Dose-Finding Study and Pharmacokinetics Profile of the Novel 13-Mer Antisense miR-221 Inhibitor in Sprague-Dawley Rats

Maria Teresa Di Martino, Mariamena Arbitrio, Daniele Caracciolo, Francesca Scionti, Pierosandro Tagliaferri, Pierfrancesco Tassone, Maria Teresa Di Martino, Mariamena Arbitrio, Daniele Caracciolo, Francesca Scionti, Pierosandro Tagliaferri, Pierfrancesco Tassone

Abstract

miR-221 is overexpressed in several malignancies where it promotes tumor growth and survival by interfering with gene transcripts, including p27Kip1, PUMA, PTEN, and p57Kip2. We previously demonstrated that a novel 13-mer miR-221 inhibitor (locked nucleic acid [LNA]-i-miR-221) exerts antitumor activity against human cancer with a pilot-favorable pharmacokinetics and safety profile in mice and non-naive monkeys. In this study, we report a non-good laboratory practice (GLP)/GLP dose-finding investigation of LNA-i-miR-221 in Sprague-Dawley rats. The safety of the intravenous dose (125 mg/kg/day) for 4 consecutive days, two treatment cycles, was investigated by a first non-GLP study. The toxicokinetics profile of LNA-i-miR-221 was next explored in a GLP study at three different doses (5, 12.5, and 125 mg/kg/day). Slight changes in blood parameters and histological findings in kidney were observed at the highest dose. These effects were reversible and consistent with an in vivo antisense oligonucleotide (ASO) class effect. The no-observed-adverse-effect level (NOAEL) was established at 5 mg/kg/day. The plasma exposure of LNA-i-miR-221, based on C0 (estimated concentration at time 0 after bolus intravenous administration) and area under the curve (AUC), suggested no differential sex effect. Slight accumulation occurred between cycles 1 and 2 but was not observed after four consecutive administrations. Taken together, our findings demonstrate a safety profile of LNA-i-miR-221 in Sprague-Dawley rats and provide a reference translational framework and path for the development of other LNA miR inhibitors in phase I clinical study.

Keywords: LNA; LNA-i-miR-221; RNA therapeutics; antisense oligonucleotides; miR-221; miRNA therapeutics; non-coding RNAs; pharmacokinetics; rat; toxicity study.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Rat Treatment Timeline LNA-i-miR-221 was administered for 4 consecutive days in two cycles: four administrations on days 1, 2, 3, and 4 for the first cycle, and four administrations on days 15, 16, 17, and 18 for the second cycle (eight administrations in total). A period of 10 days washout between the two cycles was considered. The day of sacrifice was on day 28. Day 1 corresponds to the first day of the treatment period. A recovery period ran from day 29 to day 42.
Figure 2
Figure 2
LNA-i-miR-221 Plasma Concentrations and Time Profiles on Days 1 and 4 (A and B) LNA-i-miR-221 plasma concentrations (mg/mL)/time (h) profiles following a single intravenous bolus administration at 0, 5, 12.5, and 125 mg/kg/day to males and females on day 1 (A) and on day 4 (B) plotted on a semi-logarithmic scale are shown.
Figure 3
Figure 3
LNA-i-miR-221 Plasma Concentrations and Time Profiles on Days 15 and 18 (A and B) LNA-i-miR-221 plasma concentrations (mg/mL)/time (h) profiles following a single intravenous bolus administration at 0, 5, 12.5, and 125 mg/kg/day to males and females on day 15 (A) and on day 18 (B) plotted on a semi-logarithmic scale are shown.
Figure 4
Figure 4
Statistical Analyses Flowchart CiToxLAB software was used to perform the statistical analyses of body weight, food consumption, hematology, blood biochemistry, and urinalysis data; different software was applied according to the sequence depicted.

References

    1. Caracciolo D., Montesano M., Altomare E., Scionti F., Di Martino M.T., Tagliaferri P., Tassone P. The potential role of miRNAs in multiple myeloma therapy. Expert Rev. Hematol. 2018;11:793–803.
    1. Rupaimoole R., Slack F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017;16:203–222.
    1. Di Martino M.T., Campani V., Misso G., Gallo Cantafio M.E., Gullà A., Foresta U., Guzzi P.H., Castellano M., Grimaldi A., Gigantino V. In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS ONE. 2014;9:e90005.
    1. Caracciolo D., Di Martino M.T., Amodio N., Morelli E., Montesano M., Botta C., Scionti F., Talarico D., Altomare E., Gallo Cantafio M.E. miR-22 suppresses DNA ligase III addiction in multiple myeloma. Leukemia. 2019;33:487–498.
    1. Morelli E., Biamonte L., Federico C., Amodio N., Di Martino M.T., Gallo Cantafio M.E., Manzoni M., Scionti F., Samur M.K., Gullà A. Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-mir-17-92. Blood. 2018;132:1050–1063.
    1. Pitari M.R., Rossi M., Amodio N., Botta C., Morelli E., Federico C., Gullà A., Caracciolo D., Di Martino M.T., Arbitrio M. Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget. 2015;6:27343–27358.
    1. Stamato M.A., Juli G., Romeo E., Ronchetti D., Arbitrio M., Caracciolo D., Neri A., Tagliaferri P., Tassone P., Amodio N. Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma. Oncotarget. 2017;8:106527–106537.
    1. Rossi M., Amodio N., Di Martino M.T., Caracciolo D., Tagliaferri P., Tassone P. From target therapy to miRNA therapeutics of human multiple myeloma: theoretical and technological issues in the evolving scenario. Curr. Drug Targets. 2013;14:1144–1149.
    1. Morelli E., Leone E., Cantafio M.E., Di Martino M.T., Amodio N., Biamonte L., Gullà A., Foresta U., Pitari M.R., Botta C. Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo. Leukemia. 2015;29:2173–2183.
    1. Amodio N., Di Martino M.T., Foresta U., Leone E., Lionetti M., Leotta M., Gullà A.M., Pitari M.R., Conforti F., Rossi M. miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis. 2012;3:e436.
    1. Rossi M., Amodio N., Di Martino M.T., Tagliaferri P., Tassone P., Cho W.C. MicroRNA and multiple myeloma: from laboratory findings to translational therapeutic approaches. Curr. Pharm. Biotechnol. 2014;15:459–467.
    1. Di Martino M.T., Guzzi P.H., Caracciolo D., Agnelli L., Neri A., Walker B.A., Morgan G.J., Cannataro M., Tassone P., Tagliaferri P. Integrated analysis of microRNAs, transcription factors and target genes expression discloses a specific molecular architecture of hyperdiploid multiple myeloma. Oncotarget. 2015;6:19132–19147.
    1. Misso G., Zappavigna S., Castellano M., De Rosa G., Di Martino M.T., Tagliaferri P., Tassone P., Caraglia M. Emerging pathways as individualized therapeutic target of multiple myeloma. Expert Opin. Biol. Ther. 2013;13(Suppl 1):S95–S109.
    1. Amodio N., Di Martino M.T., Neri A., Tagliaferri P., Tassone P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin. Biol. Ther. 2013;13(Suppl 1):S125–S137.
    1. Di Martino M.T., Gullà A., Gallo Cantafio M.E., Altomare E., Amodio N., Leone E., Morelli E., Lio S.G., Caracciolo D., Rossi M. In vitro and in vivo activity of a novel locked nucleic acid (LNA)-inhibitor-miR-221 against multiple myeloma cells. PLoS ONE. 2014;9:e89659.
    1. Di Martino M.T., Rossi M., Caracciolo D., Gullà A., Tagliaferri P., Tassone P. miR-221/222 are promising targets for innovative anticancer therapy. Expert Opin. Ther. Targets. 2016;20:1099–1108.
    1. Di Martino M.T., Gullà A., Cantafio M.E., Lionetti M., Leone E., Amodio N., Guzzi P.H., Foresta U., Conforti F., Cannataro M. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma. Oncotarget. 2013;4:242–255.
    1. Santolla M.F., Lappano R., Cirillo F., Rigiracciolo D.C., Sebastiani A., Abonante S., Tassone P., Tagliaferri P., Di Martino M.T., Maggiolini M., Vivacqua A. miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. J. Exp. Clin. Cancer Res. 2018;37:94.
    1. Franzoni S., Vezzelli A., Turtoro A., Solazzo L., Greco A., Tassone P., Di Martino M.T., Breda M. Development and validation of a bioanalytical method for quantification of LNA-i-miR-221, a 13-mer oligonucleotide, in rat plasma using LC-MS/MS. J. Pharm. Biomed. Anal. 2018;150:300–307.
    1. Gallo Cantafio M.E., Nielsen B.S., Mignogna C., Arbitrio M., Botta C., Frandsen N.M., Rolfo C., Tagliaferri P., Tassone P., Di Martino M.T. Pharmacokinetics and Pharmacodynamics of a 13-mer LNA-inhibitor-miR-221 in Mice and Non-human Primates. Mol. Ther. Nucleic Acids. 2016;5:e3361.
    1. Gullà A., Di Martino M.T., Gallo Cantafio M.E., Morelli E., Amodio N., Botta C., Pitari M.R., Lio S.G., Britti D., Stamato M.A. A 13 mer LNA-i-miR-221 inhibitor restores drug sensitivity in melphalan-refractory multiple myeloma cells. Clin. Cancer Res. 2016;22:1222–1233.
    1. Chauhan D., Ray A., Viktorsson K., Spira J., Paba-Prada C., Munshi N., Richardson P., Lewensohn R., Anderson K.C. In vitro and in vivo antitumor activity of a novel alkylating agent, melphalan-flufenamide, against multiple myeloma cells. Clin. Cancer Res. 2013;19:3019–3031.
    1. European Medicines Agency . 2007. Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. EMEA/CHMP/SWP/28367/07, July 2017.
    1. Geary R.S., Norris D., Yu R., Bennett C.F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 2015;87:46–51.
    1. Galardi S., Mercatelli N., Giorda E., Massalini S., Frajese G.V., Ciafrè S.A., Farace M.G. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 2007;282:23716–23724.
    1. Zhang C.Z., Zhang J.X., Zhang A.L., Shi Z.D., Han L., Jia Z.F., Yang W.D., Wang G.X., Jiang T., You Y.P. miR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol. Cancer. 2010;9:229.
    1. He X.Y., Tan Z.L., Mou Q., Liu F.J., Liu S., Yu C.W., Zhu J., Lv L.Y., Zhang J., Wang S. MicroRNA-221 enhances MYCN via targeting nemo-like kinase and functions as an oncogene related to poor prognosis in neuroblastoma. Clin. Cancer Res. 2017;23:2905–2918.
    1. Miller T.E., Ghoshal K., Ramaswamy B., Roy S., Datta J., Shapiro C.L., Jacob S., Majumder S. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 2008;283:29897–29903.
    1. Callegari E., Elamin B.K., Giannone F., Milazzo M., Altavilla G., Fornari F., Giacomelli L., D’Abundo L., Ferracin M., Bassi C. Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology. 2012;56:1025–1033.
    1. Garofalo M., Quintavalle C., Di Leva G., Zanca C., Romano G., Taccioli C., Liu C.G., Croce C.M., Condorelli G. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27:3845–3855.
    1. Fornari F., Gramantieri L., Ferracin M., Veronese A., Sabbioni S., Calin G.A., Grazi G.L., Giovannini C., Croce C.M., Bolondi L., Negrini M. miR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27:5651–5661.
    1. Li W., Guo F., Wang P., Hong S., Zhang C. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr. Mol. Med. 2014;14:185–195.
    1. Zhang L.N., Li J.Y., Xu W. A review of the role of Puma, Noxa and Bim in the tumorigenesis, therapy and drug resistance of chronic lymphocytic leukemia. Cancer Gene Ther. 2013;20:1–7.
    1. Yu J., Zhang L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell. 2003;4:248–249.
    1. Chen L., Zhang J., Han L., Zhang A., Zhang C., Zheng Y., Jiang T., Pu P., Jiang C., Kang C. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol. Rep. 2012;27:854–860.
    1. Yu R.Z., Grundy J.S., Geary R.S. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin. Drug Metab. Toxicol. 2013;9:169–182.
    1. Lundin K.E., Højland T., Hansen B.R., Persson R., Bramsen J.B., Kjems J., Koch T., Wengel J., Smith C.I. Biological activity and biotechnological aspects of locked nucleic acids. Adv. Genet. 2013;82:47–107.
    1. Koller E., Vincent T.M., Chappell A., De S., Manoharan M., Bennett C.F. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res. 2011;39:4795–4807.
    1. Fluiter K., ten Asbroek A.L., de Wissel M.B., Jakobs M.E., Wissenbach M., Olsson H., Olsen O., Oerum H., Baas F. In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res. 2003;31:953–962.
    1. Kurreck J., Wyszko E., Gillen C., Erdmann V.A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002;30:1911–1918.
    1. Elmén J., Thonberg H., Ljungberg K., Frieden M., Westergaard M., Xu Y., Wahren B., Liang Z., Ørum H., Koch T., Wahlestedt C. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33:439–447.
    1. Janssen H.L., Reesink H.W., Lawitz E.J., Zeuzem S., Rodriguez-Torres M., Patel K., van der Meer A.J., Patick A.K., Chen A., Zhou Y. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013;368:1685–1694.
    1. Friedman R.C., Farh K.K., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.
    1. Frazier K.S. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol. 2015;43:78–89.
    1. Geary R.S., Baker B.F., Crooke S.T. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (Kynamro®): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin. Pharmacokinet. 2015;54:133–146.
    1. Geary R.S. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin. Drug Metab. Toxicol. 2009;5:381–391.
    1. Linnane E., Davey P., Zhang P., Puri S., Edbrooke M., Chiarparin E., Revenko A.S., Macleod A.R., Norman J.C., Ross S.J. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Res. 2019;47:4375–4392.
    1. Mahmood I. Pharmacokinetic allometric scaling of oligonucleotides. Nucleic Acid Ther. 2011;21:315–321.
    1. Di Martino M.T., Arbitrio M., Fonsi M., Erratico C.A., Scionti F., Caracciolo D., Tagliaferri P., Tassone P. Allometric scaling approaches for predicting human pharmacokinetic of a locked nucleic acid oligonucleotide targeting cancer-associated miR-221. Cancers (Basel) 2019;12:E27.
    1. US Food and Drug Administration . U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) 2005. Guidance for Industry: Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers.

Source: PubMed

3
購読する