Exercise intervention for unilateral amputees with low back pain: study protocol for a randomised, controlled trial

Joseph G Wasser, Daniel C Herman, MaryBeth Horodyski, Jason L Zaremski, Brady Tripp, Phillip Page, Kevin R Vincent, Heather K Vincent, Joseph G Wasser, Daniel C Herman, MaryBeth Horodyski, Jason L Zaremski, Brady Tripp, Phillip Page, Kevin R Vincent, Heather K Vincent

Abstract

Background: Atraumatic lower limb amputation is a life-changing event for approximately 185,000 persons in the United States each year. A unilateral amputation is associated with rapid changes to the musculoskeletal system including leg and back muscle atrophy, strength loss, gait asymmetries, differential mechanical joint loading and leg length discrepancies. Even with high-quality medical care and prostheses, amputees still develop secondary musculoskeletal conditions such as chronic low back pain (LBP). Resistance training interventions that focus on core stabilization, lumbar strength and dynamic stability during loading have strong potential to reduce LBP and address amputation-related changes to the musculoskeletal system. Home-based resistance exercise programs may be attractive to patients to minimize travel and financial burdens.

Methods/design: This study will be a single-assessor-blinded, pre-post-test randomised controlled trial involving 40 men and women aged 18-60 years with traumatic, unilateral transtibial amputation. Participants will be randomised to a home-based, resistance exercise group (HBRX) or a wait-list control group (CON). The HBRX will consist of 12 weeks of elastic resistance band and bodyweight training to improve core and lumbopelvic strength. Participants will be monitored via Skype or Facetime on a weekly basis. The primary outcome will be pain severity (11-point Numerical Pain Rating Scale; NRSpain). Secondary outcomes will include pain impact on quality of life (Medical Outcomes Short Form 36, Oswestry Disability Index and Roland Morris Disability Questionnaire), kinematics and kinetics of walking gait on an instrumented treadmill, muscle morphology (muscle thickness of multifidus, transversus abdominis, internal oblique), maximal muscle strength of key lumbar and core muscles, and daily step count.

Discussion: The study findings will determine whether a HBRX program can decrease pain severity and positively impact several physiological and mechanical factors that contribute to back pain in unilateral transtibial amputees with chronic LBP. We will determine the relative contribution of the exercise-induced changes in these factors on pain responsiveness in this population.

Trial registration: ClinicalTrials.gov, ID: NCT03300375 . Registered on 2 October 2017.

Keywords: Amputee; Disability; Gait; Low back pain; Physical function; Randomised controlled trial.

Conflict of interest statement

Authors’ information

JGW is a doctoral student in the rehabilitation sciences program at the University of Florida (UF). He received his B.S. degree in applied physiology and kinesiology at UF. His research emphasizes the relationship of low back pain on joint motion and energy expenditure in active and amputee persons.

Ethics approval and consent to participate

This study and its procedures were approved by the University of Florida Institutional Review Board (protocol number 201701256). Written informed consent will be obtained from all candidates who agree to participate and meet all the inclusion/exclusion criteria.

Consent for publication

Not applicable.

Competing interests

Dr. Phil Page currently stands as the Global Director of Clinical Education and Research for Performance Health, manufacturer of TheraBand®, Biofreeze, and Cramer products.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
Schedule of enrollment, interventions, and assessments
Fig. 3
Fig. 3
Elastic resistance band set and stability pad equipment for the home-based resistance

References

    1. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9. doi: 10.1016/j.apmr.2007.11.005.
    1. Owings M, Kozak L. Ambulatory and impatient procedures in the United States. Hyattsville: U.S. Dept. of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 1998.
    1. Engstrand JL. Rehabilitation of the patient with a lower extremity amputation. Nurs Clin North Am. 1976;11(4):659–69.
    1. Devan H, Carman A, Hendrick P, Hale L, Ribeiro DC. Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: Systematic review. J Rehabil Res Dev. 2015;52(1):1–19. doi: 10.1682/JRRD.2014.05.0135.
    1. Sherk VD, Bemben MG, Bemben DA. Interlimb muscle and fat comparisons in persons with lower-limb amputation. Arch Phys Med Rehabil. 2010;91(7):1077–81. doi: 10.1016/j.apmr.2010.04.008.
    1. Pauley T, Devlin M, Madan-Sharma P. A single-blind, cross-over trial of hip abductor strength training to improve Timed Up & Go performance in patients with unilateral, transfemoral amputation. J Rehabil Med. 2014;46(3):264–70. doi: 10.2340/16501977-1270.
    1. Shojaei I, Hendershot BD, Wolf EJ, Bazrgari B. Persons with unilateral transfemoral amputation experience larger spinal loads during level-ground walking compared to able-bodied individuals. Clin Biomech Bristol Avon. 2016;32:157–63. doi: 10.1016/j.clinbiomech.2015.11.018.
    1. Russell Esposito E, Wilken JM. The relationship between pelvis-trunk coordination and low back pain in individuals with transfemoral amputations. Gait Posture. 2014;40(4):640–6. doi: 10.1016/j.gaitpost.2014.07.019.
    1. Smith DG, Ehde DM, Legro MW, Reiber GE, del Aguila M, Boone DA. Phantom limb, residual limb, and back pain after lower extremity amputations. Clin Orthop. 1999;361:29–38. doi: 10.1097/00003086-199904000-00005.
    1. Taghipour H, Moharamzad Y, Mafi AR, et al. Quality of life among veterans with war-related unilateral lower extremity amputation: a long-term survey in a prosthesis center in Iran. J Orthop Trauma. 2009;23(7):525–30. doi: 10.1097/BOT.0b013e3181a10241.
    1. Alnojeidi AH, Johnson TM, Richardson MR, Churilla JR. Associations between low back pain and muscle-strengthening activity in U.S. adults. Spine. December 2016. doi:10.1097/BRS.0000000000002063.
    1. Mayer JM, Childs JD, Neilson BD, Chen H, Koppenhaver SL, Quillen WS. Effect of lumbar progressive resistance exercise on lumbar muscular strength and core muscular endurance in soldiers. Mil Med. 2016;181(11):e1615–22. doi: 10.7205/MILMED-D-15-00543.
    1. Steele J, Bruce-Low S, Smith D. A review of the clinical value of isolated lumbar extension resistance training for chronic low back pain. PM R. 2015;7(2):169–87. doi: 10.1016/j.pmrj.2014.10.009.
    1. Marzetti E, Calvani R, Tosato M, et al. Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin Exp Res. 2017;29(1):35–42. doi: 10.1007/s40520-016-0705-4.
    1. Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8:CD008465.
    1. Kwak C-J, Kim YL, Lee SM. Effects of elastic-band resistance exercise on balance, mobility and gait function, flexibility and fall efficacy in elderly people. J Phys Ther Sci. 2016;28(11):3189–96. doi: 10.1589/jpts.28.3189.
    1. Ahn N, Kim K. Effects of an elastic band resistance exercise program on lower extremity muscle strength and gait ability in patients with Alzheimer’s disease. J Phys Ther Sci. 2015;27(6):1953–5. doi: 10.1589/jpts.27.1953.
    1. Schulz KF, Altman DG, Moher D, CONSORT Group CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. doi: 10.1136/bmj.c332.
    1. Begg C, Cho M, Eastwood S, et al. Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA. 1996;276(8):637–9. doi: 10.1001/jama.1996.03540080059030.
    1. Vincent HK, George SZ, Seay AN, Vincent KR, Hurley RW. Resistance exercise, disability, and pain catastrophizing in obese adults with back pain. Med Sci Sports Exerc. 2014;46(9):1693–701. doi: 10.1249/MSS.0000000000000294.
    1. Kell RT, Risi AD, Barden JM. The response of persons with chronic nonspecific low back pain to three different volumes of periodized musculoskeletal rehabilitation. J Strength Cond Res Natl Strength Cond Assoc. 2011;25(4):1052–64. doi: 10.1519/JSC.0b013e3181d09df7.
    1. Doig GS, Simpson F. Randomization and allocation concealment: a practical guide for researchers. J Crit Care. 2005;20(2):187–91. doi: 10.1016/j.jcrc.2005.04.005.
    1. Sundstrup E, Jakobsen MD, Andersen CH, et al. Evaluation of elastic bands for lower extremity resistance training in adults with and without musculo-skeletal pain. Scand J Med Sci Sports. 2014;24(5):e353–359. doi: 10.1111/sms.12187.
    1. Saeterbakken AH, Andersen V, Kolnes MK, Fimland MS. Effects of replacing free weights with elastic band resistance in squats on trunk muscle activation. J Strength Cond Res. 2014;28(11):3056–62. doi: 10.1519/JSC.0000000000000516.
    1. Galpin AJ, Malyszek KK, Davis KA, et al. Acute effects of elastic bands on kinetic characteristics during the deadlift at moderate and heavy loads. J Strength Cond Res. 2015;29(12):3271–8. doi: 10.1519/JSC.0000000000000987.
    1. Oesen S, Halper B, Hofmann M, et al. Effects of elastic band resistance training and nutritional supplementation on physical performance of institutionalised elderly—A randomized controlled trial. Exp Gerontol. 2015;72:99–108. doi: 10.1016/j.exger.2015.08.013.
    1. Ciolac EG, Rodrigues-da-Silva JM. Resistance training as a tool for preventing and treating musculoskeletal disorders. Sports Med Auckl NZ. 2016;46(9):1239–48. doi: 10.1007/s40279-016-0507-z.
    1. Deschenes MR, Kraemer WJ. Performance and physiologic adaptations to resistance training. Am J Phys Med Rehabil. 2002;81(11 Suppl):S3–16. doi: 10.1097/00002060-200211001-00003.
    1. Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc. 1988;20(5 Suppl):S132–134. doi: 10.1249/00005768-198810001-00008.
    1. American College of Sports Medicine American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi: 10.1249/MSS.0b013e3181915670.
    1. Coulombe BJ, Games KE, Neil ER, Eberman LE. Core stability exercise versus general exercise for chronic low back pain. J Athl Train. 2016
    1. Wasser JG, Vasilopoulos T, Zdziarski LA, Vincent HK. Exercise benefits for chronic low back pain in overweight and obese individuals. PM R. 2016
    1. Vincent KR, Braith RW, Vincent HK. Influence of resistance exercise on lumbar strength in older, overweight adults. Arch Phys Med Rehabil. 2006;87(3):383–9. doi: 10.1016/j.apmr.2005.11.030.
    1. Borg G, Hassmén P, Lagerström M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol. 1987;56(6):679–85. doi: 10.1007/BF00424810.
    1. Colado JC, Garcia-Masso X, Triplett NT, et al. Construct and concurrent validation of a new resistance intensity scale for exercise with thera-band® elastic bands. J Sports Sci Med. 2014;13(4):758–66.
    1. Chiarotto A, Deyo RA, Terwee CB, et al. Core outcome domains for clinical trials in non-specific low back pain. Eur Spine J. 2015;24(6):1127–42. doi: 10.1007/s00586-015-3892-3.
    1. Clement RC, Welander A, Stowell C, et al. A proposed set of metrics for standardized outcome reporting in the management of low back pain. Acta Orthop. 2015;86(5):523–33. doi: 10.3109/17453674.2015.1036696.
    1. Dworkin RH, Turk DC, Wyrwich KW, et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J Pain Off J Am Pain Soc. 2008;9(2):105–21. doi: 10.1016/j.jpain.2007.09.005.
    1. Childs BR, Nahm NJ, Dolenc AJ, Vallier HA. Obesity is associated with more complications and longer hospital stays after orthopaedic trauma. J Orthop Trauma. 2015
    1. Vincent HK, Seay AN, Montero C, Conrad BP, Hurley RW, Vincent KR. Functional pain severity and mobility in overweight older men and women with chronic low-back pain—part I. Am J Phys Med Rehabil Assoc Acad Physiatr. 2013;92(5):430–8. doi: 10.1097/PHM.0b013e31828763a0.
    1. Tøien K, Bredal IS, Skogstad L, Myhren H, Ekeberg O. Health related quality of life in trauma patients. Data from a one-year follow up study compared with the general population. Scand J Trauma Resusc Emerg Med. 2011;19:22. doi: 10.1186/1757-7241-19-22.
    1. Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine. 2000;25(22):2940–52. doi: 10.1097/00007632-200011150-00017.
    1. Roland M, Fairbank J. The Roland-Morris Disability Questionnaire and the Oswestry Disability Questionnaire. Spine. 2000;25(24):3115–24. doi: 10.1097/00007632-200012150-00006.
    1. Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res Off Publ Orthop Res Soc. 1990;8(3):383–92. doi: 10.1002/jor.1100080310.
    1. Major MJ, Stine RL, Gard SA. The effects of walking speed and prosthetic ankle adapters on upper extremity dynamics and stability-related parameters in bilateral transtibial amputee gait. Gait Posture. 2013;38(4):858–63. doi: 10.1016/j.gaitpost.2013.04.012.
    1. Jung Y, Jung M, Ryu J, Yoon S, Park S-K, Koo S. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running. Gait Posture. 2016;45:62–8. doi: 10.1016/j.gaitpost.2016.01.005.
    1. Vincent HK, Vincent KR, Seay AN, Conrad BP, Hurley RW, George SZ. Back strength predicts walking improvement in obese, older adults with chronic low back pain. PM R. 2014;6(5):418–26. doi: 10.1016/j.pmrj.2013.11.002.
    1. Fey NP, Silverman AK, Neptune RR. The influence of increasing steady-state walking speed on muscle activity in below-knee amputees. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2010;20(1):155–61. doi: 10.1016/j.jelekin.2009.02.004.
    1. Booth J, Moseley GL, Schiltenwolf M, Cashin A, Davies M, Hübscher M. Exercise for chronic musculoskeletal pain: a biopsychosocial approach. Musculoskeletal Care. 2017
    1. Wachi M, Suga T, Higuchi T, et al. Applicability of ultrasonography for evaluating trunk muscle size: a pilot study. J Phys Ther Sci. 2017;29(2):245–9. doi: 10.1589/jpts.29.245.
    1. Blazevich AJ, Gill ND, Deans N, Zhou S. Lack of human muscle architectural adaptation after short-term strength training. Muscle Nerve. 2007;35(1):78–86. doi: 10.1002/mus.20666.
    1. Wallwork TL, Hides JA, Stanton WR. Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging. J Orthop Sports Phys Ther. 2007;37(10):608–12. doi: 10.2519/jospt.2007.2418.
    1. Belavý DL, Gast U, Felsenberg D. Exercise and transversus abdominis muscle atrophy after 60-d bed rest. Med Sci Sports Exerc. 2017;49(2):238–46. doi: 10.1249/MSS.0000000000001096.
    1. Krein SL, Kadri R, Hughes M, et al. Pedometer-based Internet-mediated intervention for adults with chronic low back pain: randomized controlled trial. J Med Internet Res. 2013;15(8):e181. doi: 10.2196/jmir.2605.
    1. Bade BC, Brooks MC, Nietert SB, et al. Assessing the correlation between physical activity and quality of life in advanced lung cancer. Integr Cancer Ther. 2016:1534735416684016. doi:10.1177/1534735416684016.
    1. Morishita S, Kaida K, Yamauchi S, et al. Relationship of physical activity with physical function and health-related quality of life in patients having undergone allogeneic haematopoietic stem-cell transplantation. Eur J Cancer Care (Engl) 2017
    1. Woby SR, Roach NK, Urmston M, Watson PJ. Psychometric properties of the TSK-11: a shortened version of the Tampa Scale for Kinesiophobia. Pain. 2005;117(1-2):137–44. doi: 10.1016/j.pain.2005.05.029.
    1. Osman A, Barrios FX, Gutierrez PM, Kopper BA, Merrifield T, Grittmann L. The Pain Catastrophizing Scale: further psychometric evaluation with adult samples. J Behav Med. 2000;23(4):351–65. doi: 10.1023/A:1005548801037.
    1. Highsmith MJ, Andrews CR, Millman C, et al. Gait training interventions for lower extremity amputees: a systematic literature review. Technol Innov. 2016;18(2-3):99–113. doi: 10.21300/18.2-3.2016.99.
    1. Nolan L. A training programme to improve hip strength in persons with lower limb amputation. J Rehabil Med. 2012;44(3):241–8. doi: 10.2340/16501977-0921.
    1. Darter BJ, Nielsen DH, Yack HJ, Janz KF. Home-based treadmill training to improve gait performance in persons with a chronic transfemoral amputation. Arch Phys Med Rehabil. 2013;94(12):2440–7. doi: 10.1016/j.apmr.2013.08.001.
    1. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 9th ed. Philadelphia: Wolters Kluwer, Lippincott Williams & Wilkins; 2014.
    1. Kumar T, Kumar S, Nezamuddin M, Sharma VP. Efficacy of core muscle strengthening exercise in chronic low back pain patients. J Back Musculoskelet Rehabil. 2015;28(4):699–707. doi: 10.3233/BMR-140572.

Source: PubMed

3
購読する