Responsiveness of the new index muscular echotexture in women with metastatic breast cancer: an exercise intervention study

Adrian Escriche-Escuder, Manuel Trinidad-Fernández, Bella Pajares, Marcos Iglesias-Campos, Emilio Alba, José Manuel García-Almeida, Cristina Roldán-Jiménez, Antonio I Cuesta-Vargas, Adrian Escriche-Escuder, Manuel Trinidad-Fernández, Bella Pajares, Marcos Iglesias-Campos, Emilio Alba, José Manuel García-Almeida, Cristina Roldán-Jiménez, Antonio I Cuesta-Vargas

Abstract

Ultrasound imaging texture analyses may provide information on tissue homogeneity changes in metastatic breast cancer (MBC) through second-order analyzes based on the gray-level co-occurrence matrix. This study aimed to analyze the responsiveness and correlations of biomarkers of muscular and fat echotexture after an exercise intervention in women with MBC. A 12-week exercise intervention was conducted in 2019, including aerobic and strength training. Echotexture variables were obtained at baseline and after intervention from the quadriceps (Q) and biceps brachii and brachialis. Mean differences were calculated using the T-Student parametric test for dependent samples of the differences in the means (P = 0.05; 95% CI). Data obtained from 13 MBC women showed significant differences in some echotexture variables after the intervention. QLQ-BR23 questionnaire correlated with several echotexture variables from muscle and subcutaneous fat. PFS-R scale correlated positively with the Q Subcutaneous Fat Non-Contraction Homogeneity (R = 0.43, P < 0.05). Q Muscle Non-Contraction Energy and Q Muscle Non-Contraction Textural Correlation explained 90% of the variance of QLQ-BR23. Some muscle and subcutaneous fat echotexture biomarkers showed good responsiveness after the exercise intervention. Additionally, some muscle and subcutaneous fat variables correlated with QLQ-BR23 and cancer-related fatigue measured by PFS-R scale in MBC patients.Trial registration: NCT03879096.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Position of the patient and ultrasound probe and range of interest (white rectangle) of sample images (a: quadriceps; b: biceps/brachialis).

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA. Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551.
    1. O’Shaughnessy J. Extending survival with chemotherapy in metastatic breast cancer. Oncologist. 2005;10(Suppl 3):20–29. doi: 10.1634/theoncologist.10-90003-20.
    1. Luu T, Chung C, Somlo G. Combining emerging agents in advanced breast cancer. Oncologist. 2011;16:760–771. doi: 10.1634/theoncologist.2010-0345.
    1. Nicolini A, et al. Metastatic breast cancer: An updating. Biomed. Pharmacother. Biomed. Pharmacother. 2006;60:548–556. doi: 10.1016/j.biopha.2006.07.086.
    1. Scully OJ, Bay B-H, Yip G, Yu Y. Breast cancer metastasis. Cancer Genom. Proteom. 2012;9:311–320.
    1. Williams GR, et al. Assessment of sarcopenia measures, survival, and disability in older adults before and after diagnosis with cancer. JAMA Netw. Open. 2020;3:e204783. doi: 10.1001/jamanetworkopen.2020.4783.
    1. Glare PA, et al. Pain in cancer survivors. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014;32:1739–1747. doi: 10.1200/JCO.2013.52.4629.
    1. Charalambous A, Kouta C. Cancer related fatigue and quality of life in patients with advanced prostate cancer undergoing chemotherapy. BioMed Res. Int. 2016;2016:3989286. doi: 10.1155/2016/3989286.
    1. Penha TRL, et al. Quality of life in patients with breast cancer-related lymphedema and reconstructive breast surgery. J. Reconstr. Microsurg. 2016;32:484–490. doi: 10.1055/s-0036-1572538.
    1. Brown TJ, Sedhom R, Gupta A. Chemotherapy-induced peripheral neuropathy. JAMA Oncol. 2019 doi: 10.1001/jamaoncol.2018.6771.
    1. Benavides-Rodríguez L, et al. Relationship between handgrip strength and muscle mass in female survivors of breast cancer: A mediation analysis. Nutrients. 2017;9:695. doi: 10.3390/nu9070695.
    1. Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014;11:177–180.
    1. Prado CMM, et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009;15:2920–2926. doi: 10.1158/1078-0432.CCR-08-2242.
    1. Hidding JT, Beurskens CHG, van der Wees PJ, van Laarhoven HWM, der Sanden MWGN. Treatment related impairments in arm and shoulder in patients with breast cancer: A systematic review. PLoS ONE. 2014;9:e96748. doi: 10.1371/journal.pone.0096748.
    1. Zhang X-M, et al. Sarcopenia as a predictor of mortality in women with breast cancer: A meta-analysis and systematic review. BMC Cancer. 2020;20:172. doi: 10.1186/s12885-020-6645-6.
    1. Schmitz KH, et al. American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med. Sci. Sports Exerc. 2010;42:1409–1426. doi: 10.1249/MSS.0b013e3181e0c112.
    1. Rock CL, et al. Nutrition and physical activity guidelines for cancer survivors. CA. Cancer J. Clin. 2012;62:243–274. doi: 10.3322/caac.21142.
    1. Galvão DA, et al. Exercise preserves physical function in prostate cancer patients with bone metastases. Med. Sci. Sports Exerc. 2018;50:393–399. doi: 10.1249/MSS.0000000000001454.
    1. Segal R, et al. Exercise for people with cancer: A clinical practice guideline. Curr. Oncol. 2017;24:40–46. doi: 10.3747/co.24.3376.
    1. Dennett AM, Peiris CL, Shields N, Prendergast LA, Taylor NF. Moderate-intensity exercise reduces fatigue and improves mobility in cancer survivors: A systematic review and meta-regression. J. Physiother. 2016;62:68–82. doi: 10.1016/j.jphys.2016.02.012.
    1. Gerritsen JKW, Vincent AJPE. Exercise improves quality of life in patients with cancer: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2016;50:796–803. doi: 10.1136/bjsports-2015-094787.
    1. Bleakney R, Maffulli N. Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J. Sports Med. Phys. Fitness. 2002;42:120–125.
    1. Scanlon TC, et al. Muscle architecture and strength: Adaptations to short-term resistance training in older adults. Muscle Nerve. 2014;49:584–592. doi: 10.1002/mus.23969.
    1. Cešeiko R, et al. The impact of maximal strength training on quality of life among women with breast cancer undergoing treatment. Exp. Oncol. 2019;41:166–172.
    1. Kawai H, et al. Morphological and qualitative characteristics of the quadriceps muscle of community-dwelling older adults based on ultrasound imaging: Classification using latent class analysis. Aging Clin. Exp. Res. 2018;30:283–291. doi: 10.1007/s40520-017-0781-0.
    1. Escriche-Escuder A, et al. Ultrasound use in metastatic breast cancer to measure body composition changes following an exercise intervention. Sci. Rep. 2021;11:8858. doi: 10.1038/s41598-021-88375-5.
    1. Martínez-Payá JJ, et al. Muscular Echovariation: A new biomarker in amyotrophic lateral sclerosis. Ultrasound Med. Biol. 2017;43:1153–1162. doi: 10.1016/j.ultrasmedbio.2017.02.002.
    1. Martínez-Payá JJ, et al. Quantitative muscle ultrasonography using textural analysis in amyotrophic lateral sclerosis. Ultrason. Imaging. 2017;39:357–368. doi: 10.1177/0161734617711370.
    1. Ríos-Díaz J, et al. Quantitative neuromuscular ultrasound analysis as biomarkers in amyotrophic lateral sclerosis. Eur. Radiol. 2019;29:4266–4275. doi: 10.1007/s00330-018-5943-8.
    1. da Matta TT, de Pereira WCA, Radaelli R, Pinto RS, de Oliveira LF. Texture analysis of ultrasound images is a sensitive method to follow-up muscle damage induced by eccentric exercise. Clin. Physiol. Funct. Imaging. 2018;38:477–482. doi: 10.1111/cpf.12441.
    1. Ríos-Díaz J, de Groot Ferrando A, Martínez-Payá JJ, del Baño Aledo ME. Fiabilidad y reproducibilidad de un nuevo método de análisis morfotextural de imágenes ecográficas del tendón rotuliano. Reumatol. Clín. Engl. Ed. 2010;6:278–284. doi: 10.1016/j.reuma.2010.01.008.
    1. Martínez-Payá JJ, et al. Muscular Echovariation: A new biomarker in amyotrophic lateral sclerosis. Ultrasound Med. Biol. 2017;43:1153–1162. doi: 10.1016/j.ultrasmedbio.2017.02.002.
    1. Aggarwal N, Agrawal RK. First and second order statistics features for classification of magnetic resonance brain images. J. Signal Inf. Process. 2012;3:146–153.
    1. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973;SMC-3:610–621. doi: 10.1109/TSMC.1973.4309314.
    1. Roldán-Jiménez C, et al. Design and implementation of a standard care programme of therapeutic exercise and education for breast cancer survivors. Support. Care Cancer. 2021 doi: 10.1007/s00520-021-06470-9.
    1. Mock V. Clinical excellence through evidence-based practice: fatigue management as a model. Oncol. Nurs. Forum. 2003;30:787–796. doi: 10.1188/03.ONF.787-795.
    1. Piper BF, et al. The revised piper fatigue scale: Psychometric evaluation in women with breast cancer. Oncol. Nurs. Forum. 1998;25:677–684.
    1. Sprangers MA, et al. The European organization for research and treatment of cancer breast cancer-specific quality-of-life questionnaire module: First results from a three-country field study. J. Clin. Oncol. 1996;14:2756–2768. doi: 10.1200/JCO.1996.14.10.2756.
    1. Kawai H, et al. Morphological and qualitative characteristics of the quadriceps muscle of community-dwelling older adults based on ultrasound imaging: Classification using latent class analysis. Aging Clin. Exp. Res. 2018;30:283–291. doi: 10.1007/s40520-017-0781-0.
    1. Bradley M, O’Donnell P. Atlas of Musculoskeletal Ultrasound Anatomy. Cambridge University Press; 2010.
    1. Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420.
    1. Curt GA. Impact of fatigue on quality of life in oncology patients. Semin. Hematol. 2000;37:14–17. doi: 10.1016/S0037-1963(00)90063-5.
    1. DuMontier C, Clough-Gorr KM, Silliman RA, Stuck AE, Moser A. Health-related quality of life in a predictive model for mortality in older breast cancer survivors. J. Am. Geriatr. Soc. 2018;66:1115–1122. doi: 10.1111/jgs.15340.
    1. Otten L, et al. Impact of sarcopenia on 1-year mortality in older patients with cancer. Age Ageing. 2019;48:413–418. doi: 10.1093/ageing/afy212.
    1. Gerritsen JKW, Vincent AJPE. Exercise improves quality of life in patients with cancer: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2016;50:796–803. doi: 10.1136/bjsports-2015-094787.
    1. Mustian KM, et al. Comparison of pharmaceutical, psychological, and exercise treatments for cancer-related fatigue a meta-analysis. JAMA Oncol. 2017;3:961–968. doi: 10.1001/jamaoncol.2016.6914.
    1. Stichling K, et al. Factors influencing GPs’ perception of specialised palliative homecare (SPHC) importance: Results of a cross-sectional study. BMC Palliat. Care. 2020;19:117. doi: 10.1186/s12904-020-00603-3.
    1. Møller AB, et al. Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. J. Cancer Res. Clin. Oncol. 2019;145:1449–1460. doi: 10.1007/s00432-019-02911-5.
    1. Padilha CS, et al. Evaluation of resistance training to improve muscular strength and body composition in cancer patients undergoing neoadjuvant and adjuvant therapy: A meta-analysis. J. Cancer Surviv. Res. Pract. 2017;11:339–349. doi: 10.1007/s11764-016-0592-x.
    1. Molinari F, Caresio C, Acharya UR, Mookiah MRK, Minetto MA. Advances in quantitative muscle ultrasonography using texture analysis of ultrasound images. Ultrasound Med. Biol. 2015;41:2520–2532. doi: 10.1016/j.ultrasmedbio.2015.04.021.
    1. Martínez-Payá JJ, Ríos-Díaz J, Medina-Mirapeix F, Vázquez-Costa JF, Del Baño-Aledo ME. Monitoring progression of amyotrophic lateral sclerosis using ultrasound morpho-textural muscle biomarkers: A pilot study. Ultrasound Med. Biol. 2018;44:102–109. doi: 10.1016/j.ultrasmedbio.2017.09.013.
    1. Gilliam LAA, St. Clair DK. Chemotherapy-induced weakness and fatigue in skeletal muscle: The role of oxidative stress. Antioxid. Redox Sign. 2011;15:2543–2563. doi: 10.1089/ars.2011.3965.
    1. Christensen JF, et al. Muscle dysfunction in cancer patients. Ann. Oncol. 2014;25:947–958. doi: 10.1093/annonc/mdt551.
    1. Huy C, Schmidt ME, Vrieling A, Chang-Claude J, Steindorf K. Physical activity in a German breast cancer patient cohort: One-year trends and characteristics associated with change in activity level. Eur. J. Cancer Oxf. Engl. 2012;1990(48):297–304. doi: 10.1016/j.ejca.2011.08.005.
    1. Lakoski SG, Eves ND, Douglas PS, Jones LW. Exercise rehabilitation in patients with cancer. Nat. Rev. Clin. Oncol. 2012;9:288–296. doi: 10.1038/nrclinonc.2012.27.
    1. Klassen O, et al. Muscle strength in breast cancer patients receiving different treatment regimes. J. Cachexia Sarcopenia Muscle. 2017;8:305–316. doi: 10.1002/jcsm.12165.
    1. Koeppel M, Mathis K, Schmitz KH, Wiskemann J. Muscle hypertrophy in cancer patients and survivors via strength training a meta-analysis and meta-regression. Crit. Rev. Oncol. Hematol. 2021;163:103371. doi: 10.1016/j.critrevonc.2021.103371.
    1. Bland KA, Kouw IWK, van Loon LJC, Zopf EM, Fairman CM. Exercise-based interventions to counteract skeletal muscle mass loss in people with cancer: Can we overcome the odds? Sports Med. Auckl. NZ. 2022;52:1009–1027. doi: 10.1007/s40279-021-01638-z.

Source: PubMed

3
購読する