;15:80–90. doi: 10.1080/21645515.2018.1515454.
    1. Bart S.A., Hohenboken M., Della Cioppa G., Narasimhan V., Dormitzer P.R., Kanesa-Thasan N. A Cell Culture-Derived MF59-Adjuvanted Pandemic A/H7N9 Vaccine Is Immunogenic in Adults. Sci. Transl. Med. 2014;6:234ra55. doi: 10.1126/scitranslmed.3008761.
    1. DeZure A.D., Coates E.E., Hu Z., Yamshchikov G.V., Zephir K.L., Enama M.E., Plummer S.H., Gordon I.J., Kaltovich F., Andrews S., et al. An avian influenza H7 DNA priming vaccine is safe and immunogenic in a randomized phase I clinical trial. NPJ Vaccines. 2017;2:15. doi: 10.1038/s41541-017-0016-6.
    1. Jackson L.A., Campbell J.D., Frey S.E., Edwards K.M., Keitel W.A., Kotloff K.L., Berry A.A., Graham I., Atmar R.L., Creech C.B., et al. Effect of Varying Doses of a Monovalent H7N9 Influenza Vaccine With and Without AS03 and MF59 Adjuvants on Immune Response. JAMA. 2015;314:237–246. doi: 10.1001/jama.2015.7916.
    1. Madan A., Segall N., Ferguson M., Frenette L., Kroll R., Friel D., Soni J., Li P., Innis B.L., Schuind A. Immunogenicity and Safety of an AS03-Adjuvanted H7N9 Pandemic Influenza Vaccine in a Randomized Trial in Healthy Adults. J. Infect. Dis. 2016;214:1717–1727. doi: 10.1093/infdis/jiw414.
    1. Mulligan M.J., I Bernstein D., Winokur P.L., E Rupp R., Anderson E., Rouphael N., Dickey M., Stapleton J.T., Edupuganti S., Spearman P., et al. Serological Responses to an Avian Influenza A/H7N9 Vaccine Mixed at the Point-of-Use With MF59 Adjuvant;A randomized clinical trial. JAMA. 2014;312:1409–1419. doi: 10.1001/jama.2014.12854.
    1. Ridenour C., Johnson A., Winne E., Hossain J., Mateu-Petit G., Balish A., Santana W., Kim T., Davis C., Cox N.J., et al. Development of influenza A(H7N9) candidate vaccine viruses with improved hemagglutinin antigen yield in eggs. Influenza Other Respir. Viruses. 2015;9:263–270. doi: 10.1111/irv.12322.
    1. Isakova-Sivak I., Rudenko L. Tackling a novel lethal virus: A focus on H7N9 vaccine development. Expert Rev. Vaccines. 2017;16:709–721. doi: 10.1080/14760584.2017.1333907.
    1. World Health Organization Tables on Clinical Evaluation of Influenza Vaccines. Pandemic/Potentially Pandemic Influenza Vaccines. [(accessed on 14 May 2020)]; Updated August 2019. Available online:
    1. World Health Organization Antigenic and Genetic Characteristics of Zoonotic Influenza Viruses and Development of Candidate Vaccine Viruses for Pandemic Preparedness. [(accessed on 14 May 2020)];2017 Mar; Available online: .
    1. Rudenko L., Kiseleva I., Krutikova E.V., Stepanova E., Isakova-Sivak I., Donina S., Rekstin A., Pisareva M., Bazhenova E., Kotomina T., et al. Two Live Attenuated Vaccines against Recent Low–and Highly Pathogenic H7N9 Influenza Viruses Are Safe and Immunogenic in Ferrets. Vaccines. 2018;6:74. doi: 10.3390/vaccines6040074.
    1. Gelfand A.S., Bryzgalova S.I., Melnikov S.J. A Method of Producing Live Influenza Vaccine for the Prevention of Influenza. 2290205. Patent RU. 2005 Sep 13;
    1. World Health Organization Manual on animal influenza diagnosis and surveillance. [(accessed on 10 June 2020)]; Available online: .
    1. Reed L., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938;27:493–497. doi: 10.1093/oxfordjournals.aje.a118408.
    1. Hoffmann E., Stech J., Guan Y., Webster R.G., Perez D.R. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 2001;146:2275–2289. doi: 10.1007/s007050170002.
    1. Matyushenko V., Isakova-Sivak I., Smolonogina T., Dubrovina I., Tretiak T., Rudenko L. Genotyping assay for differentiation of wild-type and vaccine viruses in subjects immunized with live attenuated influenza vaccine. PLoS ONE. 2017;12:e0180497. doi: 10.1371/journal.pone.0180497.
    1. World Health Organization Serological Detection of Avian Influenza A(H7N9) Virus Infections by Modified Horse Red Blood Cells Haemagglutination–Inhibition Assay. [(accessed on 21 February 2020)]; Laboratory Procedure. Available online: .
    1. Rowe T., Abernathy R.A., Hu-Primmer J., Thompson W.W., Lu X., Lim W., Fukuda K., Cox N.J., Katz J.M. Detection of Antibody to Avian Influenza A (H5N1) Virus in Human Serum by Using a Combination of Serologic Assays. J. Clin. Microbiol. 1999;37:937–943. doi: 10.1128/JCM.37.4.937-943.1999.
    1. Fujimoto C., Takeda N., Matsunaga A., Sawada A., Tanaka T., Kimoto T., Shinahara W., Sawabuchi T., Yamaguchi M., Hayama M., et al. Induction and maintenance of anti-influenza antigen-specific nasal secretory IgA levels and serum IgG levels after influenza infection in adults. Influenza Other Respir. Viruses. 2012;6:396–403. doi: 10.1111/j.1750-2659.2011.00330.x.
    1. Sallusto F., Geginat J., Lanzavecchia A. CentralMemory andEffectorMemoryT CellSubsets: Function, Generation, and Maintenance. Annu. Rev. Immunol. 2004;22:745–763. doi: 10.1146/annurev.immunol.22.012703.104702.
    1. Burel J.G., Qian Y., Arlehamn C.S.L., Weiskopf D., Zapardiel-Gonzalo J., Taplitz R., Gilman R.H., Saito M., De Silva A.D., Vijayanand P., et al. An integrated workflow to assess technical and biological variability of cell population frequencies in human peripheral blood by flow cytometry. J. Immunol. 2017;198:1748–1758. doi: 10.4049/jimmunol.1601750.
    1. Chen H., Zhou X., Zheng J., Kwoh C.K. Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses. BMC Med. Genom. 2016;9:69. doi: 10.1186/s12920-016-0230-5.
    1. Yoon S.-W., Webby R.J., Webster R.G. Evolution and Ecology of Influenza A Viruses. Curr. Top. Microbiol. Immunol. 2014;385:359–375. doi: 10.1007/82_2014_396.
    1. World Health Organization Recommendations on the Composition of Influenza Virus Vaccines. [(accessed on 14 May 2020)]; Available online:
    1. World Health Organization Global Influenza Preparedness Plan. [(accessed on 21 February 2020)];2005 Available online: .
    1. Chen T., Zhang R. Symptoms seem to be mild in children infected with avian influenza A (H5N6) and other subtypes. J. Infect. 2015;71:702–703. doi: 10.1016/j.jinf.2015.09.004.
    1. Pan M., Gao R., Lv Q., Huang S., Zhou Z., Yang L., Li X., Zhao X., Zou X., Tong W., et al. Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: Virological and clinical findings. J. Infect. 2016;72:52–59. doi: 10.1016/j.jinf.2015.06.009.
    1. Yang Z.F., Mok C.K.P., Peiris J.S.M., Zhong N.S. Human Infection with a Novel Avian Influenza A(H5N6) Virus. N. Engl. J. Med. 2015;373:487–489. doi: 10.1056/NEJMc1502983.
    1. White V.C. A review of influenza viruses in seals and the implications for public health. U.S. Army Med. Dep. J. 2013:45–50.
    1. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C., Huang J., et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998;279:393–396. doi: 10.1126/science.279.5349.393.
    1. Butt K.M., Smith G., Chen H., Zhang L.J., Leung Y.H.C., Xu K.M., Lim W., Webster R.G., Yuen K.-Y., Peiris J.S.M., et al. Human Infection with an Avian H9N2 Influenza A Virus in Hong Kong in 2003. J. Clin. Microbiol. 2005;43:5760–5767. doi: 10.1128/JCM.43.11.5760-5767.2005.
    1. Cheng V., Chan J.F.-W., Wen X., Wu W., Que T., Chen H., Chan K., Yuen K.-Y. Infection of immunocompromised patients by avian H9N2 influenza A virus. J. Infect. 2011;62:394–399. doi: 10.1016/j.jinf.2011.02.007.
    1. Allen G.M. Bats: Biology, Behavior, and Folklore. Dover Publications; Mineola, NY, USA: 2004. 368p
    1. Yu H., Cowling B.J., Feng L., Lau E.H., Liao Q., Tsang T.K., Peng Z., Wu P., Liu F., Fang V.J., et al. Human infection with avian influenza A H7N9 virus: an assessment of clinical severity. Lancet. 2013;382:138–145. doi: 10.1016/S0140-6736(13)61207-6.
    1. De Jong J.C., Claas E.C.J., Osterhaus A.D.M.E., Webster R.G., Lim W.L. A pandemic warning? Nature. 1997;389:554. doi: 10.1038/39218.
    1. World Health Organization Antigenic and Genetic Characteristics of Zoonotic influenza A Viruses and Development of Candidate Vaccine Viruses for Pandemic Preparedness. [(accessed on 14 May 2020)];2020 Feb 28; Available online: .
    1. World Health Organization Global Action Plan to Increase Vaccine Supply for Influenza Vaccines. [(accessed on 14 May 2020)]; Available online: .
    1. Isakova-Sivak I., Stukova M., Erofeeva M., Naykhin A., Donina S., Petukhova G., Kuznetsova V., Kiseleva I., Smolonogina T., Dubrovina I., et al. H2N2 live attenuated influenza vaccine is safe and immunogenic for healthy adult volunteers. Hum. Vaccines Immunother. 2015;11:970–982. doi: 10.1080/21645515.2015.1010859.
    1. Rudenko L., Desheva J., Korovkin S., Mironov A., Rekstin A., Grigorieva E., Donina S., Gambaryan A., Katlinsky A. Safety and immunogenicity of live attenuated influenza reassortant H5 vaccine (phase I-II clinical trials) Influenza Other Respir. Viruses. 2008;2:203–209. doi: 10.1111/j.1750-2659.2008.00064.x.
    1. Rudenko L., Kiseleva I., Naykhin A.N., Erofeeva M., Stukova M., Donina S., Petukhova G., Pisareva M., Krivitskaya V., Grudinin M., et al. Assessment of Human Immune Responses to H7 Avian Influenza Virus of Pandemic Potential: Results from a Placebo–Controlled, Randomized Double–Blind Phase I Study of Live Attenuated H7N3 Influenza Vaccine. PLoS ONE. 2014;9:e87962. doi: 10.1371/journal.pone.0087962.
    1. Rudenko L., Kiseleva I., Stukova M., Erofeeva M., Naykhin A., Donina S., Larionova N., Pisareva M., Krivitskaya V., Flores J., et al. Clinical testing of pre-pandemic live attenuated A/H5N2 influenza candidate vaccine in adult volunteers: Results from a placebo-controlled, randomized double-blind phase I study. Vaccine. 2015;33:5110–5117. doi: 10.1016/j.vaccine.2015.08.019.
    1. Isakova-Sivak I., Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev. Vaccines. 2015;14:1313–1329. doi: 10.1586/14760584.2015.1075883.
    1. Klimov A.I., Kiseleva I.V., Desheva J.A., Alexandrova G.I., Cox N.J., Rudenko L.G. Live attenuated reassortant influenza vaccine prepared using A/Leningrad/134/17/57 (H2N2) donor strain is genetically stable after replication in children 3–6 years of age; Proceedings of the Options for the Control of Influenza IV; Crete, Greece. 23–28 September 2000; pp. 951–954.
    1. Kiseleva I., Rudenko L. Potentially Pandemic Live Influenza Vaccines Based on Russian Master Donor Virus are Genetically Stable after Replication in Humans. J. Vaccines Vaccin. 2016;7:1–3. doi: 10.4172/2157-7560.1000317.
    1. Kiseleva I., Dubrovina I., Fedorova E., Larionova N., Isakova-Sivak I., Bazhenova E., Pisareva M., Kuznetsova V., Flores J., Rudenko L. Genetic stability of live attenuated vaccines against potentially pandemic influenza viruses. Vaccine. 2015;33:7008–7014. doi: 10.1016/j.vaccine.2015.09.050.
    1. Shcherbik S., Pearce N., Carney P., Bazhenova E., Larionova N., Kiseleva I., Rudenko L., Kumar A., Goldsmith C.S., Dugan V., et al. Evaluation of A(H1N1)pdm09 LAIV vaccine candidates stability and replication efficiency in primary human nasal epithelial cells. Vaccine X. 2019;2:100031. doi: 10.1016/j.jvacx.2019.100031.
    1. Davenport F.M., Hennessy A.V., Maassab H.F., Minuse E., Clark L.C., Abrams G.D., Mitchell J.R. Pilot Studies on Recombinant Cold-Adapted Live Type A and B Influenza Virus Vaccines. J. Infect. Dis. 1977;136:17–25. doi: 10.1093/infdis/136.1.17.
    1. Rudenko L.G., Lonskaya N.I., Klimov A.I., Vasilieva R.I., Ramirez A. Clinical and epidemiological evaluation of a live, cold-adapted influenza vaccine for 3–14-year-olds. Bull. World Health Organ. 1996;74:77–84.
    1. Vesikari T., Karvonen A., Korhonen T., Edelman K., Vainionp R., Salmi A., Saville M.K., Cho I., Razmpour A., Rappaport R., et al. A Randomized, Double-Blind Study of the Safety, Transmissibility and Phenotypic and Genotypic Stability of Cold-Adapted Influenza Virus Vaccine. Pediatr. Infect. Dis. J. 2006;25:590–595. doi: 10.1097/01.inf.0000220229.51531.47.
    1. Krammer F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 2019;19:383–397. doi: 10.1038/s41577-019-0143-6.
    1. Schotsaert M., Saelens X., Leroux-Roels G. Influenza vaccines: T-cell responses deserve more attention. Expert Rev. Vaccines. 2012;11:949–962. doi: 10.1586/erv.12.71.
    1. Jansen J.M., Gerlach T., Elbahesh H., Rimmelzwaan G.F., Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J. Clin. Virol. 2019;119:44–52. doi: 10.1016/j.jcv.2019.08.009.
    1. Kedzierska K., Valkenburg S.A., Doherty P.C., Davenport M.P., Venturi V. Use it or lose it: establishment and persistence of T cell memory. Front. Immunol. 2012;3:357. doi: 10.3389/fimmu.2012.00357.

Source: PubMed

3
購読する