Studying network mechanisms using intracranial stimulation in epileptic patients

Olivier David, Julien Bastin, Stéphan Chabardès, Lorella Minotti, Philippe Kahane, Olivier David, Julien Bastin, Stéphan Chabardès, Lorella Minotti, Philippe Kahane

Abstract

Patients suffering from focal drug-resistant epilepsy who are explored using intracranial electrodes allow to obtain data of exceptional value for studying brain dynamics in correlation with pathophysiological and cognitive processes. Direct electrical stimulation (DES) of cortical regions and axonal tracts in those patients elicits a number of very specific perceptual or behavioral responses, but also abnormal responses due to specific configurations of epileptic networks. Here, we review how anatomo-functional brain connectivity and epilepsy network mechanisms can be assessed from DES responses measured in patients. After a brief summary of mechanisms of action of brain electrical stimulation, we recall the conceptual framework for interpreting DES results in the context of brain connectivity and review how DES can be used for the characterization of functional networks, the identification of the seizure onset zone, the study of brain plasticity mechanisms, and the anticipation of epileptic seizures. This pool of exceptional data may be underexploited by fundamental research on brain connectivity and leaves much to be learned.

Keywords: cognition; connectivity; electroencephalography; epilepsy; networks; neurostimulation; plasticity.

References

    1. Afif A., Hoffmann D., Minotti L., Benabid A. L., Kahane P. (2008). Middle short gyrus of the insula implicated in pain processing. Pain 138, 546–555
    1. Afif A., Minotti L., Kahane P., Hoffmann D. (2010). Middle short gyrus of the insula implicated in speech production: intracerebral electric stimulation of patients with epilepsy. Epilepsia 51, 206–21310.1111/j.1528-1167.2009.02271.x
    1. Barbeau E., Wendling F., Regis J., Duncan R., Poncet M., Chauvel P., Bartolomei F. (2005). Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas. Neuropsychologia 43, 1329–133710.1016/j.neuropsychologia.2004.11.025
    1. Behrens T. E., Johansen-Berg H., Woolrich M. W., Smith S. M., Wheeler-Kingshott C. A., Boulby P. A., Barker G. J., Sillery E. L., Sheehan K., Ciccarelli O., Thompson A. J., Brady J. M., Matthews P. M. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–75710.1038/nn1075
    1. Bernier G. P., Saint-Hilaire J. M., Giard N., Bouvier G., Mercier M. (1987). “Commentary: intracranial electrical stimulation,” in Surgical Treatment of the Epilepsies, ed. Engel J., Jr. (New York:Raven Press; ), 323–334
    1. Blanke O., Ortigue S., Landis T., Seeck M. (2002). Stimulating illusory own-body perceptions. Nature 419, 269–27010.1038/419269a
    1. Blanke O., Spinelli L., Thut G., Michel C. M., Perrig S., Landis T., Seeck M. (2000). Location of the human frontal eye field as defined by electrical cortical stimulation: anatomical, functional and electrophysiological characteristics. Neuroreport 11, 1907–191310.1097/00001756-200006260-00021
    1. Bliss T. V., Lomo T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356
    1. Boatman D. F., Miglioretti D. L. (2005). Cortical sites critical for speech discrimination in normal and impaired listeners. J. Neurosci. 25, 5475–548010.1523/JNEUROSCI.0936-05.2005
    1. Buser P., Bancaud J. (1983). Unilateral connections between amygdala and hippocampus in man. A study of epileptic patients with depth electrodes. Electroencephalogr. Clin. Neurophysiol. 55, 1–1210.1016/0013-4694(83)90141-4
    1. Canals S., Beyerlein M., Murayama Y., Logothetis N. K. (2008). Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magn. Reson. Imaging 26, 978–98610.1016/j.mri.2008.02.018
    1. Catenoix H., Magnin M., Guenot M., Isnard J., Mauguiere F., Ryvlin P. (2005). Hippocampal-orbitofrontal connectivity in human: an electrical stimulation study. Clin. Neurophysiol. 116, 1779–178410.1016/j.clinph.2005.03.016
    1. Chabardes S., Kahane P., Minotti L., Hoffmann D., Benabid A. L. (2002). Anatomy of the temporal pole region. Epileptic. Disord. 4(Suppl. 1), S9–S15
    1. Chabardes S., Kahane P., Minotti L., Tassi L., Grand S., Hoffmann D., Benabid A. L. (2005). The temporopolar cortex plays a pivotal role in temporal lobe seizures. Brain 128, 1818–183110.1093/brain/awh512
    1. Chassagnon S., Minotti L., Kremer S., Hoffmann D., Kahane P. (2008). Somatosensory, motor, and reaching/grasping responses to direct electrical stimulation of the human cingulate motor areas. J. Neurosurg. 109, 593–60410.3171/JNS/2008/109/10/0593
    1. Cherlow D. G., Dymond A. M., Crandall P. H., Walter R. D., Serafetinides E. A. (1977). Evoked response and after-discharge thresholds to electrical stimulation in temporal lobe epileptics. Arch. Neurol. 34, 527–531
    1. Chitoku S., Otsubo H., Harada Y., Jay V., Rutka J. T., Weiss S. K., Elliott I., Ochi A., Kitayama M., Snead O. C., III (2003). Characteristics of prolonged afterdischarges in children with malformations of cortical development. J. Child Neurol. 18, 247–25310.1177/08830738030180041101
    1. Daunizeau J., David O., Stephan K. E. (2009). Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage.10.1016/j.neuroimage.2009.11.062
    1. David O. (2007). Dynamic causal models and autopoietic systems. Biol. Res. 40, 487–50210.4067/S0716-97602007000500010
    1. David O., Cosmelli D., Friston K. J. (2004). Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage 21, 659–67310.1016/j.neuroimage.2003.10.006
    1. David O., Harrison L., Friston K. J. (2005). Modelling event-related responses in the brain. Neuroimage 25, 756–77010.1016/j.neuroimage.2004.12.030
    1. David O., Kiebel S. J., Harrison L. M., Mattout J., Kilner J. M., Friston K. J. (2006a). Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage 30, 1255–127210.1016/j.neuroimage.2005.10.045
    1. David O., Kilner J. M., Friston K. J. (2006b). Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage 31, 1580–159110.1016/j.neuroimage.2006.02.034
    1. David O., Wozniak A., Minotti L., Kahane P. (2008). Preictal short-term plasticity induced by intracerebral 1 Hz stimulation. Neuroimage 39, 1633–164610.1016/j.neuroimage.2007.11.005
    1. Duffau H., Peggy Gatignol S. T., Mandonnet E., Capelle L., Taillandier L. (2008). Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J. Neurosurg. 109, 461–47110.3171/JNS/2008/109/9/0461
    1. Elliott B., Joyce E., Shorvon S. (2009). Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena. Epilepsy Res. 85, 162–17110.1016/j.eplepsyres.2009.03.018
    1. Engel J., Jr., Rausch R., Lieb J. P., Kuhl D. E., Crandall P. H. (1981). Correlation of criteria used for localizing epileptic foci in patients considered for surgical therapy of epilepsy. Ann. Neurol. 9, 215–22410.1002/ana.410090303
    1. Feng L., Molnar P., Nadler J. V. (2003). Short-term frequency-dependent plasticity at recurrent mossy fiber synapses of the epileptic brain. J. Neurosci. 23, 5381–5390
    1. Flanagan D., Valentin A., Garcia Seoane J. J., Alarcon G., Boyd S. G. (2009). Single-pulse electrical stimulation helps to identify epileptogenic cortex in children. Epilepsia 50, 1793–180310.1111/j.1528-1167.2009.02056.x
    1. Friston K. J., Harrison L., Penny W. (2003). Dynamic causal modelling. Neuroimage 19, 1273–130210.1016/S1053-8119(03)00202-7
    1. Graziano M. S., Aflalo T. N. (2007). Mapping behavioral repertoire onto the cortex. Neuron 56, 239–25110.1016/j.neuron.2007.09.013
    1. Hamberger M. J. (2007). Cortical language mapping in epilepsy: a critical review. Neuropsychol. Rev. 17, 477–48910.1007/s11065-007-9046-6
    1. Holsheimer J., Demeulemeester H., Nuttin B., de Sutter P. (2000). Identification of the target neuronal elements in electrical deep brain stimulation. Eur. J. Neurosci. 12, 4573–4577
    1. Ikeda A., Miyamoto S., Shibasaki H. (2002). Cortical motor mapping in epilepsy patients: information from subdural electrodes in presurgical evaluation. Epilepsia 43(Suppl. 9), 56–6010.1046/j.1528-1157.43.s.9.13.x
    1. Jacobs J., Zijlmans M., Zelmann R., Olivier A., Hall J., Gotman J., Dubeau F. (2010). Value of electrical stimulation and high frequency oscillations (80-500 Hz) in identifying epileptogenic areas during intracranial EEG recordings. Epilepsia 51, 573–58210.1111/j.1528-1167.2009.02389.x
    1. Jankowska E., Padel Y., Tanaka R. (1975). The mode of activation of pyramidal tract cells by intracortical stimuli. J. Physiol. 249, 617–636
    1. Jefferys J. G., Whittington M. A. (1996). Review of the role of inhibitory neurons in chronic epileptic foci induced by intracerebral tetanus toxin. Epilepsy Res. 26, 59–6610.1016/S0920-1211(96)00040-X
    1. Jerbi K., Ossandon T., Hamame C. M., Senova S., Dalal S. S., Jung J., Minotti L., Bertrand O., Berthoz A., Kahane P., Lachaux J. P. (2009). Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum. Brain Mapp. 30, 1758–177110.1002/hbm.20750
    1. Jirsch J. D., Urrestarazu E., LeVan P., Olivier A., Dubeau F., Gotman J. (2006). High-frequency oscillations during human focal seizures. Brain 129, 1593–160810.1093/brain/awl085
    1. Jones D. K. (2008). Studying connections in the living human brain with diffusion MRI. Cortex 44, 936–95210.1016/j.cortex.2008.05.002
    1. Kahane P., Chabardes S., Minotti L., Hoffmann D., Benabid A. L., Munari C. (2002). The role of the temporal pole in the genesis of temporal lobe seizures. Epileptic Disord. 4(Suppl. 1), S51–S58.
    1. Kahane P., Hoffmann D., Minotti L., Berthoz A. (2003). Reappraisal of the human vestibular cortex by cortical electrical stimulation study. Ann. Neurol. 54, 615–62410.1002/ana.10726
    1. Kahane P., Minotti L., Hoffmann D., Lachaux J. P., Ryvlin P., Rosenow F., Lüders H. O. (2004). “Invasive EEG in the definition of the seizure onset zone: depth electrodes,” in Handbook of Clinical Neurophysiology, Vol. 3 eds Rosenow F., Luders H. (Amsterdam:Elsevier BV; ), 109–133
    1. Kahane P., Tassi L., Francione S., Hoffmann D., Lo R. G., Munari C. (1993). Electroclinical manifestations elicited by intracerebral electric stimulation “shocks” in temporal lobe epilepsy. Neurophysiol. Clin. 23, 305–32610.1016/S0987-7053(05)80123-6
    1. Kalitzin S., Parra J., Velis D. N., Lopes da Silva F. H. (2002). Enhancement of phase clustering in the EEG/MEG gamma frequency band anticipates transitions to paroxysmal epileptiform activity in epileptic patients with known visual sensitivity. IEEE Trans. Biomed. Eng. 49, 1279–128610.1109/TBME.2002.804593
    1. Kalitzin S., Velis D., Suffczynski P., Parra J., da Silva F. L. (2005). Electrical brain-stimulation paradigm for estimating the seizure onset site and the time to ictal transition in temporal lobe epilepsy. Clin. Neurophysiol. 116, 718–72810.1016/j.clinph.2004.08.021
    1. Kalitzin S. N., Velis D. N., da Silva F. H. (2010). Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav. 17, 310–32310.1016/j.yebeh.2009.12.023
    1. Kiss Z. H., Anderson T., Hansen T., Kirstein D., Suchowersky O., Hu B. (2003). Neural substrates of microstimulation-evoked tingling: a chronaxie study in human somatosensory thalamus. Eur. J. Neurosci. 18, 728–73210.1046/j.1460-9568.2003.02793.x
    1. Klingler J., Gloor P. (1960). The connections of the amygdala and of the anterior temporal cortex in the human brain. J. Comp. Neurol. 115, 333–36910.1002/cne.901150305
    1. Koch U. R., Musshoff U., Pannek H. W., Ebner A., Wolf P., Speckmann E. J., Kohling R. (2005). Intrinsic excitability, synaptic potentials, and short-term plasticity in human epileptic neocortex. J. Neurosci. Res. 80, 715–72610.1002/jnr.20498
    1. Lachaux J. P., Rudrauf D., Kahane P. (2003). Intracranial EEG and human brain mapping. J. Physiol. Paris 97, 613–62810.1016/j.jphysparis.2004.01.018
    1. Lacruz M. E., Garcia Seoane J. J., Valentin A., Selway R., Alarcon G. (2007). Frontal and temporal functional connections of the living human brain. Eur. J. Neurosci. 26, 1357–137010.1111/j.1460-9568.2007.05730.x
    1. Landré E., Turak B., Toussaint D., Trottier S. (2004). Intérêt des stimulations électriques intracérébrales en stéréo-électroencéphalographie dans les épilepsies partielles. Epilepsies 16, 213–225
    1. Lee H. W., Hong S. B., Seo D. W., Tae W. S., Hong S. C. (2000). Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology 54, 849–854
    1. Lesser R. P., Arroyo S., Crone N., Gordon B. (1998). Motor and sensory mapping of the frontal and occipital lobes. Epilepsia 39(Suppl. 4), S69–S8010.1111/j.1528-1157.1998.tb05127.x
    1. Lesser R. P., Lee H. W., Webber W. R., Prince B., Crone N. E., Miglioretti D. L. (2008). Short-term variations in response distribution to cortical stimulation. Brain 131, 1528–153910.1093/brain/awn044
    1. Lian J., Bikson M., Shuai J., Durand D. M. (2001). Propagation of non-synaptic epileptiform activity across a lesion in rat hippocampal slices. J. Physiol. 537, 191–19910.1111/j.1469-7793.2001.0191k.x
    1. Lieb J. P., Dasheiff R. M., Engel J., Jr. (1991). Role of the frontal lobes in the propagation of mesial temporal lobe seizures. Epilepsia 32, 822–83710.1111/j.1528-1157.1991.tb05539.x
    1. Lim S. H., Dinner D. S., Pillay P. K., Luders H., Morris H. H., Klem G., Wyllie E., Awad I. A. (1994). Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr. Clin. Neurophysiol. 91, 179–19310.1016/0013-4694(94)90068-X
    1. Lobel E., Kahane P., Leonards U., Grosbras M., Lehericy S., Le Bihan D., Berthoz A. (2001). Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation. J. Neurosurg. 95, 804–81510.3171/jns.2001.95.5.0804
    1. Luders H., Lesser R. P., Hahn J., Dinner D. S., Morris H., Resor S., Harrison M. (1986). Basal temporal language area demonstrated by electrical stimulation. Neurology 36, 505–510
    1. Luders H. O., Dinner D. S., Morris H. H., Wyllie E., Comair Y. G. (1995). Cortical electrical stimulation in humans. The negative motor areas. Adv. Neurol. 67, 115–129
    1. Mandonnet E., Winkler P. A., Duffau H. (2010). Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir. (Wien) 152, 185–19310.1007/s00701-009-0469-0
    1. Mani J., Diehl B., Piao Z., Schuele S. S., Lapresto E., Liu P., Nair D. R., Dinner D. S., Luders H. O. (2008). Evidence for a basal temporal visual language center: cortical stimulation producing pure alexia. Neurology 71, 1621–162710.1212/01.wnl.0000334755.32850.f0
    1. Matsumoto R., Nair D. R., LaPresto E., Bingaman W., Shibasaki H., Luders H. O. (2007). Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain 130, 181–19710.1093/brain/awl257
    1. Matsumoto R., Nair D. R., LaPresto E., Najm I., Bingaman W., Shibasaki H., Luders H. O. (2004). Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–233010.1093/brain/awh246
    1. McIntyre C. C., Savasta M., Kerkerian-Le G. L., Vitek J. L. (2004). Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin. Neurophysiol. 115, 1239–124810.1016/j.clinph.2003.12.024
    1. Merrill D. R., Bikson M., Jefferys J. G. (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–19810.1016/j.jneumeth.2004.10.020
    1. Mesulam M. M. (1979). Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic, and entorhinal pathways. Arch. Neurol. 36, 814–818
    1. Miesenbock G. (2009). The optogenetic catechism. Science 326, 395–39910.1126/science.1174520
    1. Morimoto K., Fahnestock M., Racine R. J. (2004). Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog. Neurobiol. 73, 1–6010.1016/j.pneurobio.2004.03.009
    1. Mulak A., Kahane P., Hoffmann D., Minotti L., Bonaz B. (2008). Brain mapping of digestive sensations elicited by cortical electrical stimulations. Neurogastroenterol. Motil. 20, 588–59610.1111/j.1365-2982.2007.01066.x
    1. Munari C., Kahane P., Tassi L., Francione S., Hoffmann D., Lo R. G., Benabid A. L. (1993). Intracerebral low frequency electrical stimulation: a new tool for the definition of the “epileptogenic area”? Acta Neurochir. Suppl. (Wien) 58, 181–185
    1. Nathan S. S., Sinha S. R., Gordon B., Lesser R. P., Thakor N. V. (1993). Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 86, 183–19210.1016/0013-4694(93)90006-H
    1. Nowak L. G., Bullier J. (1998a). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp. Brain Res. 118, 477–48810.1007/s002210050304
    1. Nowak L. G., Bullier J. (1998b). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp. Brain Res. 118, 489–50010.1007/s002210050305
    1. Ojemann G. A. (2003). The neurobiology of language and verbal memory: observations from awake neurosurgery. Int. J. Psychophysiol. 48, 141–14610.1016/S0167-8760(03)00051-5
    1. Parra J., Kalitzin S. N., Iriarte J., Blanes W., Velis D. N., Lopes da Silva F. H. (2003). Gamma-band phase clustering and photosensitivity: is there an underlying mechanism common to photosensitive epilepsy and visual perception? Brain 126, 1164–117210.1093/brain/awg109
    1. Paus T., Jech R., Thompson C. J., Comeau R., Peters T., Evans A. C. (1997). Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J. Neurosci. 17, 3178–3184
    1. Penfield W., Boldrey E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–44310.1093/brain/60.4.389
    1. Penfield W. G., Jasper H. H. (1954). Epilepsy and the Functional Anatomy of the Human Brain. Boston, MA: Little Brown & Co.
    1. Penny W. D., Stephan K. E., Mechelli A., Friston K. J. (2004). Comparing dynamic causal models. Neuroimage 22, 1157–117210.1016/j.neuroimage.2004.03.026
    1. Piallat B., Chabardes S., Devergnas A., Torres N., Allain M., Barrat E., Benabid A. L. (2009). Monophasic but not biphasic pulses induce brain tissue damage during monopolar high-frequency deep brain stimulation. Neurosurgery 64, 156–162; discussion 162–153
    1. Puce A., Allison T., McCarthy G. (1999). Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb. Cortex 9, 445–45810.1093/cercor/9.5.445
    1. Quian Quiroga R., Kraskov A., Kreuz T., Grassberger P. (2002). Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 65, 041903.10.1103/PhysRevE.65.041903
    1. Rattay F. (1999). The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89, 335–34610.1016/S0306-4522(98)00330-3
    1. Reichova I., Sherman S. M. (2004). Somatosensory corticothalamic projections: distinguishing drivers from modulators. J. Neurophysiol. 92, 2185–219710.1152/jn.00322.2004
    1. Roebroeck A., Formisano E., Goebel R. (2009). The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 10.1016/j.neuroimage.2009.1009.1036
    1. Rosenberg D. S., Mauguiere F., Catenoix H., Faillenot I., Magnin M. (2009). Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cereb. Cortex 19, 1462–147310.1093/cercor/bhn185
    1. Rosenberg D. S., Mauguiere F., Demarquay G., Ryvlin P., Isnard J., Fischer C., Guenot M., Magnin M. (2006). Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures. Epilepsia 47, 98–10710.1111/j.1528-1167.2006.00375.x
    1. Saillet S., Langlois M., Feddersen B., Minotti L., Vercueil L., Chabardes S., David O., Depaulis A., Deransart C., Kahane P. (2009). Manipulating the epileptic brain using stimulation: a review of experimental and clinical studies. Epileptic Disord. 11, 100–112
    1. Schiller Y., Bankirer Y. (2007). Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J. Neurophysiol. 97, 1887–190210.1152/jn.00514.2006
    1. Schulz R., Luders H. O., Tuxhorn I., Ebner A., Holthausen H., Hoppe M., Noachtar S., Pannek H., May T., Wolf P. (1997). Localization of epileptic auras induced on stimulation by subdural electrodes. Epilepsia 38, 1321–132910.1111/j.1528-1157.1997.tb00070.x
    1. Selimbeyoglu A., Parvizi J. (2010). Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4:46.
    1. Sharp D. J., Scott S. K., Wise R. J. (2004). Retrieving meaning after temporal lobe infarction: the role of the basal language area. Ann. Neurol. 56, 836–84610.1002/ana.20294
    1. Sinai A., Crone N. E., Wied H. M., Franaszczuk P. J., Miglioretti D., Boatman-Reich D. (2009). Intracranial mapping of auditory perception: event-related responses and electrocortical stimulation. Clin. Neurophysiol. 120, 140–14910.1016/j.clinph.2008.10.152
    1. Spencer S. S., Sperling M. R., Shewmon D. A., Kahane P. (2006). “Intracranial electrodes,” in Epilepsy: A Comprehensive Textbook, eds Engel J., Jr., Pedley T. A. (Philadelphia:Lippincott Williams & Wilkins; ), 1791–1815
    1. Sporns O., Tononi G., Kotter R. (2005). The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1:e42.10.1371/journal.pcbi.0010042
    1. Steriade M., Jones E. G., McCormick D. A. (1997). Thalamus Vol. I: Organisation and Function. Amsterdam: Elsevier
    1. Suffczynski P., Kalitzin S., da Silva F. L., Parra J., Velis D., Wendling F. (2008). Active paradigms of seizure anticipation: computer model evidence for necessity of stimulation. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 78, 051917.10.1103/PhysRevE.78.051917
    1. Sumner P., Nachev P., Morris P., Peters A. M., Jackson S. R., Kennard C., Husain M. (2007). Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54, 697–71110.1016/j.neuron.2007.05.016
    1. Szelenyi A., Kothbauer K., de Camargo A. B., Langer D., Flamm E. S., Deletis V. (2005). Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery 57, 331–338; discussion 331–33810.1227/01.NEU.0000176643.69108.FC
    1. Thiebaut de Schotten M., Urbanski M., Duffau H., Volle E., Levy R., Dubois B., Bartolomeo P. (2005). Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309, 2226–222810.1126/science.1116251
    1. Tolias A. S., Sultan F., Augath M., Oeltermann A., Tehovnik E. J., Schiller P. H., Logothetis N. K. (2005). Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron 48, 901–91110.1016/j.neuron.2005.11.034
    1. Trebuchon-Da Fonseca A., Guedj E., Alario F. X., Laguitton V., Mundler O., Chauvel P., Liegeois-Chauvel C. (2009). Brain regions underlying word finding difficulties in temporal lobe epilepsy. Brain 132, 2772–278410.1093/brain/awp083
    1. Tsuda I. (2001). Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–81010.1017/S0140525X01000097
    1. Valentin A., Alarcon G., Garcia-Seoane J. J., Lacruz M. E., Nayak S. D., Honavar M., Selway R. P., Binnie C. D., Polkey C. E. (2005a). Single-pulse electrical stimulation identifies epileptogenic frontal cortex in the human brain. Neurology 65, 426–43510.1212/01.wnl.0000171340.73078.c1
    1. Valentin A., Alarcon G., Honavar M., Garcia Seoane J. J., Selway R. P., Polkey C. E., Binnie C. D. (2005b). Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study. Lancet Neurol. 4, 718–72610.1016/S1474-4422(05)70200-3
    1. Valentin A., Anderson M., Alarcon G., Seoane J. J., Selway R., Binnie C. D., Polkey C. E. (2002). Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain 125, 1709–171810.1093/brain/awf187
    1. Varela F., Lachaux J. P., Rodriguez E., Martinerie J. (2001). The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–23910.1038/35067550
    1. Varela F. G., Maturana H. R., Uribe R. (1974). Autopoiesis: the organization of living systems, its characterization and a model. Curr. Mod. Biol. 5, 187–196
    1. Vignal J. P., Maillard L., McGonigal A., Chauvel P. (2007). The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain 130, 88–9910.1093/brain/awl329
    1. Wendling F., Ansari-Asl K., Bartolomei F., Senhadji L. (2009). From EEG signals to brain connectivity: a model-based evaluation of interdependence measures. J. Neurosci. Methods 183, 9–1810.1016/j.jneumeth.2009.04.021
    1. Wieser H. G., Bancaud J., Talairach J., Bonis A., Szikla G. (1979). Comparative value of spontaneous and chemically and electrically induced seizures in establishing the lateralization of temporal lobe seizures. Epilepsia 20, 47–5910.1111/j.1528-1157.1979.tb04775.x
    1. Wilson C. L., Isokawa M., Babb T. L., Crandall P. H. (1990). Functional connections in the human temporal lobe. I. Analysis of limbic system pathways using neuronal responses evoked by electrical stimulation. Exp. Brain Res. 82, 279–292
    1. Wilson C. L., Isokawa M., Babb T. L., Crandall P. H., Levesque M. F., Engel J., Jr. (1991). Functional connections in the human temporal lobe. II. Evidence for a loss of functional linkage between contralateral limbic structures. Exp. Brain Res. 85, 174–187
    1. Wilson C. L., Khan S. U., Engel J., Jr., Isokawa M., Babb T. L., Behnke E. J. (1998). Paired pulse suppression and facilitation in human epileptogenic hippocampal formation. Epilepsy Res. 31, 211–23010.1016/S0920-1211(98)00063-1
    1. Zangaladze A., Sharan A., Evans J., Wyeth D. H., Wyeth E. G., Tracy J. I., Chervoneva I., Sperling M. R. (2008). The effectiveness of low-frequency stimulation for mapping cortical function. Epilepsia 49, 481–48710.1111/j.1528-1167.2007.01307.x
    1. Zonenshayn M., Mogilner A. Y., Rezai A. R. (2000). Neurostimulation and functional brain imaging. Neurol. Res. 22, 318–325
    1. Zucker R. S., Regehr W. G. (2002). Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–40510.1146/annurev.physiol.64.092501.114547
    1. Zumsteg D., Lozano A. M., Wennberg R. A. (2006a). Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin. Neurophysiol. 117, 1602–160910.1016/j.clinph.2006.04.008
    1. Zumsteg D., Lozano A. M., Wieser H. G., Wennberg R. A. (2006b). Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin. Neurophysiol. 117, 192–20710.1016/j.clinph.2005.09.015

Source: PubMed

3
購読する