Thrombus aspiration in hyperglycemic ST-elevation myocardial infarction (STEMI) patients: clinical outcomes at 1-year follow-up

Celestino Sardu, Michelangela Barbieri, Maria Luisa Balestrieri, Mario Siniscalchi, Pasquale Paolisso, Paolo Calabrò, Fabio Minicucci, Giuseppe Signoriello, Michele Portoghese, Pasquale Mone, Davide D'Andrea, Felice Gragnano, Alessandro Bellis, Ciro Mauro, Giuseppe Paolisso, Maria Rosaria Rizzo, Raffaele Marfella, Celestino Sardu, Michelangela Barbieri, Maria Luisa Balestrieri, Mario Siniscalchi, Pasquale Paolisso, Paolo Calabrò, Fabio Minicucci, Giuseppe Signoriello, Michele Portoghese, Pasquale Mone, Davide D'Andrea, Felice Gragnano, Alessandro Bellis, Ciro Mauro, Giuseppe Paolisso, Maria Rosaria Rizzo, Raffaele Marfella

Abstract

Objectives: We evaluate whether the thrombus aspiration (TA) before primary percutaneous coronary intervention (PPCI) may improve STEMI outcomes in hyperglycemic patients.

Background: The management of hyperglycemic patients during STEMI is unclear.

Methods: We undertook an observational cohort study of 3166 first STEMI. Patients were grouped on the basis of whether they received TA or not. Moreover, among these patients we selected a subgroup of STEMI patients with hyperglycemia during the event (glycaemia > 140 mg/dl). The endpoint at 1 year included all-cause mortality, cardiac mortality and re-hospitalization for coronary disease, heart failure and stroke.

Results: One-thousand STEMI patients undergoing PPCI to plus TA (TA-group) and 1504 STEMI patients treated with PPCI alone (no-TA group) completed the study. In overall study-population, Kaplan-Meier-analysis demonstrated no significant difference in mortality rates between patients with and without TA (P = 0.065). After multivariate Cox-analysis (HR: 0.94, 95% CI 0.641-1.383) and the addition of propensity matching (HR: 0.86 95% CI 0.412-1.798) TA was still not associated with decreased mortality. By contrast, in hyperglycemic subgroup STEMI patients (TA-group, n = 331; no-TA group, n = 566), Kaplan-Meier-analysis demonstrated a significantly lower mortality (P = 0.019) in TA-group than the no-TA group. After multivariate Cox-analysis (HR: 0.64, 95% CI 0.379-0.963) and the addition of propensity matching (HR: 0.54, 95% CI 0.294-0.984) TA was still associated with decreased mortality.

Conclusions: TA was not associated with lower mortality in PPCI for STEMI when used in our large all-comer cohort. Conversely, TA during PPCI for STEMI reduces clinical outcomes in hyperglycemic patients. Trial registration NCT02817542. 25th, June 2016.

Keywords: Hyperglycemia; Primary percutaneous coronary intervention; STEMI; Thrombus aspiration.

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
Kaplan–Meier curves showing cumulative incidence of readmission and mortality from 1 year after hospital discharge stratified by thrombus aspiration (with TA) and no thrombus aspiration (without TA) in all population and hyperglycemic sub-group patients
Fig. 3
Fig. 3
Hazard ratios (HR) and associated 95% confidence intervals are shown for all death, cardiac death, re-admission for acute coronary syndrome, heart failure and stroke adjusted for age, BMI, heart rate, systolic blood pressure, total cholesterol, HDL and LDL-cholesterol levels, triglycerides, TIMI scores, lesions of RCA and LM, and ejection fraction at baseline (full cohort and propensity matched cohort) in all population and hyperglycemic sub-group patients. The black circle indicates HR, and horizontal lines indicate 95% confidence intervals. TA, thrombus aspiration
Fig. 4
Fig. 4
Representation of angiographic data pre and post thrombus aspiration (TA) and percutaneous coronary intervention (PCI) in the upper part of the figure. In the middle part of the figure the thrombus dimension as surface area, and in the lower part of the figure the immunohistochemistry images of the serial sections incubated with the anti-CD68, tumor necrosis factor-α (TNF-α), and nitrotyrosine comparing hyperglycemic vs. normo-glycemic thrombus (*P value 

References

    1. Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355:773–778. doi: 10.1016/S0140-6736(99)08415-9.
    1. Deedwania P, Kosiborod M, Barrett E, American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism et al. Hyperglycemia and acute coronary syndrome: a scientific statement from the American heart association diabetes committee of the council on nutrition, physical activity, and metabolism. Circulation. 2008;117:1610–1619. doi: 10.1161/CIRCULATIONAHA.107.188629.
    1. Singh K, Hibbert B, Singh B, et al. Meta-analysis of admission hyperglycemia in acute myocardial infarction patients treated with primary angioplasty: a cause or a marker of mortality? Eur Heart J Cardiovasc Pharmacother. 2015;1:220–228. doi: 10.1093/ehjcvp/pvv023.
    1. Marfella R, Sasso FC, Siniscalchi M, et al. Peri-procedural tight glycemic control during early percutaneous coronary intervention is associated with a lower rate of in-stent restenosis in patients with acute ST-elevation myocardial infarction. J Clin Endocrinol Metab. 2012;97:2862–2871. doi: 10.1210/jc.2012-1364.
    1. Ekmekci A, Cicek G, Uluganyan M, et al. Admission hyperglycemia predicts in hospital mortality and major adverse cardiac events after primary percutaneous coronary intervention in patients without diabetes mellitus. Angiology. 2014;65:154–159. doi: 10.1177/0003319713488930.
    1. Marfella R, Rizzo MR, Siniscalchi M, et al. Peri-procedural tight glycemic control during early percutaneous coronary intervention up-regulates endothelial progenitor cell level and differentiation during acute ST-elevation myocardial infarction: effects on myocardial salvage. Int J Cardiol. 2013;168:3954–3962. doi: 10.1016/j.ijcard.2013.06.053.
    1. Marfella R, Siniscalchi M, Esposito K, et al. Effects of stress hyperglycemia on acute myocardial infarction: role of inflammatory immune process in functional cardiac outcome. Diabetes Care. 2006;26:3129–3135. doi: 10.2337/diacare.26.11.3129.
    1. Marfella R, Di Filippo C, Portoghese M, et al. Tight glycemic control reduces heart inflammation and remodeling during acute myocardial infarction in hyperglycemic patients. J Am Coll Cardiol. 2009;53:1425–1436. doi: 10.1016/j.jacc.2009.01.041.
    1. Marfella R, Paolisso G. Glycemic control and acute coronary syndrome: the debate continues. Eur Heart J Cardiovasc Pharmacother. 2015;1:229–231. doi: 10.1093/ehjcvp/pvv027.
    1. Birkhead J, Weston C, Timmis A, Chen R. The effects of intravenous insulin infusions on early mortality for patients with acute coronary syndromes who present with hyperglycaemia: a matched propensity analysis using data from the MINAP database 2008–2012. Eur Heart J Acute Cardiovasc Care. 2015;4:344–352. doi: 10.1177/2048872614549733.
    1. Dandona P, Boden WE. Intensive glucose control in hyperglycemic patients with acute coronary syndromes: still smoke, but no fire…. JAMA Intern Med. 2013;173(20):1905–1906. doi: 10.1001/jamainternmed.2013.8095.
    1. Malmberg K, DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ. 1997;314:1512–1515. doi: 10.1136/bmj.314.7093.1512.
    1. Mehta SR, Yusuf S, Díaz R, CREATE-ECLA Trial Group Investigators et al. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial. JAMA. 2005;293(4):437–446. doi: 10.1001/jama.293.4.437.
    1. Selker HP, Beshansky JR, Sheehan PR, et al. Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA. 2012;307(18):1925–1933. doi: 10.1001/jama.2012.426.
    1. Finfer S, Liu B, Chittock DR, Norton R, NICE-SUGAR Study Investigators et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–1118. doi: 10.1056/NEJMoa1204942.
    1. Radke PW, Schunkert H. Glucose-lowering therapy after myocardial infarction: more questions than answers. Eur Heart J. 2008;29:141–143. doi: 10.1093/eurheartj/ehm595.
    1. Ikari Y, Sakurada M, Kozuma K, VAMPIRE Investigators et al. Upfront thrombus aspiration in primary coronary intervention for patients with ST-segment elevation acute myocardial infarction: report of the VAMPIRE (VAcuuMasPIration thrombus REmoval) trial. JACC Cardiovasc Interv. 2008;1(4):424–431. doi: 10.1016/j.jcin.2008.06.004.
    1. Jolly SS, Cairns JA, Yusuf S, TOTAL Investigators et al. Outcomes after thrombus aspiration for ST elevation myocardial infarction: 1-year follow-up of the prospective randomised TOTAL trial. Lancet. 2016;387:127–135. doi: 10.1016/S0140-6736(15)00448-1.
    1. Lagerqvist B, Frobert O, Olivecrona GK, et al. Outcomes 1 year after thrombus aspiration for myocardial infarction. N Engl J Med. 2014;371:1111–1120. doi: 10.1056/NEJMoa1405707.
    1. Tilsted HH, Olivecrona GK. To aspirate or not to aspirate: that is the question. JACC Cardiovasc Interv. 2015;8:585–587. doi: 10.1016/j.jcin.2015.01.014.
    1. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34:2436–2443. doi: 10.1093/eurheartj/eht149.
    1. Sianos G, Papafaklis MI, Serruys PW. Angiographic thrombus burden classification in patients with ST-segment elevation myocardial infarction treated with percutaneous coronary intervention. J Invasive Cardiol. 2010;22:6B–14B.
    1. Kushner FG, Hand M, Smith SC, King SB, Anderson JL, Antman EM, Bailey SR, Bates ER, Blankenship JC, Casey DE, Green LA. 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) J Am Coll Cardiol. 2009;54:2205–2241. doi: 10.1016/j.jacc.2009.10.015.
    1. Jolly SS, James S, Džavík V, et al. Thrombus aspiration in ST-segment-elevation myocardial infarction: an individual patient meta-analysis: Thrombectomy Trialists Collaboration. Circulation. 2017;135:143–152. doi: 10.1161/CIRCULATIONAHA.116.025371.
    1. Liistro F, Grotti S, Angioli P, et al. Impact of thrombus aspiration on myocardial tissue reperfusion and left ventricular functional recovery and remodeling after primary angioplasty. Circ Cardiovasc Interv. 2009;2:376–383. doi: 10.1161/CIRCINTERVENTIONS.109.852665.
    1. Vaduganathan M, Bhatt D. Manual thrombectomy in myocardial infarction: aspiring for better. J Am Heart Assoc. 2015;4:e002201. doi: 10.1161/JAHA.115.002201.
    1. Taglieri N, Bacchi Reggiani ML, et al. Efficacy and safety of thrombus aspiration in ST-segment elevation myocardial infarction: an updated systematic review and meta-analysis of randomised clinical trials. Eur Heart J Acute Cardiovasc Care. 2018;30:2048872618795512. doi: 10.1177/2048872618795512.
    1. Mongeon FP, Belisle P, Joseph L, Eisenberg MJ, Rinfret S. Adjunctive thrombectomy for acute myocardial infarction: a bayesian meta-analysis. Circ Cardiovasc Interv. 2010;3:6–16. doi: 10.1161/CIRCINTERVENTIONS.109.904037.
    1. Gerber BL, Rochitte CE, Melin JA, et al. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation. 2000;101:2734–2741. doi: 10.1161/01.CIR.101.23.2734.
    1. Sebben JC, Pinto Ribeiro DR, Lopes RD, et al. The role of diabetes mellitus in the composition of coronary thrombi in patients presenting with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J. 2016;172:26–33. doi: 10.1016/j.ahj.2015.10.003.
    1. Li X, Kramer MC, Damman P, van der Wal AC, et al. Older coronary thrombus is an independent predictor of 1-year mortality in acute myocardial infarction. Eur J Clin Invest. 2016;46(6):501–510. doi: 10.1111/eci.12619.
    1. Sambola A, Ruiz-Meana M, Barba I, et al. Glycative and oxidative stress are associated with altered thrombus composition in diabetic patients with ST-elevation myocardial infarction. Int J Cardiol. 2017;243:9–14. doi: 10.1016/j.ijcard.2017.04.089.
    1. Li JW, Chen YD, Chen WR, You Q, Li B, Zhou H, Zhang Y, Han TW. Prognostic value of plasma DPP4 activity in ST-elevation myocardial infarction. Cardiovasc Diabetol. 2017;16(1):72. doi: 10.1186/s12933-017-0553-3.
    1. Wiemer M, Stoikovic S, Samol A, NOBORI 2 investigators et al. Third generation drug eluting stent (DES) with biodegradable polymer in diabetic patients: 5 years follow-up. Cardiovasc Diabetol. 2017;16:23. doi: 10.1186/s12933-017-0500-3.
    1. Harada Y, Colleran R, Kufner S, et al. Five-year clinical outcomes in patients with diabetes mellitus treated with polymer-free sirolimus- and probucol-eluting stents versus second-generation zotarolimus-eluting stents: a subgroup analysis of a randomized controlled trial. Cardiovasc Diabetol. 2016;15:124. doi: 10.1186/s12933-016-0429-y.

Source: PubMed

3
購読する