A Case-Controlled Pilot Study on Rhythmic Auditory Stimulation-Assisted Gait Training and Conventional Physiotherapy in Patients With Parkinson's Disease Submitted to Deep Brain Stimulation

Antonino Naro, Loris Pignolo, Chiara Sorbera, Desiree Latella, Luana Billeri, Alfredo Manuli, Simona Portaro, Daniele Bruschetta, Rocco Salvatore Calabrò, Antonino Naro, Loris Pignolo, Chiara Sorbera, Desiree Latella, Luana Billeri, Alfredo Manuli, Simona Portaro, Daniele Bruschetta, Rocco Salvatore Calabrò

Abstract

Deep brain stimulation (DBS) is indicated when motor disturbances in patients with idiopathic Parkinson's disease (PD) are refractory to current treatment options and significantly impair quality of life. However, post-DBS rehabilitation is essential, with particular regard to gait. Rhythmic auditory stimulation (RAS)-assisted treadmill gait rehabilitation within conventional physiotherapy program plays a major role in gait recovery. We explored the effects of a monthly RAS-assisted treadmill training within a conventional physiotherapy program on gait performance and gait-related EEG dynamics (while walking on the RAS-aided treadmill) in PD patients with (n = 10) and without DBS (n = 10). Patients with DBS achieved superior results than those without DBS concerning gait velocity, overall motor performance, and the timed velocity and self-confidence in balance, sit-to-stand (and vice versa) and walking, whereas both groups improved in dynamic and static balance, overall cognitive performance, and the fear of falling. The difference in motor outcomes between the two groups was paralleled by a stronger remodulation of gait cycle-related beta oscillations in patients with DBS as compared to those without DBS. Our work suggests that RAS-assisted gait training plus conventional physiotherapy is a useful strategy to improve gait performance in PD patients with and without DBS. Interestingly, patients with DBS may benefit more from this approach owing to a more focused and dynamic re-configuration of sensorimotor network beta oscillations related to gait secondary to the association between RAS-treadmill, conventional physiotherapy, and DBS. Actually, the coupling of these approaches may help restoring a residually altered beta-band response profile despite DBS intervention, thus better tailoring the gait rehabilitation of these PD patients.

Keywords: beta oscillations; deep brain stimulation (DBS); idiopathic Parkinson's disease (iPD); rhythmic auditory stimulation (RAS); treadmill gait training.

Copyright © 2020 Naro, Pignolo, Sorbera, Latella, Billeri, Manuli, Portaro, Bruschetta and Calabrò.

Figures

Figure 1
Figure 1
The Event–Related Spectral Perturbation (ERSP) plots relative to the full gait cycle showing the average changes in spectral power during the gait cycle for the different electrode groups (brain areas). The horizontal axis is the percentage of gait cycle (as we performed a time–warping analysis) referred to the heel strikes (HS) and the toe offs (TO). *denotes post-pre significant changes (p < 0.001), #between-group post-pre significant differences (p < 0.001).
Figure 2
Figure 2
Correlation plot between beta power pre-post percent changes within motor programming ROI and pre-post percent improvement in 10-meter walking test (10 MWT).

References

    1. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, et al. . Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. (2009) 301:63–73. 10.1001/jama.2008.929
    1. Malek N. Deep brain stimulation in Parkinson's disease. Neurol India. (2019) 67:968–78. 10.4103/0028-3886.266268
    1. Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A. Deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord. (2009) 2:20–8. 10.1177/1756285609339382
    1. Johnsen EL, Mogensen PH, Sunde NA, Østergaard K. Improved asymmetry of gait in Parkinson's disease with DBS: gait and postural instability in Parkinson's disease treated with bilateral deep brain stimulation in the subthalamic nucleus. Mov Disord. (2009) 24:590–7. 10.1002/mds.22419
    1. Ferrarin M, Rizzone M, Bergamasco B, Lanotte M, Recalcati M, Pedotti A, et al. . Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson's disease. Exp Brain Res. (2005) 160:517–27. 10.1007/s00221-004-2036-5
    1. St George RJ, Nutt JG, Burchiel KJ, Horak FB. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. (2010) 75:1292–9. 10.1212/WNL.0b013e3181f61329
    1. St George RJ, Carlson-Kuhta P, Burchiel KJ, Hogarth P, Frank N, Horak FB. The effects of subthalamic and pallidal deep brain stimulation on postural responses in patients with Parkinson disease. J Neurosurg. (2012) 116:1347–56. 10.3171/2012.2.JNS11847
    1. St George RJ, Carlson-Kuhta P, Nutt JG, Hogarth P, Burchiel KJ, Horak FB. The effect of deep brain stimulation randomized by site on balance in Parkinson's disease. Mov Disord. (2014) 29:949–53. 10.1002/mds.25831
    1. Sato K, Aita N, Hokari Y, Kitahara E, Tani M, Izawa N, et al. . Balance and gait improvements of postoperative rehabilitation in patients with Parkinson's disease treated with Subthalamic Nucleus Deep Brain Stimulation (STN-DBS). Parkinson's Dis. (2019) 2019:7104071. 10.1155/2019/7104071
    1. Tassorelli C, Buscone S, Sandrini G, Pacchetti C, Furnari A, Zangaglia R, et al. . The role of rehabilitation in deep brain stimulation of the subthalamic nucleus for Parkinson's disease: a pilot study. Parkinsonism Relat Disord. (2009) 15:675–81. 10.1016/j.parkreldis.2009.03.006
    1. Allert N, Dohle C, Horn JW, Kelm S, Kirsch H, Nolte PN, et al. . Rehabilitation of Parkinson's patients with deep brain stimulation. Exp Neurol Rehabil Center Godeshöhe Nervenarzt. (2011) 82:462–7. 10.1007/s00115-010-3092-7
    1. Vercruysse S, Vandenberghe W, Münks L, Nuttin B, Devos H, Nieuwboer A. Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson's disease: a prospective controlled study. J Neurol Neurosurg Psychiatr. (2014) 85:871–7. 10.1136/jnnp-2013-306336
    1. Hidalgo-Agudo RD, Lucena-Anton D, Luque-Moreno C, Heredia-Rizo AM, Moral-Munoz JA. Additional physical interventions to conventional physical therapy in Parkinson's disease: a systematic review and meta-analysis of randomized clinical trials. J Clin Med. (2020) 9:1038. 10.3390/jcm9041038
    1. Luna N, Lucareli P, Sales VC, Speciali D, Alonso AC, Peterson MD, et al. . Treadmill training in Parkinson's patients after deep brain stimulation: effects on gait kinematic. NeuroRehabilitation. (2018) 42:149–58. 10.3233/NRE-172267
    1. Miyai I, Fujimoto Y, Ueda Y, Yamamoto H, Nozaki S, Saito T, et al. . Treadmill training with body weight support: its effect on Parkinson's disease. Arch Phys Med Rehabil. (2000) 81:849–52. 10.1053/apmr.2000.4439
    1. Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, et al. . Long-term effect of body weight-supported treadmill training in Parkinson's disease: a randomized controlled trial. Arch Phys Med Rehabil. (2002) 83:1370–3. 10.1053/apmr.2002.34603
    1. Bella SD, Benoit CE, Farrugia N, Schwartze M, Kotz SA. Effects of musically cued gait training in Parkinson's disease: beyond a motor benefit. Ann N Y Acad Sci. (2015) 1337:77–85. 10.1111/nyas.12651
    1. Calabrò RS, Naro A, Filoni S, Pullia M, Billeri L, Tomasello P, et al. . Walking to your right music: a randomized controlled trial on the novel use of treadmill plus music in Parkinson's disease. J Neuroeng Rehabil. (2019) 16:68. 10.1186/s12984-019-0533-9
    1. Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM. Rhythmic auditory stimulation in gait training for Parkinson's disease patients. Mov Disord. (1996) 11:193–200. 10.1002/mds.870110213
    1. Gulberti A, Moll CK, Hamel W, Buhmann C, Koeppen JA, Boelmans K, et al. . Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus. NeuroImage Clin. (2015) 9:436–49. 10.1016/j.nicl.2015.09.013
    1. Lopez WO, Higuera CA, Fonoff ET, Souza Cde O, Albicker U, Martinez JA. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease. Hum Mov Sci. (2014) 37:147–56. 10.1016/j.humov.2014.08.001
    1. Müller EJ, Robinson PA. Suppression of Parkinsonian beta oscillations by deep brain stimulation: determination of effective protocols. Front Comput Neurosci. (2018) 12:98. 10.3389/fncom.2018.00098
    1. Brown P. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol. (2007) 17:656–64. 10.1016/j.conb.2007.12.001
    1. Engel AK, Fries P. Beta-band oscillations - signalling the status quo? Curr Opin Neurobiol. (2010) 20:156–65. 10.1016/j.conb.2010.02.015
    1. Ramirez Pasos UE, Steigerwald F, Reich MM, Matthies C, Volkmann J, Reese R. Levodopa modulates functional connectivity in the upper beta band between subthalamic nucleus and muscle activity in tonic and phasic motor activity patterns in Parkinson's disease. Front Hum Neurosci. (2019) 13:223. 10.3389/fnhum.2019.00223
    1. Little S, Brown P. The functional role of beta oscillations in Parkinson's disease. Parkinsonism Relat Disord. (2014) 20(Suppl. 1):S44–8. 10.1016/S1353-8020(13)70013-0
    1. Nelson AB, Moisello C, Lin J, Panday P, Ricci S, Canessa A, et al. . Beta oscillatory changes and retention of motor skills during practice in healthy subjects and in patients with Parkinson's disease. Front Hum Neurosci. (2017) 11:104. 10.3389/fnhum.2017.00104
    1. Moisello C, Blanco D, Lin J, Panday P, Kelly SP, Quartarone A, et al. . Practice changes beta power at rest and its modulation during movement in healthy subjects but not in patients with Parkinson's disease. Brain Behav. (2015) 5:e00374. 10.1002/brb3.374
    1. De Luca R, Latella D, Maggio MG, Leonardi S, Sorbera C, Di Lorenzo G, et al. . Do patients with PD benefit from music assisted therapy plus treadmill-based gait training? An exploratory study focused on behavioral outcomes. Int J Neurosci. (2020) 1–8. 10.1080/00207454.2019.1710147
    1. Leow LA, Parrott T, Grahn JA. Individual differences in beat perception affect gait responses to low- and high-groove music. Front Hum Neurosci. (2014) 8:811. 10.3389/fnhum.2014.00811
    1. Cakit BD, Saracoglu M, Genc H, Erdem HR, Inan L. The effects of incremental speed-dependent treadmill training on postural instability and fear of falling in Parkinson's disease. Clin Rehabil. (2007) 21:698–705. 10.1177/0269215507077269
    1. Ashburn A, Fazakarley L, Ballinger C, Pickering R, McLellan LD, Fitton C. A randomised controlled trial of a home based exercise programme to reduce the risk of falling among people with Parkinson's disease. J Neurol Neurosurg Psychiatr. (2007) 78:678–84. 10.1136/jnnp.2006.099333
    1. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. (2004) 134:9–21. 10.1016/j.jneumeth.2003.10.009
    1. Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage. (2011) 54:1289–96. 10.1016/j.neuroimage.2010.08.066
    1. Presacco A, Goodman R, Forrester L, Contreras-Vidal JL. Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J Neurophysiol. (2011) 106:1875–87. 10.1152/jn.00104.2011
    1. Castermans T, Duvinage M, Cheron G, Dutoit T. EEG and Human Locomotion Descending Commands and Sensory Feedback Should Be Disentangled FromArtifacts Thanks to New Experimental Protocols Position Paper. In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, ALgarve. (2012). 1:309–14.
    1. Pizzamiglio S, Abdalla H, Naeem U, Turner DL. Neural predictors of gait stability when walking freely in the real-world. J Neuroeng Rehabil. (2018) 15:11. 10.1186/s12984-018-0357-z
    1. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. (2014) 8:485. 10.3389/fnhum.2014.00485
    1. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. Neuroimage. (2015) 112:318–26. 10.1016/j.neuroimage.2015.03.045
    1. Handojoseno A, Naik GR, Gilat M, Shine JM, Nguyen TN, Ly QT, et al. . Prediction of freezing of gait in patients with Parkinson's disease using EEG signals. Stud Health Technol Inform. (2018) 246:124–31.
    1. Fujioka T, Trainor LJ, Large EW, Ross B. Internalized timing of isochronous sounds is represented in neuromagnetic β oscillations. J Neurosci. (2012) 32:1791–802. 10.1523/JNEUROSCI.4107-11.2012
    1. Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci. (2007) 19:893–906. 10.1162/jocn.2007.19.5.893
    1. Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. (1997) 17:5528–35. 10.1523/JNEUROSCI.17-14-05528.1997
    1. Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M. Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol. (1997) 104:199–206. 10.1016/S0168-5597(96)96051-7
    1. Senhadji L, Wendling F. Epileptic transient detection: wavelets and time-frequency approaches. Neurophysiol Clin. (2002) 32:175–92. 10.1016/S0987-7053(02)00304-0
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. (1995) 57:289–300. 10.1111/j.2517-6161.1995.tb02031.x
    1. Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology. (2011) 48:1711–25. 10.1111/j.1469-8986.2011.01273.x
    1. Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomized clinical trials - a practical guide with flowcharts. BMC Med Res Methodol. (2017) 17:162. 10.1186/s12874-017-0442-1
    1. Ashoori A, Eagleman DM, Jankovic J. Effects of auditory rhythm and music on gait disturbances in Parkinson's disease. Front Neurol. (2015) 6:234. 10.3389/fneur.2015.00234
    1. Peterson DS, Horak FB. Neural Control of Walking in People with Parkinsonism. Physiology. (2016) 31:95–107. 10.1152/physiol.00034.2015
    1. Kalia LV, Lang AE. Parkinson's disease. Lancet. (2015) 386:896–912. 10.1016/S0140-6736(14)61393-3
    1. Toole T, Maitland CG, Warren E, Hubmann MF, Panton L. The effects of loading and unloading treadmill walking on balance, gait, fall risk, and daily function in Parkinsonism. NeuroRehabilitation. (2005) 20:307–22. 10.3233/NRE-2005-20406
    1. Herman T, Giladi N, Gruendlinger L, Hausdorff JM. Six weeks of intensive treadmill training improves gait and quality of life in patients with Parkinson's disease: a pilot study. Arch Phys Med Rehabil. (2007) 88:1154–8. 10.1016/j.apmr.2007.05.015
    1. Fisher BE, Wu AD, Salem GJ, Song J, Lin CH, Yip J, et al. . The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson's disease. Archives Phys Med Rehabil. (2008) 89:1221–9. 10.1016/j.apmr.2008.01.013
    1. Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P. Rehabilitation treatment of gait in patients with Parkinson's disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov Disord. (2009) 24:1139–43. 10.1002/mds.22491
    1. Bello O, Sanchez JA, Lopez-Alonso V, Márquez G, Morenilla L, Castro X, et al. . The effects of treadmill or overground walking training program on gait in Parkinson's disease. Gait Posture. (2013) 38:590–5. 10.1016/j.gaitpost.2013.02.005
    1. Armstrong MJ, Okun MS. Diagnosis and treatment of parkinson disease: a review. JAMA. (2020) 323:548–60. 10.1001/jama.2019.22360
    1. Feng YS, Yang SD, Tan ZX, Wang MM, Xing Y, Dong F, et al. . The benefits and mechanisms of exercise training for Parkinson's disease. Life Sci. (2020) 245:117345. 10.1016/j.lfs.2020.117345
    1. Bello O, Fernandez-Del-Olmo M. How does the treadmill affect gait in Parkinson's disease? Curr Aging Sci. (2012) 5:28–34. 10.2174/1874609811205010028
    1. Roeder L, Boonstra TW, Kerr GK. Corticomuscular control of walking in older people and people with Parkinson's disease. Sci Rep. (2020) 10:2980. 10.1038/s41598-020-59810-w
    1. Grabli D, Karachi C, Welter ML, Lau B, Hirsch EC, Vidailhet M, et al. . Normal and pathological gait: what we learn from Parkinson's disease. J Neurol Neurosurg Psychiatr. (2012) 83:979–85. 10.1136/jnnp-2012-302263
    1. Ford MP, Malone LA, Nyikos I, Yelisetty R, Bickel CS. Gait training with progressive external auditory cueing in persons with Parkinson's disease. Arch Phys Med Rehabil. (2010) 91:1255–61. 10.1016/j.apmr.2010.04.012
    1. de Bruin N, Doan JB, Turnbull G, Suchowersky O, Bonfield S, Hu B, et al. . Walking with music is a safe and viable tool for gait training in Parkinson's disease: the effect of a 13-week feasibility study on single and dual task walking. Parkinson's Dis. (2010) 2010:483530. 10.4061/2010/483530
    1. Koshimori Y, Strafella AP, Valli M, Sharma V, Cho SS, Houle S, et al. . Motor synchronization to Rhythmic Auditory Stimulation (RAS) attenuates dopaminergic responses in ventral striatum in young healthy adults: [11C]-(+)-PHNO pet study. Front Neurosci. (2019) 13:106. 10.3389/fnins.2019.00106
    1. Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: can rhythm influence Parkinson's disease? Neurosci Biobehav Rev. (2013) 37:2564–70. 10.1016/j.neubiorev.2013.08.003
    1. Kotz SA, Schwartze M. Differential input of the supplementary motor area to a dedicated temporal processing network: functional and clinical implications. Front Integr Neurosci. (2011) 5:86. 10.3389/fnint.2011.00086
    1. Schwartze M, Kotz SA. A dual–pathway neural architecture for specific temporal prediction. Neurosci Biobehav Rev. (2013) 37:2587–96. 10.1016/j.neubiorev.2013.08.005
    1. Crasta JE, Thaut MH, Anderson CW, Davies PL, Gavin WJ. Auditory priming improves neural synchronization in auditory–motor entrainment. Neuropsychologia. (2018) 117:102–12. 10.1016/j.neuropsychologia.2018.05.017
    1. Chung JW, Burciu RG, Ofori E, Coombes SA, Christou EA, Okun MS, et al. . Beta-band oscillations in the supplementary motor cortex are modulated by levodopa and associated with functional activity in the basal ganglia. NeuroImage Clin. (2018) 19:559–71. 10.1016/j.nicl.2018.05.021
    1. Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta–analysis. Sci Rep. (2018) 8:506. 10.1038/s41598-017-16232-5
    1. Fischer P, Chen CC, Chang YJ, Yeh CH, Pogosyan A, Herz DM, et al. . Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. J Neurosci. (2018) 38:5111–21. 10.1523/JNEUROSCI.3596-17.2018
    1. Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. (2011) 34:611–8. 10.1016/j.tins.2011.09.003
    1. Kadivar Z, Corcos DM, Foto J, Hondzinski JM. Effect of step training and rhythmic auditory stimulation on functional performance in Parkinson patients. Neurorehabil Neural Repair. (2011) 25:626–35. 10.1177/1545968311401627
    1. Meijer D, te Woerd E, Praamstra P. Timing of beta oscillatory synchronization and temporal prediction of upcoming stimuli. Neuroimage. (2016) 138:233–41. 10.1016/j.neuroimage.2016.05.071
    1. Hutchison WD, Dostrovsky JO, Walters JR, Courtemanche R, Boraud T, Goldberg J, et al. . Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci. 24:9240–3. 10.1523/JNEUROSCI.3366-04.2004
    1. Kühn AA, Kupsch A, Schneider GH, Brown P. Reduction in subthalamic 8–35Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur J Neurosci. (2006) 23:1956–60. 10.1111/j.1460-9568.2006.04717.x
    1. Sharott A, Gulberti A, Zittel S, Tudor Jones AA, Fickel U, Munchau A, et al. . (2014). Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson's disease. J Neurosci. 34:6273–85. 10.1523/JNEUROSCI.1803-13.2014
    1. Doyle LMF, Kühn AA, Hariz M, Kupsch A, Schneider GH, Brown P. Levodopa–induced modulation of subthalamic beta oscillations during self–paced movements in patients with Parkinson's disease. Eur J Neurosci. (2005) 21:1403–12. 10.1111/j.1460-9568.2005.03969.x
    1. Cao CY, Zeng K, Li DY, Zhan SK, Li XL, Sun BM. Modulations on cortical oscillations by subthalamic deep brain stimulation in patients with Parkinson disease: a MEG study. Neurosci Lett. (2017) 636:95–100. 10.1016/j.neulet.2016.11.009
    1. Kibleur A, David O. Electroencephalographic read–outs of the modulation of cortical network activity by deep brain stimulation. Bioelectron Med. (2018) 4:2. 10.1186/s42234-018-0003-x
    1. Muthuraman M, Koirala N, Ciolac D, Pintea B, Glaser M, Groppa S, et al. . Deep brain stimulation and L-DOPA therapy: concepts of action and clinical applications in Parkinson's disease. Front Neurol. (2018) 9:711. 10.3389/fneur.2018.00711
    1. Tan H, Zavala B, Pogosyan A, Ashkan K, Zrinzo L, Foltynie T, et al. . Human subthalamic nucleus in movement error detection and its evaluation during visuomotor adaptation. J Neurosci. (2014) 34:16744–54. 10.1523/JNEUROSCI.3414-14.2014
    1. Tan H, Wade C, Brown P. Post–movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models. J Neurosci. (2016) 36:1516–28. 10.1523/JNEUROSCI.3204-15.2016
    1. Feingold J, Gibson DJ, DePasquale B, Graybiel AM. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc Natl Acad Sci USA. (2015) 112:13687–92. 10.1073/pnas.1517629112
    1. Brittain JS, Brown P. Oscillations and the basal ganglia: motor control and beyond. Neuroimage. (2014) 85:637–47. 10.1016/j.neuroimage.2013.05.084
    1. Hell F, Plate A, Mehrkens JH, Botzel K. Subthalamic oscillatory activity and connectivity during gait in Parkinson's disease. Neuroimage Clin. (2018) 19:396–405. 10.1016/j.nicl.2018.05.001
    1. Oswal A, Brown P, Litvak V. Synchronized neural oscillations and the pathophysiology of Parkinson's disease. Curr Opin Neurol. (2013) 26:662–70. 10.1097/WCO.0000000000000034
    1. Quinn EJ, Blumenfeld Z, Velisar A, Koop MM, Shreve LA, Trager MH, et al. . Beta oscillations in freely moving Parkinson's subjects are attenuated during deep brain stimulation. Mov Disord. (2015) 30:1750–8. 10.1002/mds.26376
    1. Spedden ME, Choi JT, Nielsen JB, Geertsen SS. Corticospinal control of normal and visually guided gait in healthy older and younger adults. Neurobiol Aging. (2019) 78:29–41. 10.1016/j.neurobiolaging.2019.02.005
    1. Storzer L, Butz M, Hirschmann J, Abbasi O, Gratkowski M, Saupe D, et al. . Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia. Ann Neurol. (2017) 82:592–601. 10.1002/ana.25047
    1. Arnal LH, Giraud A-L. Cortical oscillations and sensory predictions. Trends Cogn Sci. (2012) 16:390–8. 10.1016/j.tics.2012.05.003
    1. Saleh M, Reimer J, Penn R, Ojakangas CL, Hatsopoulos NG. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron. (2010) 65:461–71. 10.1016/j.neuron.2010.02.001
    1. Teki S. Beta drives brain beats. Front Syst Neurosci. (2014) 8:155. 10.3389/fnsys.2014.00155
    1. Singh A. Oscillatory activity in the cortico-basal ganglia-thalamic neural circuits in Parkinson's disease. Eur J Neurosci. (2018) 48:2869–78. 10.1111/ejn.13853
    1. Androulidakis AG, Brücke C, Kempf F, Kupsch A, Aziz T, Ashkan K, et al. . Amplitude modulation of oscillatory activity in the subthalamic nucleus during movement. Eur J Neurosci. (2008) 27:1277–84. 10.1111/j.1460-9568.2008.06085.x
    1. Joundi RA, Brittain JS, Green AL, Aziz TZ, Brown P, Jenkinson N. Persistent suppression of subthalamic beta–band activity during rhythmic finger tapping in Parkinson's disease. Clin Neurophysiol. (2013) 124:565–73. 10.1016/j.clinph.2012.07.029
    1. Delval A, Bayot M, Defebvre L, Dujardin K. Cortical oscillations during gait: wouldn't walking be so automatic? Brain Sci. (2020) 10:90. 10.3390/brainsci10020090
    1. Rao SM, Mayer AR, Harrington DL. The evolution of brain activation during temporal processing. Nat Neurosci. (2001) 4:317–23. 10.1038/85191
    1. Canessa A, Pozzi NG, Arnulfo G, Brumberg J, Reich MM, Pezzoli G, et al. . Striatal dopaminergic innervation regulates subthalamic beta-oscillations and cortical-subcortical coupling during movements: preliminary evidence in subjects with Parkinson's disease. Front Hum Neurosci. (2016) 10:611. 10.3389/fnhum.2016.00611
    1. Gaynor LM, Kühn AA, Dileone M, Litvak V, Eusebio A, Pogosyan A, et al. . Suppression of beta oscillations in the subthalamic nucleus following cortical stimulation in humans. Eur J Neurosci. (2008) 28:1686–95. 10.1111/j.1460-9568.2008.06363.x
    1. Bartolo R, Prado L, Merchant H. Information processing in the primate basal ganglia during sensory-guided and internally driven rhythmic tapping. J Neurosci. (2014) 34:3910–23. 10.1523/JNEUROSCI.2679-13.2014
    1. Grahn JA. Neural mechanisms of rhythm perception: current findings and future perspectives. Top Cogn Sci. (2012) 4:585–606. 10.1111/j.1756-8765.2012.01213.x
    1. Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, et al. . Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol. (2017) 128:2125–39. 10.1016/j.clinph.2017.08.007
    1. Molnar GF, Sailer A, Gunraj CA, Cunic DI, Lang AE, Lozano AM, et al. . Changes in cortical excitability with thalamic deep brain stimulation. Neurology. (2005) 64:1913–9. 10.1212/01.WNL.0000163985.89444.DD
    1. Ruge D, Cif L, Limousin P, Gonzalez V, Vasques X, Hariz MI, et al. . Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms. Brain. (2011) 134(Pt. 7):2106–15. 10.1093/brain/awr122
    1. Ruge D, Tisch S, Hariz MI, Zrinzo L, Bhatia KP, Quinn NP, et al. . Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment. Mov Disord. (2011) 26:1913–21. 10.1002/mds.23731
    1. Kuriakose R, Saha U, Castillo G, Udupa K, Ni Z, Gunraj C, et al. . The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease. Cerebral Cortex. (2010) 20:1926–36. 10.1093/cercor/bhp269
    1. Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R. Short and long latency afferent inhibition in Parkinson's disease. Brain. (2003) 126:1883–94. 10.1093/brain/awg183
    1. Sailer A, Cunic DI, Paradiso GO, Gunraj CA, Wagle-Shukla A, Moro E, et al. . Subthalamic nucleus stimulation modulates afferent inhibition in Parkinson disease. Neurology. (2007) 68:356–63. 10.1212/01.wnl.0000252812.95774.aa
    1. Morgante F, Espay AJ, Gunraj C, Lang AE, Chen R. Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias. Brain. (2006) 129:1059–69. 10.1093/brain/awl031
    1. Kim SJ, Udupa K, Ni Z, Moro E, Gunraj C, Mazzella F, et al. . Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease. Neurology. (2015) 85:425–32. 10.1212/WNL.0000000000001806
    1. Naro A, Russo M, AbdelKader M, Manganotti P, Genovesi V, Marino M, et al. . A local signature of LTP-like plasticity induced by repetitive paired associative stimulation. Brain Topogr. (2015) 28:238–49. 10.1007/s10548-014-0396-0
    1. Udupa K, Bahl N, Ni Z, Gunraj C, Mazzella F, Moro E, et al. . Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson's disease. J Neurosci. (2016) 36:396–404. 10.1523/JNEUROSCI.2499-15.2016
    1. Ahlskog JE, Muenter MD, Maraganore DM, Matsumoto JY, Lieberman A, Wright KF, et al. . Fluctuating Parkinson3s disease. Treatment with the longacting dopamine agonist cabergoline. Arch Neurol. (1994) 51:1236–41. 10.1001/archneur.1994.00540240080020
    1. Blin O. The pharmacokinetics of pergolide in Parkinson3s disease. Curr Opin Neurol. (2003) 16:S9–12. 10.1097/00019052-200312001-00003
    1. Sharott A, Gulberti A, Hamel W, Köppen JA, Münchau A, Buhmann C, et al. . Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson's disease. Neurobiol Dis. (2018) 112:49–62. 10.1016/j.nbd.2018.01.001
    1. Cheron G, Duvinage M, De Saedeleer C, Castermans T, Bengoetxea A, Petieau M, et al. . From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation. Neural Plastic. (2012) 2012:375148. 10.1155/2012/375148
    1. Temperli P, Ghika J, Villemure J-G, Burkhard PR, Bogousslavsky J, Vingerhoets FJG. How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology. (2003) 60:78–81. 10.1212/WNL.60.1.78
    1. Singh A, Plate A, Kammermeier S, Mehrkens JH, Ilmberger J, Bötzel K. Freezing of gait–related oscillatory activity in the human subthalamic nucleus. Basal Ganglia. (2013) 3:25–32. 10.1016/j.baga.2012.10.002
    1. Perera S, Patel KV, Rosano C, Rubin SM, Satterfield S, Harris T, et al. . Gait speed predicts incident disability: a pooled analysis. J Gerontol Ser A Biol Sci Med Sci. (2016) 71:63–71. 10.1093/gerona/glv126
    1. Bötzel K, Kraft E. Strategies for treatment of gait and posture associated deficits in movement disorders: The impact of deep brain stimulation. Restor Neurol Neurosci. (2010) 28:115–22. 10.3233/RNN-2010-0532
    1. Logigian E, Hefter H, Reiners K, Freund HJ. Does tremor pace repetitive voluntary motor behavior in Parkinson's disease? Ann Neurol. (1991) 30:172–9. 10.1002/ana.410300208
    1. Brown P, Marsden CD. Bradykinesia and impairment of EEG desynchronization in Parkinson's disease. Mov Disord. (1999) 14:423–9.
    1. Pötter-Nerger M, Volkmann J. Deep brain stimulation for gait and postural symptoms in Parkinson's disease. Mov Disord. (2013) 28:1609–15. 10.1002/mds.25677
    1. Freeman JS, Cody FW, Schady W. The influence of external timing cues upon the rhythm of voluntary movements in Parkinson3s disease. J Neurol Neurosurg Psychiatr. (1993) 56:1078–84. 10.1136/jnnp.56.10.1078
    1. Tanaka K, Quadros AC, Jr, Santos RF, Stella F, Gobbi LT, Gobbi S. Benefits of physical exercise on executive functions in older people with Parkinson's disease. Brain Cogn. (2009) 69:435–41. 10.1016/j.bandc.2008.09.008

Source: PubMed

3
購読する