Estrogen receptor alpha regulates insulin sensitivity through IRS-1 tyrosine phosphorylation in mature 3T3-L1 adipocytes

Kazuhiko Muraki, Shigeru Okuya, Yukio Tanizawa, Kazuhiko Muraki, Shigeru Okuya, Yukio Tanizawa

Abstract

There are many clinical and experimental reports demonstrating that estrogens and insulin interact when affecting their target organs. Estrogen receptors consist of two isoforms, estrogen receptors-alpha (ER-alpha) and -beta (ER-beta), but their roles in insulin-induced glucose uptake in mature adipose tissue have yet to be clarified. To evaluate the roles of ER-alpha, expressed predominantly in adipocytes, we have investigated the effects of estradiol (E2), an ER-alpha selective agonist (PPT), and its selective antagonist (MPP) on glucose uptake and insulin action in 3T3-L1 adipocytes. 3T3-L1 adipocytes were exposed to E2 or PPT and/or MPP at different concentrations. The cells were then subjected to 2-deoxy-D-glucose transport assay, western blot analysis, or RT-PCR analysis. Treatment of these cells with E2 or PPT resulted in biphasic effects on glucose transport, that is high (10(-5) M or 3 x 10(-6) M each) and low (10(-8) M) doses produced inhibition and stimulation, respectively. The favorable effect observed at 10(-8) M of E2 was diminished by treatment with MPP. Western bolt analysis revealed that these effects of E2, PPT and MPP paralleled the level of IRS-1 tyrosine phosphorylation. However, IRS-1 serine phosphorylation, suppressor of cytokine signaling (SOCS)-1,-2,-3 and protein tyrosine phosphatase 1B (PTP1B) expression did not change compared to control subjects. Our data clearly show that ER-alpha contributes to insulin stimulated glucose uptake through regulation of the tyrosine phosphorylation of IRS-1 protein.

Source: PubMed

3
購読する