Evaluation of two highly-multiplexed custom panels for massively parallel semiconductor sequencing on paraffin DNA

Vassiliki Kotoula, Aggeliki Lyberopoulou, Kyriaki Papadopoulou, Elpida Charalambous, Zoi Alexopoulou, Chryssa Gakou, Sotiris Lakis, Eleftheria Tsolaki, Konstantinos Lilakos, George Fountzilas, Vassiliki Kotoula, Aggeliki Lyberopoulou, Kyriaki Papadopoulou, Elpida Charalambous, Zoi Alexopoulou, Chryssa Gakou, Sotiris Lakis, Eleftheria Tsolaki, Konstantinos Lilakos, George Fountzilas

Abstract

Aim: Massively parallel sequencing (MPS) holds promise for expanding cancer translational research and diagnostics. As yet, it has been applied on paraffin DNA (FFPE) with commercially available highly multiplexed gene panels (100s of DNA targets), while custom panels of low multiplexing are used for re-sequencing. Here, we evaluated the performance of two highly multiplexed custom panels on FFPE DNA.

Methods: Two custom multiplex amplification panels (B, 373 amplicons; T, 286 amplicons) were coupled with semiconductor sequencing on DNA samples from FFPE breast tumors and matched peripheral blood samples (n samples: 316; n libraries: 332). The two panels shared 37% DNA targets (common or shifted amplicons). Panel performance was evaluated in paired sample groups and quartets of libraries, where possible.

Results: Amplicon read ratios yielded similar patterns per gene with the same panel in FFPE and blood samples; however, performance of common amplicons differed between panels (p<0.001). FFPE genotypes were compared for 1267 coding and non-coding variant replicates, 999 out of which (78.8%) were concordant in different paired sample combinations. Variant frequency was highly reproducible (Spearman's rho 0.959). Repeatedly discordant variants were of high coverage / low frequency (p<0.001). Genotype concordance was (a) high, for intra-run duplicates with the same panel (mean±SD: 97.2±4.7, 95%CI: 94.8-99.7, p<0.001); (b) modest, when the same DNA was analyzed with different panels (mean±SD: 81.1±20.3, 95%CI: 66.1-95.1, p = 0.004); and (c) low, when different DNA samples from the same tumor were compared with the same panel (mean±SD: 59.9±24.0; 95%CI: 43.3-76.5; p = 0.282). Low coverage / low frequency variants were validated with Sanger sequencing even in samples with unfavourable DNA quality.

Conclusions: Custom MPS may yield novel information on genomic alterations, provided that data evaluation is adjusted to tumor tissue FFPE DNA. To this scope, eligibility of all amplicons along with variant coverage and frequency need to be assessed.

Conflict of interest statement

Competing Interests: Author Zoi Alexopoulou is employed by Health Data Specialists Ltd. There are no patents, products in development, or marketed products to declare. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials. The rest of the authors have declared that no competing interests exist.

Figures

Fig 1. Panel comparison and sample groups.
Fig 1. Panel comparison and sample groups.
A. Comparison of the B and T panels with respect to amplicon targets. Common amplicons had the same ID in both panels. Common target—different amplicons had slightly shifted coordinates targeting the same genomic regions (±10 nts). Percentages among all amplicons in the two panels are shown. B. REMARK diagram of patients, samples, and sample groups in this study. In total, 316 DNA samples in 332 libraries were examined.
Fig 2. Performance of the B and…
Fig 2. Performance of the B and T panels in DNA from matched blood and tumor FFPE samples.
A: B panel; B: T panel. Read ratios for all amplicons for matched samples sorted per gene are shown, corresponding to 70192 observations with the B and 26128 observations with the T panel. Lanes and dots therein represent mean read ratios per amplicon for all samples tested in the respective group. Amplicon order is the same in all graphs. Solid and dotted horizontal lines within graphs: mean values + 3xSD per panel per sample type, respectively. Amplicon reading efficiency was overall constant between blood—FFPE samples with the same panel. For some genes with frequent gains in breast cancer, e.g., CCND1, EGFR, ERBB2, PIK3CA (B panel) and AKT1, EGFR (T panel) outliers with maximal amplicon read ratios outside the Y-axis were observed (A & B, red stars in tumor graphs). By contrast, for genes frequently lost in breast cancer, e.g., TP53 with both panels, mean read ratios in tumor DNA were lower than in blood (A & B, turquoise stars). FFPE-specific over-representation of individual amplicons was occasionally observed (A & B, diagonal arrows). Importantly, patterns of read ratios occasionally differed for genes targeted with the same amplicons in panels B and T, e.g., for ARID1B, MAP3K1, TP53 (A & B, black stars with coloured outlines in blood graphs).
Fig 3. Performance of individual amplicons in…
Fig 3. Performance of individual amplicons in blood and FFPE DNA.
A. Amplicon performance grading did not significantly differ between the two panels. Columns: combined evaluation of each panel in blood and FFPE. Numbers within boxes: actual amplicon number per category, as indicated. B. Performance of the 83 common amplicons was significantly different in the two panels (p<0.0001). The most unstable amplicons were of performance grade 1 and 2. C. A non-linear distribution of mean read ratios according to amplicon GC content was observed. Read ratios of amplicons with >75% or <25% GC content were almost uniformly below the 10th percentile cut off (dotted line in both graphs) (Kruskal-Wallis test p<0.0001 for each panel and sample group). D. Very high and very low GC content was significantly associated with failed amplicons (gr 0). This pattern was also present for the B-panel in blood samples, despite the absence of statistical significance. Except for these extreme cases, however, all other amplicon categories did not significantly differ with regards to GC%.
Fig 4. Variant concordance in FFPE samples.
Fig 4. Variant concordance in FFPE samples.
For all graphs, solid color boxes represent concordant, whereas striped boxes represent discordant variants. Red color stands for MUT variants (amino acid changing, excluding TP53 p.P72R) and blue for nonMUT (non amino acid changing, coding and non-coding). Opposite directions of stripes stand for each paired sample. A: Five TN samples with the B panel. B: Five BR samples with the T panel. C: Four TN samples with the T panel (out of five on trial, one was ineligible). D: Panel comparison for the same sample. Only common and shifted amplicons in the two panels were evaluated. E: Different samples from the same tumor revealed distinct genotypes when tested with the same panel. F: Comparison between genotypes from subsequent runs performed 6 months apart for BR samples with the B panel. Old run only, new run only: patterns apply to all columns in this graph.
Fig 5. Effect of coverage and frequency…
Fig 5. Effect of coverage and frequency on variant concordance with custom panels on FFPE samples.
A: Variant frequency (VF) was highly preserved in replicate measurements from the same samples. B and C: Concordant variants had statistically significant higher coverage and frequency as compared to discordant ones (red lines: mean values). However, both high and low coverage and frequency were observed for discordant variants and followed the same bimodal pattern in these categories. D. Out of the 181 different positions accounting for the 1267 variants under study, calls were constantly concordant in 83 (45.8%), partially concordant in 26.0%, and constantly discordant in 28.2%. E. Distribution of VF and amplicon GC% according to high and low coverage for the categories indicated on the bottom of the graphs. Red and lilac dots: high coverage in discordant and concordant variants, respectively; turquoise and green dots: low coverage, respectively. Among discordant only variants, those of high coverage were almost exclusively of low VF (boxed).
Fig 6. Sanger sequencing validation of MPS…
Fig 6. Sanger sequencing validation of MPS variants.
Five cases with matched tumor—blood samples are shown. Annotations in black letters are given for tumors (FFPE); in blue letters for germline (blood). TCC: approximate tumor cell content in the DNA sample; VC and PC: variant and position coverage with MPS; VAF: Variant frequency (VC/PC). The same DNA samples were used per case for both methods. A—C: same case, DNA quality unfavourable, three variants in tumor, two in germline. D—F: individual cases with unfavourable (D and E) and favourable (F and G) DNA quality. Sanger sequencing peaks usually but not always corresponded to MPS VAF. In A, D and F, perhaps in B as well, variants would have been missed with Sanger sequencing only. Note target specific differences in position coverage, which derives from amplicon reads. Red dots: low VAF. Black dot: the expected wild type allele at 17% frequency, based on MPS VAF, was not observed with Sanger sequencing.

References

    1. Fu Q, Wang F, Wang H, Xu F, Zaneveld JE, Ren H, et al. Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa. Investigative ophthalmology & visual science. 2013;54(6):4158–66. 10.1167/iovs.13-11672
    1. Millat G, Chanavat V, Rousson R. Evaluation of a new high-throughput next-generation sequencing method based on a custom AmpliSeq library and ion torrent PGM sequencing for the rapid detection of genetic variations in long QT syndrome. Molecular diagnosis & therapy. 2014;18(5):533–9. 10.1007/s40291-014-0099-y .
    1. Schaefer E, Helms P, Marcellin L, Desprez P, Billaud P, Chanavat V, et al. Next-generation sequencing (NGS) as a fast molecular diagnosis tool for left ventricular noncompaction in an infant with compound mutations in the MYBPC3 gene. European journal of medical genetics. 2014;57(4):129–32. 10.1016/j.ejmg.2014.02.015 .
    1. Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2014. 10.1002/cncr.29010 .
    1. Hadd AG, Houghton J, Choudhary A, Sah S, Chen L, Marko AC, et al. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. The Journal of molecular diagnostics: JMD. 2013;15(2):234–47. 10.1016/j.jmoldx.2012.11.006 .
    1. Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA, Handal B, et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. The Journal of molecular diagnostics: JMD. 2013;15(5):607–22. 10.1016/j.jmoldx.2013.05.003 .
    1. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P, et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer discovery. 2012;2(1):82–93. 10.1158/-11-0184
    1. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. The Journal of clinical endocrinology and metabolism. 2013;98(11):E1852–60. 10.1210/jc.2013-2292
    1. Salto-Tellez M, Gonzalez de Castro D. Next-generation sequencing: a change of paradigm in molecular diagnostic validation. The Journal of pathology. 2014;234(1):5–10. 10.1002/path.4365 .
    1. McCall CM, Mosier S, Thiess M, Debeljak M, Pallavajjala A, Beierl K, et al. False positives in multiplex PCR-based next-generation sequencing have unique signatures. The Journal of molecular diagnostics: JMD. 2014;16(5):541–9. 10.1016/j.jmoldx.2014.06.001
    1. Singh RR, Patel KP, Routbort MJ, Aldape K, Lu X, Manekia J, et al. Clinical massively parallel next-generation sequencing analysis of 409 cancer-related genes for mutations and copy number variations in solid tumours. British journal of cancer. 2014;111(10):2014–23. 10.1038/bjc.2014.518
    1. Zhang L, Chen L, Sah S, Latham GJ, Patel R, Song Q, et al. Profiling cancer gene mutations in clinical formalin-fixed, paraffin-embedded colorectal tumor specimens using targeted next-generation sequencing. The oncologist. 2014;19(4):336–43. 10.1634/theoncologist.2013-0180
    1. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52. 10.1038/nature10242 .
    1. Li X, Buckton AJ, Wilkinson SL, John S, Walsh R, Novotny T, et al. Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PloS one. 2013;8(7):e67744 10.1371/journal.pone.0067744
    1. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics. 2012;13:341 10.1186/1471-2164-13-341
    1. Wang Y, Wen Z, Shen J, Cheng W, Li J, Qin X, et al. Comparison of the performance of Ion Torrent chips in noninvasive prenatal trisomy detection. J Hum Genet. 2014;59(7):393–6. Epub 2014/06/13. jhg201440 [pii] 10.1038/jhg.2014.40 .
    1. Beadling C, Neff TL, Heinrich MC, Rhodes K, Thornton M, Leamon J, et al. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. The Journal of molecular diagnostics: JMD. 2013;15(2):171–6. 10.1016/j.jmoldx.2012.09.003 .
    1. Simen BB, Yin L, Goswami CP, Davis KO, Bajaj R, Gong JZ, et al. Validation of a Next-Generation-Sequencing Cancer Panel for Use in the Clinical Laboratory. Archives of pathology & laboratory medicine. 2014. 10.5858/arpa.2013-0710-OA .
    1. Fang W, Radovich M, Zheng Y, Fu CY, Zhao P, Mao C, et al. 'Druggable' alterations detected by Ion Torrent in metastatic colorectal cancer patients. Oncology letters. 2014;7(6):1761–6. 10.3892/ol.2014.2047
    1. Mafficini A, Amato E, Fassan M, Simbolo M, Antonello D, Vicentini C, et al. Reporting tumor molecular heterogeneity in histopathological diagnosis. PloS one. 2014;9(8):e104979 10.1371/journal.pone.0104979
    1. Yan B, Kuick CH, Lim M, Venkataraman K, Tennakoon C, Loh E, et al. Platform Comparison for Evaluation of ALK Protein Immunohistochemical Expression, Genomic Copy Number and Hotspot Mutation Status in Neuroblastomas. PloS one. 2014;9(9):e106575 10.1371/journal.pone.0106575
    1. Kraus C, Rau TT, Lux P, Erlenbach-Wunsch K, Lohr S, Krumbiegel M, et al. Comprehensive screening for mutations associated with colorectal cancer in unselected cases reveals penetrant and nonpenetrant mutations. International journal of cancer Journal international du cancer. 2014. 10.1002/ijc.29149 .
    1. Hagemann IS, Devarakonda S, Lockwood CM, Spencer DH, Guebert K, Bredemeyer AJ, et al. Clinical next-generation sequencing in patients with non-small cell lung cancer. Cancer. 2014. 10.1002/cncr.29089 .
    1. Fountzilas G, Dafni U, Gogas H, Linardou H, Kalofonos HP, Briasoulis E, et al. Postoperative dose-dense sequential chemotherapy with epirubicin, paclitaxel and CMF in patients with high-risk breast cancer: safety analysis of the Hellenic Cooperative Oncology Group randomized phase III trial HE 10/00. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO. 2008;19(5):853–60. .
    1. Fountzilas G, Dafni U, Papadimitriou C, Timotheadou E, Gogas H, Eleftheraki AG, et al. Dose-dense sequential adjuvant chemotherapy followed, as indicated, by trastuzumab for one year in patients with early breast cancer: first report at 5-year median follow-up of a Hellenic Cooperative Oncology Group randomized phase III trial. BMC cancer. 2014;14:515 10.1186/1471-2407-14-515 .
    1. Fountzilas G, Skarlos D, Dafni U, Gogas H, Briasoulis E, Pectasides D, et al. Postoperative dose-dense sequential chemotherapy with epirubicin, followed by CMF with or without paclitaxel, in patients with high-risk operable breast cancer: a randomized phase III study conducted by the Hellenic Cooperative Oncology Group. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO. 2005;16(11):1762–71. .
    1. Gogas H, Dafni U, Karina M, Papadimitriou C, Batistatou A, Bobos M, et al. Postoperative dose-dense sequential versus concomitant administration of epirubicin and paclitaxel in patients with node-positive breast cancer: 5-year results of the Hellenic Cooperative Oncology Group HE 10/00 phase III Trial. Breast cancer research and treatment. 2012;132(2):609–19. 10.1007/s10549-011-1913-4 .
    1. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. Epub 2012/04/24. nature10983 [pii] 10.1038/nature10983 .
    1. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9. 10.1038/nature10933
    1. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4. Epub 2012/06/23. nature11017 [pii] 10.1038/nature11017 .
    1. TCGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. Epub 2012/09/25. nature11412 [pii] 10.1038/nature11412 .
    1. Stavropoulou AV, Fostira F, Pertesi M, Tsitlaidou M, Voutsinas GE, Triantafyllidou O, et al. Prevalence of BRCA1 mutations in familial and sporadic greek ovarian cancer cases. PloS one. 2013;8(3):e58182 10.1371/journal.pone.0058182
    1. Kotoula V, Charalambous E, Biesmans B, Malousi A, Vrettou E, Fountzilas G, et al. Targeted KRAS mutation assessment on patient tumor histologic material in real time diagnostics. PloS one. 2009;4(11):e7746 10.1371/journal.pone.0007746
    1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. 10.1093/bioinformatics/btp324
    1. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95. 10.1093/bioinformatics/btp698
    1. Ning Z, Cox AJ, Mullikin JC. SSAHA: a fast search method for large DNA databases. Genome research. 2001;11(10):1725–9. 10.1101/gr.194201
    1. Li H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics. 2012;28(14):1838–44. 10.1093/bioinformatics/bts280
    1. Spencer DH, Sehn JK, Abel HJ, Watson MA, Pfeifer JD, Duncavage EJ. Comparison of clinical targeted next-generation sequence data from formalin-fixed and fresh-frozen tissue specimens. The Journal of molecular diagnostics: JMD. 2013;15(5):623–33. 10.1016/j.jmoldx.2013.05.004 .
    1. Song S, Nones K, Miller D, Harliwong I, Kassahn KS, Pinese M, et al. qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. PloS one. 2012;7(9):e45835 10.1371/journal.pone.0045835
    1. Kol N, Shomron N. Assembly algorithms for deep sequencing data: basics and pitfalls. Methods in molecular biology. 2013;1038:81–91. 10.1007/978-1-62703-514-9_5 .
    1. Raphael BJ, Dobson JR, Oesper L, Vandin F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome medicine. 2014;6(1):5 10.1186/gm524
    1. Kothari N, Schell MJ, Teer JK, Yeatman T, Shibata D, Kim R. Comparison of KRAS mutation analysis of colorectal cancer samples by standard testing and next-generation sequencing. Journal of clinical pathology. 2014. 10.1136/jclinpath-2014-202405 .
    1. Wall JD, Tang LF, Zerbe B, Kvale MN, Kwok PY, Schaefer C, et al. Estimating genotype error rates from high-coverage next-generation sequence data. Genome research. 2014. 10.1101/gr.168393.113 .
    1. Wong SQ, Li J, Tan AY, Vedururu R, Pang JM, Do H, et al. Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC medical genomics. 2014;7:23 10.1186/1755-8794-7-23
    1. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer research. 2012;72(19):4875–82. 10.1158/0008-5472.CAN-12-2217
    1. Chen G, Mosier S, Gocke CD, Lin MT, Eshleman JR. Cytosine deamination is a major cause of baseline noise in next-generation sequencing. Molecular diagnosis & therapy. 2014;18(5):587–93. 10.1007/s40291-014-0115-2
    1. Do H, Wong SQ, Li J, Dobrovic A. Reducing sequence artifacts in amplicon-based massively parallel sequencing of formalin-fixed paraffin-embedded DNA by enzymatic depletion of uracil-containing templates. Clinical chemistry. 2013;59(9):1376–83. 10.1373/clinchem.2012.202390 .

Source: PubMed

3
購読する