Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy

Albano Pinto, Catarina Cunha, Raquel Chaves, Matthew E R Butchbach, Filomena Adega, Albano Pinto, Catarina Cunha, Raquel Chaves, Matthew E R Butchbach, Filomena Adega

Abstract

Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.

Keywords: SMN1; SMN2; genome dynamics; retrotransposons; spinal muscular atrophy; transposable elements.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
AluJb element within the SMN1/2 promoter region. An AluJb element (represented by a dark green arrow) is inserted inside the promoter region of SMN1/2, upstream of the canonical transcriptional start site (TSS1a). Transcriptional start sites (TSS), two of them located inside the AluJb sequence, and the start codon are represented by green and red arrowheads, respectively.
Figure 2
Figure 2
Comparison of the SMN1/2 promoter regions within sample cohort. An AluJb insertion (represented by a dark green arrow) is present within the gene promotor region of all samples. Some polymorphic insertions were detected upstream of the promotor region and the 5′UTR; there were no connections, however, between these polymorphic insertions and SMA phenotype.
Figure 3
Figure 3
Identification of TEs within the SMN1/2 3′UTR. (A) SMN1/2 3′UTR region is enriched in transposable elements (represented in colored arrows). Exon 8 is considered part of the 3′UTR region of the gene. An L1MC5a element (pink arrow) is inserted in SMN1/2 exon 8 (grey arrow). (B) A large L1 insertion (represented by a colored arrow) was detected in SMN1/2 last canonical exon, exon 8 (represented by a grey arrow). G + C analysis of the region showed a general lower G + C content in this region compared with the adjacent gene regions, partially explaining how a L1 insertion occurred in this region.
Figure 4
Figure 4
Comparison of SMN1/2 exon 8 within the sample cohort. All samples in study, independently of disease status, exhibit the L1 insertion (represented by a pink arrow) inside exon 8 (represented by a grey arrow) suggesting that the L1 element inserted in exon 8 is indeed fixed in the population and that it has a biological role in SMN1/2 regulation.
Figure 5
Figure 5
Identification of TEs within the SMN1 Consensus Coding Sequences (CCDSs). SMN1 longest isoform CCDS represented in grey on top has a L1MC5a element (represented by a pink arrow) inserted in its sequence responsible for the extension of the CCDS. Contrarily, SMN1 most common CCDS, isoform (d; represented as a blue bar), is shorter and does not have any TE insertion in its sequence. Both sequences show 100% sequence identity within the overlapped region. We also observed the presence of a L1MC5a element within the longest CCDS for SMN2.
Figure 6
Figure 6
Identification of TEs within the reference SMN1/2 gene sequence. SMN1/2 exons are represented by grey arrows and introns by white boxes. SMN1/2 promoter is represented by a green box and other regulatory motifs by green arrows. Start and stop codons are represented by small red arrows. Transposable elements position and orientation is indicated by colored arrows, with the direction of the arrow indicating the orientation of the repeat element.
Figure 7
Figure 7
Identification of Key Alu repeats involved in RNA circularization events within SMN1/2. Comparison between key Alu repeats involved in SMN1/2 circularization events (inside the red boxes) located in introns 1, 4, 5 and 6. Independently of disease status, a conservation of position and orientation of the Alu insertions is visible. SMA patient samples (MB228 and MB358); SMA carriers (HG00281 and HG01085); healthy samples (MB109 and MB342) and Non-carrier samples (HG01341 and NA18629). Color codes for the arrows: green, AluJb; pink, AluSp; yellow, AluSg; orange, AluSz6; light green, AluJo; dark red, AluSx1; teal, AluY; light blue, AluYc and red, AluSc8.
Figure 8
Figure 8
Identification of SMN1/2 alternative exonization events. On top, exonization event of an intronic antisense Alu repeat (represented by a green arrow) that gave birth to alternative exon 6B. Below, another exonization event of an antisense Alu element (represented by an orange arrow) that resulted in the formation of SMN1/2 alternative exon 9. G + C content analysis of both regions shows a higher G + C content in the exonization regions when compared with the surrounding areas, which might have favored Alu insertions and the posterior exonization events.
Figure 9
Figure 9
Comparison of the exon 6B region within the sample cohort. An AluY insertion (represented by a teal arrow) gives rise to alternative exon 6B in all healthy and SMA samples, including the reference SMN1 ENSEMBL sequence. Contrarily, an AluSc8 (represented by a red arrow) insertion is present instead of the AluY element in the remaining samples. This Alu insertion difference is most likely the result of low sequencing read depth of the 1000 Genomes Project samples.
Figure 10
Figure 10
Comparison of the exon 9 region within the sample cohort. Extensive insertional polymorphisms were detected for exon 9 region in the analyzed samples. While the expected AluSz insertion (represented by a light orange arrow) was present in some samples, other AluSz6 and AluSx insertions (represented by an orange arrow and a dark red arrow, respectively) were observed in this region. This polymorphism may be due to interpersonal variability and is not associated with SMA.
Figure 11
Figure 11
Identification of Alu-mediated partial deletions within SMN1. The several Alu-derived repeats existent in SMN1 introns provide a fertile source of Alu/Alu recombination events, known to lead to gene deletions. To date, three Alu-mediated deletion events were reported in SMN1. The more common deletion involving exon 7 and 8 is represented by a red box. A deletion event first described by Wirth et al. [37] involving exons 5 and 6 is indicated by a yellow box. Lastly, the more recently reported Alu-mediated deletion in SMN1 is highlighted by a blue box.

References

    1. Hancks D.C., Kazazian H.H. Roles for retrotransposon insertions in human disease. Mob. DNA. 2016;7:9. doi: 10.1186/s13100-016-0065-9.
    1. Jangam D., Feschotte C., Betrán E. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 2017;33:817–831. doi: 10.1016/j.tig.2017.07.011.
    1. Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. doi: 10.1186/s13059-018-1577-z.
    1. Platt R.N., Vandewege M.W., Ray D.A. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res. 2018;26:25–43. doi: 10.1007/s10577-017-9570-z.
    1. Cosby R.L., Chang N.-C., Feschotte C. Host-transposon interactions: Conflict, cooperation, and cooption. Genes Dev. 2019;33:1098–1116. doi: 10.1101/gad.327312.119.
    1. Garcia-Perez J.L., Widmann T.J., Adams I.R. The impact of transposable elements on mammalian development. Development. 2016;143:4101–4114. doi: 10.1242/dev.132639.
    1. Paço A., Adega F., Chaves R. LINE-1 retrotransposons: From ‘parasite’ sequences to functional elements. J. Appl. Genet. 2015;56:133–145. doi: 10.1007/s13353-014-0241-x.
    1. Payer L.M., Burns K.H. Transposable elements in human genetic disease. Nat. Rev. Genet. 2019;20:760–772. doi: 10.1038/s41576-019-0165-8.
    1. Burns K.H. Our Conflict with Transposable Elements and Its Implications for Human Disease. Annu. Rev. Pathol. Mech. Dis. 2020;15:51–70. doi: 10.1146/annurev-pathmechdis-012419-032633.
    1. Batzer M.A., Deininger P.L., Hellmann-Blumberg U., Jurka J., Labuda D., Rubin C.M., Schmid C.W., Zietkiewicz E., Zuckerkandl E. Standardized nomenclature for Alu repeats. J. Mol. Evol. 1996;42:3–6. doi: 10.1007/BF00163204.
    1. Chuong E.B., Elde N.C., Feschotte C. Regulatory activities of transposable elements: From conflicts to benefits. Nat. Rev. Genet. 2017;18:71. doi: 10.1038/nrg.2016.139.
    1. Rebollo R., Farivar S., Mager D.L. C-GATE-catalogue of genes affected by transposable elements. Mob. DNA. 2012;3:9. doi: 10.1186/1759-8753-3-9.
    1. Friedli M., Trono D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 2015;31:429–451. doi: 10.1146/annurev-cellbio-100814-125514.
    1. Zeng L., Pederson S.M., Kortschak R.D., Adelson D.L. Transposable elements and gene expression during the evolution of amniotes. Mob. DNA. 2018;9:17. doi: 10.1186/s13100-018-0124-5.
    1. Sundaram V., Wysocka J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. B. 2020;375:20190347. doi: 10.1098/rstb.2019.0347.
    1. Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.
    1. O’Donnell K.A., Burns K.H. Mobilizing diversity: Transposable element insertions in genetic variation and disease. Mob. DNA. 2010;1:21. doi: 10.1186/1759-8753-1-21.
    1. Vorechovsky I. Transposable elements in disease-associated cryptic exons. Hum. Genet. 2010;127:135–154. doi: 10.1007/s00439-009-0752-4.
    1. Saleh A., Macia A., Muotri A.R. Transposable elements, inflammation, and neurological disease. Front. Neurol. 2019;10:894. doi: 10.3389/fneur.2019.00894.
    1. Hedges D.J., Deininger P.L. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat. Res. Fundam. Mol. Mech. Mutagenesis. 2007;616:46–59. doi: 10.1016/j.mrfmmm.2006.11.021.
    1. Lapp H.E., Hunter R.G. Early life exposures, neurodevelopmental disorders, and transposable elements. Neurobiol. Stress. 2019;11:100174. doi: 10.1016/j.ynstr.2019.100174.
    1. Percharde M., Sultana T., Ramalho-Santos M. What doesn’t kill you makes you stronger: Transposons as dual players in chromatin regulation and genomic variation. BioEssays. 2020;42:1900232. doi: 10.1002/bies.201900232.
    1. Jönsson M.E., Garza R., Johansson P.A., Jakobsson J. Transposable elements: A common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet. 2020;36:610–623. doi: 10.1016/j.tig.2020.05.004.
    1. Crawford T.O., Pardo C.A. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis. 1996;3:97–110. doi: 10.1006/nbdi.1996.0010.
    1. Kolb S.J., Kissel J.T. Spinal muscular atrophy. Neurol. Clin. 2015;33:831–846. doi: 10.1016/j.ncl.2015.07.004.
    1. Butchbach M.E. Genomic variability in the survival motor neuron genes (Smn1 and smn2): Implications for spinal muscular atrophy phenotype and therapeutics development. Int. J. Mol. Sci. 2021;22:7896. doi: 10.3390/ijms22157896.
    1. Wirth B. Spinal muscular atrophy: In the challenge lies a solution. Trends Neurosci. 2021;44:306–322. doi: 10.1016/j.tins.2020.11.009.
    1. Lefebvre S., Bürglen L., Reboullet S., Clermont O., Burlet P., Viollet L., Benichou B., Cruaud C., Millasseau P., Zeviani M., et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–165. doi: 10.1016/0092-8674(95)90460-3.
    1. Blasco-Pérez L., Paramonov I., Leno J., Bernal S., Alias L., Fuentes-Prior P., Cuscó I., Tizzano E.F. Beyond copy number: A new, rapid, and versatile method for sequencing the entire SMN2 gene in SMA patients. Hum Mutat. 2021;42:787–795. doi: 10.1002/humu.24200.
    1. Campbell L., Potter A., Ignatius J., Dubowitz V., Davies K. Genomic variation and gene conversion in spinal muscular atrophy: Implications for disease process and clinical phenotype. Am. J. Hum. Genet. 1997;61:40. doi: 10.1086/513886.
    1. Courseaux A., Richard F., Grosgeorge J., Ortola C., Viale A., Turc-Carel C., Dutrillaux B., Gaudray P., Nahon J.-L. Segmental duplications in euchromatic regions of human chromosome 5: A source of evolutionary instability and transcriptional innovation. Genome Res. 2003;13:369–381. doi: 10.1101/gr.490303.
    1. Schmutz J., Martin J., Terry A., Couronne O., Grimwood J., Lowry S., Gordon L.A., Scott D., Xie G., Huang W., et al. The DNA sequence and comparative analysis of human chromosome 5. Nature. 2004;431:268–274. doi: 10.1038/nature02919.
    1. Ottesen E.W., Singh R.N. Characteristics of circular RNAs generated by human Survival Motor Neuron genes. Cell. Signal. 2020;73:109696. doi: 10.1016/j.cellsig.2020.109696.
    1. Ottesen E.W., Seo J., Singh N.N., Singh R.N. A multilayered control of the human survival motor neuron gene expression by Alu elements. Front. Microbiol. 2017;8:2252. doi: 10.3389/fmicb.2017.02252.
    1. Pagliarini V., Jolly A., Bielli P., Di Rosa V., De la Grange P., Sette C. Sam68 binds Alu-rich introns in SMN and promotes pre-mRNA circularization. Nucleic Acids Res. 2020;48:633–645. doi: 10.1093/nar/gkz1117.
    1. Ruhno C., McGovern V.L., Avenarius M.R., Snyder P.J., Prior T.W., Nery F.C., Muhtaseb A., Roggenbuck J.S., Kissel J.T., Sansone V.A., et al. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype. Hum. Genet. 2019;138:241–256. doi: 10.1007/s00439-019-01983-0.
    1. Wirth B., Herz M., Wetter A., Moskau S., Hahnen E., Rudnik-Schöneborn S., Wienker T., Zerres K. Quantitative analysis of survival motor neuron copies: Identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am. J. Hum. Genet. 1999;64:1340–1356. doi: 10.1086/302369.
    1. Jedličková I., Přistoupilová A., Nosková L., Majer F., Stránecký V., Hartmannová H., Hodaňová K., Trešlová H., Hýblová M., Solár P., et al. Spinal muscular atrophy caused by a novel Alu-mediated deletion of exons 2a-5 in SMN1 undetectable with routine genetic testing. Mol. Genet. Genom. Med. 2020;8:e1238. doi: 10.1002/mgg3.1238.
    1. Abecasis G.R., Altshuler D., Auton A., Brooks L.D., Durbin R.M., Gibbs R.A., Hurles M.E., McVean G.A. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–1073. doi: 10.1038/nature09534.
    1. Larson J.L., Silver A.J., Chan D., Borroto C., Spurrier B., Silver L.M. Validation of a high resolution NGS method for detecting spinal muscular atrophy carriers among phase 3 participants in the 1000 Genomes Project. BMC Med. Genet. 2015;16:100. doi: 10.1186/s12881-015-0246-2.
    1. Chen X., Sanchis-Juan A., French C.E., Connell A.J., Delon I., Kingsbury Z., Chawla A., Halpern A.L., Taft R.J., Bentley D.R. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet. Med. 2020;22:945–953. doi: 10.1038/s41436-020-0754-0.
    1. Stabley D.L., Harris A.W., Holbrook J., Chubbs N.J., Lozo K.W., Crawford T.O., Swoboda K.J., Funanage V.L., Wang W., Mackenzie W. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR. Mol. Genet. Genom. Med. 2015;3:248–257. doi: 10.1002/mgg3.141.
    1. Jiang L., Lin R., Gallagher S., Zayac A., Butchbach M.E.R., Hung P. Development and validation of a 4-color multiplexing spinal muscular atrophy (SMA) genotyping assay on a novel integrated digital PCR instrument. Sci. Rep. 2020;10:19892. doi: 10.1038/s41598-020-76893-7.
    1. Stabley D.L., Holbrook J., Scavina M., Crawford T.O., Swoboda K.J., Robbins K.M., Butchbach M.E.R. Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics. 2021;22:53–64. doi: 10.1007/s10048-020-00630-5.
    1. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199.
    1. Pujar S., O’Leary N.A., Farrell C.M., Loveland J.E., Mudge J.M., Wallin C., Girón C.G., Diekhans M., Barnes I., Bennett R., et al. Consensus coding sequence (CCDS) database: A standardized set of human and mouse protein-coding regions supported by expert curation. Nucleic Acids Res. 2018;46:D221–D228. doi: 10.1093/nar/gkx1031.
    1. Hubley R., Finn R.D., Clements J., Eddy S.R., Jones T.A., Bao W., Smit A.F., Wheeler T.J. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016;44:D81–D89. doi: 10.1093/nar/gkv1272.
    1. Storer J., Hubley R., Rosen J., Wheeler T.J., Smit A.F. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob. DNA. 2021;12:2. doi: 10.1186/s13100-020-00230-y.
    1. Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75.
    1. Germain-Desprez D., Brun T., Rochette C., Semionov A., Rouget R., Simard L.R. The SMN genes are subject to transcriptional regulation during cellular differentiation. Gene. 2001;279:109–117. doi: 10.1016/S0378-1119(01)00758-2.
    1. Monani U.R., McPherson J.D., Burghes A.H. Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and SMNT) Biochim. Biophys. Acta. 1999;1445:330–336. doi: 10.1016/S0167-4781(99)00060-3.
    1. Rice P., Longden I., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. TIG. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2.
    1. Singh N.N., Ottesen E.W., Singh R.N. A survey of transcripts generated by spinal muscular atrophy genes. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863:194562. doi: 10.1016/j.bbagrm.2020.194562.
    1. Sorek R., Ast G., Graur D. Alu-containing exons are alternatively spliced. Genome Res. 2002;12:1060–1067. doi: 10.1101/gr.229302.
    1. Piriyapongsa J., Rutledge M.T., Patel S., Borodovsky M., Jordan I.K. Evaluating the protein coding potential of exonized transposable element sequences. Biol. Direct. 2007;2:31. doi: 10.1186/1745-6150-2-31.
    1. Seo J., Singh N.N., Ottesen E.W., Lee B.M., Singh R.N. A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein. Sci. Rep. 2016;6:30778. doi: 10.1038/srep30778.
    1. Yoshimoto S., Harahap N.I.F., Hamamura Y., Ar Rochmah M., Shima A., Morisada N., Shinohara M., Saito T., Saito K., Lai P.S., et al. Alternative splicing of a cryptic exon embedded in intron 6 of SMN1 and SMN2. Hum. Genome Var. 2016;3:16040. doi: 10.1038/hgv.2016.40.
    1. Ottesen E.W., Luo D., Seo J., Singh N.N., Singh R.N. Human Survival Motor Neuron genes generate a vast repertoire of circular RNAs. Nucleic Acids Res. 2019;47:2884–2905. doi: 10.1093/nar/gkz034.
    1. Bao W., Kojima K.K., Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015;6:11. doi: 10.1186/s13100-015-0041-9.
    1. Martinez-Gomez L., Abascal F., Jungreis I., Pozo F., Kellis M., Mudge J.M., Tress M.L. Few SINEs of life: Alu elements have little evidence for biological relevance despite elevated translation. NAR Genom. Bioinform. 2020;2:lqz023. doi: 10.1093/nargab/lqz023.
    1. Jahic A., Erichsen A.K., Deufel T., Tallaksen C.M., Beetz C. A polymorphic Alu insertion that mediates distinct disease-associated deletions. Eur. J. Hum. Genet. EJHG. 2016;24:1371–1374. doi: 10.1038/ejhg.2016.20.
    1. Van de Lagemaat L.N., Landry J.R., Mager D.L., Medstrand P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. TIG. 2003;19:530–536. doi: 10.1016/j.tig.2003.08.004.
    1. Jordan I.K., Rogozin I.B., Glazko G.V., Koonin E.V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. TIG. 2003;19:68–72. doi: 10.1016/S0168-9525(02)00006-9.
    1. Huh J.W., Kim D.S., Ha H.S., Lee J.R., Kim Y.J., Ahn K., Lee S.R., Chang K.T., Kim H.S. Cooperative exonization of MaLR and AluJo elements contributed an alternative promoter and novel splice variants of RNF19. Gene. 2008;424:63–70. doi: 10.1016/j.gene.2008.07.030.
    1. Thornburg B.G., Gotea V., Makałowski W. Transposable elements as a significant source of transcription regulating signals. Gene. 2006;365:104–110. doi: 10.1016/j.gene.2005.09.036.
    1. Wells J.N., Feschotte C. A Field Guide to Eukaryotic Transposable Elements. Annu. Rev. Genet. 2020;54:539–561. doi: 10.1146/annurev-genet-040620-022145.
    1. Faulkner G.J., Kimura Y., Daub C.O., Wani S., Plessy C., Irvine K.M., Schroder K., Cloonan N., Steptoe A.L., Lassmann T., et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 2009;41:563–571. doi: 10.1038/ng.368.
    1. Branco M.R., Chuong E.B. Crossroads between transposons and gene regulation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2020;375:20190330. doi: 10.1098/rstb.2019.0330.
    1. Marasca F., Gasparotto E., Polimeni B., Vadalà R., Ranzani V., Bodega B. The Sophisticated Transcriptional Response Governed by Transposable Elements in Human Health and Disease. Int. J. Mol. Sci. 2020;21:3201. doi: 10.3390/ijms21093201.
    1. Hu S., Wang X., Shan G. Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat. Struct. Mol. Biol. 2016;23:1011–1019. doi: 10.1038/nsmb.3302.
    1. Lee J.Y., Ji Z., Tian B. Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes. Nucleic Acids Res. 2008;36:5581–5590. doi: 10.1093/nar/gkn540.
    1. Cowley M., Oakey R.J. Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet. 2013;9:e1003234. doi: 10.1371/journal.pgen.1003234.
    1. Roy-Engel A.M., El-Sawy M., Farooq L., Odom G.L., Perepelitsa-Belancio V., Bruch H., Oyeniran O.O., Deininger P.L. Human retroelements may introduce intragenic polyadenylation signals. Cytogenet. Genome Res. 2005;110:365–371. doi: 10.1159/000084968.
    1. Sela N., Kim E., Ast G. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol. 2010;11:R59. doi: 10.1186/gb-2010-11-6-r59.
    1. Chen L.-L., Yang L. ALUternative regulation for gene expression. Trends Cell Biol. 2017;27:480–490. doi: 10.1016/j.tcb.2017.01.002.
    1. Deininger P.L., Moran J.V., Batzer M.A., Kazazian H.H., Jr. Mobile elements and mammalian genome evolution. Curr. Opin. Genet. Dev. 2003;13:651–658. doi: 10.1016/j.gde.2003.10.013.
    1. Medstrand P., van de Lagemaat L.N., Mager D.L. Retroelement distributions in the human genome: Variations associated with age and proximity to genes. Genome Res. 2002;12:1483–1495. doi: 10.1101/gr.388902.
    1. Kabelitz T., Bäurle I. Get the jump—Do 3′UTRs protect transposable elements from silencing? Mob. Genet. Elem. 2015;5:51–54. doi: 10.1080/2159256X.2015.1052179.
    1. Lavi E., Carmel L. Alu exaptation enriches the human transcriptome by introducing new gene ends. RNA Biol. 2018;15:715–725. doi: 10.1080/15476286.2018.1429880.
    1. Jjingo D., Huda A., Gundapuneni M., Mariño-Ramírez L., Jordan I.K. Effect of the transposable element environment of human genes on gene length and expression. Genome Biol. Evol. 2011;3:259–271. doi: 10.1093/gbe/evr015.
    1. Hughes T.A. Regulation of gene expression by alternative untranslated regions. Trends Genet. TIG. 2006;22:119–122. doi: 10.1016/j.tig.2006.01.001.
    1. Sela N., Mersch B., Gal-Mark N., Lev-Maor G., Hotz-Wagenblatt A., Ast G. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu’s unique role in shaping the human transcriptome. Genome Biol. 2007;8:R127. doi: 10.1186/gb-2007-8-6-r127.
    1. Petri R., Brattås P.L., Sharma Y., Jönsson M.E., Pircs K., Bengzon J., Jakobsson J. LINE-2 transposable elements are a source of functional human microRNAs and target sites. PLoS Genet. 2019;15:e1008036. doi: 10.1371/journal.pgen.1008036.
    1. Kristensen L.S., Andersen M.S., Stagsted L.V.W., Ebbesen K.K., Hansen T.B., Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019;20:675–691. doi: 10.1038/s41576-019-0158-7.
    1. Greene J., Baird A.M., Brady L., Lim M., Gray S.G., McDermott R., Finn S.P. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front. Mol. Biosci. 2017;4:38. doi: 10.3389/fmolb.2017.00038.
    1. Haque S., Harries L.W. Circular RNAs (circRNAs) in Health and Disease. Genes. 2017;8:353. doi: 10.3390/genes8120353.
    1. Chen Y.J., Chen C.Y., Mai T.L., Chuang C.F., Chen Y.C., Gupta S.K., Yen L., Wang Y.D., Chuang T.J. Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism. Genome Res. 2020;30:375–391. doi: 10.1101/gr.255463.119.
    1. Voellenkle C., Perfetti A., Carrara M., Fuschi P., Renna L.V., Longo M., Sain S.B., Cardani R., Valaperta R., Silvestri G., et al. Dysregulation of Circular RNAs in Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2019;20:1938. doi: 10.3390/ijms20081938.
    1. Florea L., Payer L., Antonescu C., Yang G., Burns K. Detection of Alu Exonization Events in Human Frontal Cortex From RNA-Seq Data. Front. Mol. Biosci. 2021;8:727537. doi: 10.3389/fmolb.2021.727537.
    1. Sen S.K., Han K., Wang J., Lee J., Wang H., Callinan P.A., Dyer M., Cordaux R., Liang P., Batzer M.A. Human genomic deletions mediated by recombination between Alu elements. Am. J. Hum. Genet. 2006;79:41–53. doi: 10.1086/504600.
    1. Kim S., Cho C.-S., Han K., Lee J. Structural Variation of Alu Element and Human Disease. Genom. Inform. 2016;14:70–77. doi: 10.5808/GI.2016.14.3.70.
    1. Kryatova M.S., Steranka J.P., Burns K.H., Payer L.M. Insertion and deletion polymorphisms of the ancient AluS family in the human genome. Mob. DNA. 2017;8:6. doi: 10.1186/s13100-017-0089-9.

Source: PubMed

3
購読する