Alterations in Serum Polyunsaturated Fatty Acids and Eicosanoids in Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease (COPD)

Bjoern Titz, Karsta Luettich, Patrice Leroy, Stephanie Boue, Gregory Vuillaume, Terhi Vihervaara, Kim Ekroos, Florian Martin, Manuel C Peitsch, Julia Hoeng, Bjoern Titz, Karsta Luettich, Patrice Leroy, Stephanie Boue, Gregory Vuillaume, Terhi Vihervaara, Kim Ekroos, Florian Martin, Manuel C Peitsch, Julia Hoeng

Abstract

Smoking is a major risk factor for several diseases including chronic obstructive pulmonary disease (COPD). To better understand the systemic effects of cigarette smoke exposure and mild to moderate COPD-and to support future biomarker development-we profiled the serum lipidomes of healthy smokers, smokers with mild to moderate COPD (GOLD stages 1 and 2), former smokers, and never-smokers (n = 40 per group) (ClinicalTrials.gov registration: NCT01780298). Serum lipidome profiling was conducted with untargeted and targeted mass spectrometry-based lipidomics. Guided by weighted lipid co-expression network analysis, we identified three main trends comparing smokers, especially those with COPD, with non-smokers: a general increase in glycero(phospho)lipids, including triglycerols; changes in fatty acid desaturation (decrease in ω-3 polyunsaturated fatty acids, and an increase in monounsaturated fatty acids); and an imbalance in eicosanoids (increase in 11,12- and 14,15-DHETs (dihydroxyeicosatrienoic acids), and a decrease in 9- and 13-HODEs (hydroxyoctadecadienoic acids)). The lipidome profiles supported classification of study subjects as smokers or non-smokers, but were not sufficient to distinguish between smokers with and without COPD. Overall, our study yielded further insights into the complex interplay between smoke exposure, lung disease, and systemic alterations in serum lipid profiles.

Keywords: biomarker; chronic obstructive pulmonary disease; clinical study; lipidomics; tobacco smoke.

Conflict of interest statement

The authors except for Terhi Vihervaar and Kim Ekroos are employees of Philip Morris International. Terhi Vihervaara and Kim Ekroos are employees of Zora Biosciences. Philip Morris International is the sole source of funding and sponsor of this study.

Figures

Figure 1
Figure 1
The serum lipidome reflects smoking and chronic obstructive pulmonary disease (COPD) status. (A) Measured lipid classes and their median concentrations; (B) differentially abundant lipid classes. The heatmap shows lipid classes (y-axis) with significant difference in abundance in any of the group comparisons (x-axis). The log 2-fold change is color-coded (see color key). Statistical significance is marked: ×, FDR adjusted p-value <0.20, *, FDR adjusted p-value <0.05. Sex, age group, and body mass index were used as covariates in the statistical model; (C) differentially abundant lipid species. Heatmap as in Figure 1B, but for individual lipids. The lipids are grouped by class (color bar on right). See the abbreviations section for lipid nomenclature. Triacylglycerols (TAGs) are summarized by their total composition, e.g., TAG 54:3 total (total fatty acid chain length: number of double bonds; the possible individual fatty acid compositions are in parentheses).
Figure 2
Figure 2
Lipidomics data allow for classification of the study groups. (A) Performance characteristics of elastic net logistic regressions for five classification tasks: all smokers (S) vs. all non-smokers (N), CS vs. NS, COPD vs. NS, COPD vs. CS, and FS vs. NS. The classifier was assessed by repeated (n = 100) three-fold cross-validation and four performance metrics are shown (mean ± SEM): Matthew’s correlation coefficient (MCC), area under the receiver operator curve (ROC), sensitivity (Sens), and specificity (Spec); (B) average classification predictions of the S vs. N classifier for each individual sample of the four study groups. The cross-validation (CV) predictions for each sample were averaged over the repeats (n = 100) and represented as a boxplot for each study group (black line = median). By default, a sample with a predicted score >0.5 (red, dashed line) was classified as a smoker (S), otherwise as a non-smoker (N); (C) final classification prediction scores for the full S vs. N model. Other details are as in Figure 2B; (D) lipids and their coefficients in the S vs. N classifier. An increase in lipids with a negative coefficient (red) tilted the classification of a sample toward smoker; an increase in lipids with a positive coefficient (blue) tilted the classification of a sample toward non-smoker. See abbreviations section for lipid nomenclature.
Figure 3
Figure 3
Weighted lipid co-expression network reveals structural and functional lipid modules. (A) Lipid modules detected in the weighted lipid co-expression network. Cluster dendrogram shows the hierarchical clustering of the topological overlap metric. Identified modules are color coded and numbered from 0 to 13. The module features are summarized for the main clusters discussed in the text. See Figure S1 for the complete annotation of the modules; (B) associations between the lipid modules (M0–M13) and the fatty acid composition and lipid classes of their members. See abbreviations section for lipid nomenclature.
Figure 4
Figure 4
Lipid modules show differences among the study groups. (A) Association of the lipid clusters with study group comparisons. Note that this analysis is based on the module eigenlipids (MEs), which are numbered according to their respective modules; (B) lipids with 20:5 and 22:6 fatty acids were significantly less abundant in the COPD group. The heatmap is as in Figure 1B, but for the concentrations of the different (conjugated) fatty acids.
Figure 5
Figure 5
Lipid modules correlate with clinical parameters, blood markers, and sputum protein profiles. (A) Correlation between module eigenlipids and clinical measurements: body mass index (BMI), glucose, triacylglycerols, cholesterol measured in blood by clinical chemistry, lipid modifier use, and the lung function parameters forced FEV1 % Pred., FEV1/FVC best ratio, and transfer factor for carbon monoxide (TLCO) % Pred. Pearson correlation coefficients are shown (red: positive, blue: negative). Significant correlations with a FDR adjusted p-value <0.05 are marked (“*”); (B) correlation between module eigenlipids and plasma markers. The Pearson correlation coefficients are color-coded and statistically significant correlations with FDR adjusted p-values <0.05 are marked. Only markers with at least one significant correlation are included. For the correlation, the measured marker values/concentrations were log-transformed. See Table S3 for the group comparison results for these markers. C3, complement factor C3; CRP, C-reactive protein; VDBP, vitamin D-binding protein; FRTN, ferritin; AAT, alpha-1-antitrypsin; (C) Correlation between module eigenlipids and protein expression profiles in induced sputum [8]. Protein labels are the official symbols of the respective genes (www.genenames.org) [30]. The Pearson correlation coefficients are color-coded and statistically significant correlations with FDR adjusted p-values <0.05 are marked (“*”). Only module eigenlipids with at least one significant correlation are included.

References

    1. Vestbo J., Hurd S.S., Agusti A.G., Jones P.W., Vogelmeier C., Anzueto A., Barnes P.J., Fabbri L.M., Martinez F.J., Nishimura M., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013;187:347–365. doi: 10.1164/rccm.201204-0596PP.
    1. Diaz-Guzman E., Mannino D.M. Epidemiology and prevalence of chronic obstructive pulmonary disease. Clin. Chest Med. 2014;35:7–16. doi: 10.1016/j.ccm.2013.10.002.
    1. WHO The 10 Leading Causes of Death in the World, 2000 and 2012. [(accessed on 15 September 2016)]. Available online:
    1. Gold D.R., Wang X., Wypij D., Speizer F.E., Ware J.H., Dockery D.W. Effects of cigarette smoking on lung function in adolescent boys and girls. N. Engl. J. Med. 1996;335:931–937. doi: 10.1056/NEJM199609263351304.
    1. Langhammer A., Johnsen R., Gulsvik A., Holmen T.L., Bjermer L. Sex differences in lung vulnerability to tobacco smoking. Eur. Respir. J. 2003;21:1017–1023. doi: 10.1183/09031936.03.00053202.
    1. Hooper R., Burney P., Vollmer W.M., McBurnie M.A., Gislason T., Tan W.C., Jithoo A., Kocabas A., Welte T., Buist A.S. Risk factors for COPD spirometrically defined from the lower limit of normal in the BOLD project. Eur. Respir. J. 2012;39:1343–1353. doi: 10.1183/09031936.00002711.
    1. Vestbo J., Agusti A., Wouters E.F., Bakke P., Calverley P.M., Celli B., Coxson H., Crim C., Edwards L.D., Locantore N., et al. Should we view chronic obstructive pulmonary disease differently after ECLIPSE? A clinical perspective from the study team. Am. J. Respir. Crit. Care Med. 2014;189:1022–1030. doi: 10.1164/rccm.201311-2006PP.
    1. Titz B., Sewer A., Schneider T., Elamin A., Martin F., Dijon S., Luettich K., Guedj E., Vuillaume G., Ivanov N.V. Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD subjects. J. Proteom. 2015;128:306–320. doi: 10.1016/j.jprot.2015.08.009.
    1. Ockene I.S., Miller N.H. Cigarette smoking, cardiovascular disease, and stroke a statement for healthcare professionals from the American Heart Association. Circulation. 1997;96:3243–3247. doi: 10.1161/01.CIR.96.9.3243.
    1. Pujades-Rodriguez M., George J., Shah A.D., Rapsomaniki E., Denaxas S., West R., Smeeth L., Timmis A., Hemingway H. Heterogeneous associations between smoking and a wide range of initial presentations of cardiovascular disease in 1,937,360 people in England: Lifetime risks and implications for risk prediction. Int. J. Epidemiol. 2015;44:129–141. doi: 10.1093/ije/dyu218.
    1. Maclay J.D., MacNee W. Cardiovascular disease in COPD: Mechanisms. CHEST J. 2013;143:798–807. doi: 10.1378/chest.12-0938.
    1. De Leon H., Boue S., Szostak J., Peitsch M.C., Hoeng J. Systems biology research into cardiovascular Disease: Contributions of lipidomics-based approaches to biomarker discovery. Curr. Drug Discov. Technol. 2015;12:129–154. doi: 10.2174/1570163812666150702123319.
    1. Messner B., Bernhard D. Smoking and cardiovascular disease mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2014;34:509–515. doi: 10.1161/ATVBAHA.113.300156.
    1. Shahar E., Boland L.L., Folsom A.R., Tockman M.S., McGovern P.G., Eckfeldt J.H. Docosahexaenoic acid and smoking-related chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999;159:1780–1785. doi: 10.1164/ajrccm.159.6.9810068.
    1. Shahar E., Folsom A.R., Melnick S.L., Tockman M.S., Comstock G.W., Gennaro V., Higgins M.W., Sorlie P.D., Ko W.J., Szklo M. Dietary n-3 polyunsaturated fatty acids and smoking-related chronic obstructive pulmonary disease. N. Engl. J. Med. 1994;331:228–233. doi: 10.1056/NEJM199407283310403.
    1. Simon J.A., Fong J., Bemert J.T., Browner W.S. Relation of smoking and alcohol consumption to serum fatty acids. Am. J. Epidemiol. 1996;144:325–334. doi: 10.1093/oxfordjournals.aje.a008933.
    1. Fernando H., Bhopale K.K., Kondraganti S., Kaphalia B.S., Shakeel Ansari G.A. Lipidomic changes in rat liver after long-term exposure to ethanol. Toxicol. Appl. Pharmacol. 2011;255:127–137. doi: 10.1016/j.taap.2011.05.022.
    1. Soriano J., Gonzalez L., Catala A. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Prog. Lipid Res. 2005;44:345–356. doi: 10.1016/j.plipres.2005.09.001.
    1. Blanksby S.J., Mitchell T.W. Advances in mass spectrometry for lipidomics. Annu. Rev. Anal. Chem. 2010;3:433–465. doi: 10.1146/annurev.anchem.111808.073705.
    1. Wang-Sattler R., Yu Y., Mittelstrass K., Lattka E., Altmaier E., Gieger C., Ladwig K.H., Dahmen N., Weinberger K.M., Hao P. Metabolic profiling reveals distinct variations linked to nicotine consumption in humans—First results from the KORA study. PLoS ONE. 2008;3:1583. doi: 10.1371/journal.pone.0003863.
    1. Weir J.M., Wong G., Barlow C.K., Greeve M.A., Kowalczyk A., Almasy L., Comuzzie A.G., Mahaney M.C., Jowett J.B., Shaw J., et al. Plasma lipid profiling in a large population-based cohort. J. Lipid Res. 2013;54:2898–2908. doi: 10.1194/jlr.P035808.
    1. Müller D.C., Degen C., Scherer G., Jahreis G., Niessner R., Scherer M. Metabolomics using GC–TOF–MS followed by subsequent GC–FID and HILIC–MS/MS analysis revealed significantly altered fatty acid and phospholipid species profiles in plasma of smokers. J. Chromatogr. B. 2014;966:117–126.
    1. Ubhi B.K., Riley J.H., Shaw P.A., Lomas D.A., Tal-Singer R., MacNee W., Griffin J.L., Connor S.C. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur. Respir. J. 2012;40:345–355. doi: 10.1183/09031936.00112411.
    1. Martin F., Talikka M., Hoeng J., Peitsch M. Identification of gene expression signature for cigarette smoke exposure response—From man to mouse. Hum. Exp. Toxicol. 2015;34:1200–1211. doi: 10.1177/0960327115600364.
    1. Chaudhary N.I., Luettich K., Peck M.J., Pierri E., Felber-Medlin L., Vuillaume G., Leroy P., Peitsch M.C. Physiological measures in subjects with mild to moderate COPD compared to asymptomatic current smokers, former smokers and never-smokers. 2016. Unpublished work.
    1. Talikka M., Martin F., Sewer A, Vuillaume G., Leroy P., Chaudhary N., Peck M.J., Peitsch M.C., Hoeng J. Systems toxicology approach to evaluate the impact of smoking and chronic obstructive pulmonary disease on the nasal epithelium. 2016. submitted.
    1. Quehenberger O., Armando A.M., Brown A.H., Milne S.B., Myers D.S., Merrill A.H., Bandyopadhyay S., Jones K.N., Kelly S., Shaner R.L. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010;51:3299–3305. doi: 10.1194/jlr.M009449.
    1. Friedman J., Hastie T., Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010;33:1. doi: 10.18637/jss.v033.i01.
    1. Langfelder P., Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008;9:1. doi: 10.1186/1471-2105-9-559.
    1. Gray K.A., Seal R.L., Tweedie S., Wright M.W., Bruford E.A. A review of the new HGNC gene family resource. Hum. Genom. 2016;10:6. doi: 10.1186/s40246-016-0062-6.
    1. Samols D., Agrawal A., Kushner I. Acute phase proteins. In: Oppenheim J.J., Feldman M., editors. Cytokine Reference on-Line. Academic Press; London, UK: 2002.
    1. Cantin A.M. Cellular response to cigarette smoke and oxidants: Adapting to survive. Proc. Am. Thorac. Soc. 2010;7:368–375. doi: 10.1513/pats.201001-014AW.
    1. Lundstrom S.L., Balgoma D., Wheelock A.M., Haeggstrom J.Z., Dahlen S.E., Wheelock C.E. Lipid mediator profiling in pulmonary disease. Curr. Pharm. Biotechnol. 2011;12:1026–1052. doi: 10.2174/138920111795909087.
    1. Telenga E.D., Hoffmann R.F., Ruben T.K., Hoonhorst S.J., Willemse B.W., van Oosterhout A.J., Heijink I.H., van den Berge M., Jorge L., Sandra P., et al. Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am. J. Respir. Crit. Care Med. 2014;190:155–164. doi: 10.1164/rccm.201312-2210OC.
    1. Titz B., Boue S., Phillips B., Talikka M., Vihervaara T., Schneider T., Nury C., Elamin A., Guedj E., Peck M.J., et al. Effects of cigarette smoke, cessation and switching to two heat-not-burn tobacco products on lung lipid metabolism in C57BL/6 and Apoe−/− mice—An integrative systems toxicology analysis. Toxicol. Sci. Off. J. Soc. Toxicol. 2016;149:441–457. doi: 10.1093/toxsci/kfv244.
    1. Xu T., Holzapfel C., Dong X., Bader E., Yu Z., Prehn C., Perstorfer K., Jaremek M., Roemisch-Margl W., Rathmann W., et al. Effects of smoking and smoking cessation on human serum metabolite profile: Results from the KORA cohort study. BMC Med. 2013;11:60. doi: 10.1186/1741-7015-11-60.
    1. Vestbo J., Anderson W., Coxson H.O., Crim C., Dawber F., Edwards L., Hagan G., Knobil K., Lomas D.A., MacNee W., et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) Eur. Respir. J. 2008;31:869–873. doi: 10.1183/09031936.00111707.
    1. Chen Q., Deeb R.S., Ma Y., Staudt M.R., Crystal R.G., Gross S.S. Serum metabolite biomarkers discriminate healthy smokers from COPD smokers. PLoS ONE. 2015;10:1583. doi: 10.1371/journal.pone.0143937.
    1. Craig W.Y., Palomaki G.E., Haddow J.E. Cigarette smoking and serum lipid and lipoprotein concentrations: An analysis of published data. BMJ. 1989;298:784–788. doi: 10.1136/bmj.298.6676.784.
    1. Campbell S.C., Moffatt R.J., Stamford B.A. Smoking and smoking cessation—The relationship between cardiovascular disease and lipoprotein metabolism: A review. Atherosclerosis. 2008;201:225–235. doi: 10.1016/j.atherosclerosis.2008.04.046.
    1. Calder P.C. ω-3 Polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013;75:645–662. doi: 10.1111/j.1365-2125.2012.04374.x.
    1. Fowkes F., Housley E., Cawood E., Macintyre C., Ruckley C., Prescott R. Edinburgh artery study: Prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. Int. J. Epidemiol. 1991;20:384–392. doi: 10.1093/ije/20.2.384.
    1. Leng G., Horrobin D., Fowkes F., Smith F., Lowe G., Donnan P., Ells K. Plasma essential fatty acids, cigarette smoking, and dietary antioxidants in peripheral arterial disease. A population-based case-control study. Arterioscler. Thromb. Vasc. Biol. 1994;14:471–478. doi: 10.1161/01.ATV.14.3.471.
    1. Scaglia N., Chatkin J., Chapman K.R., Ferreira I., Wagner M., Selby P., Allard J., Zamel N. The relationship between ω-3 and smoking habit: A cross-sectional study. Lipids Health Dis. 2016;15:61. doi: 10.1186/s12944-016-0220-9.
    1. Wood L.G. ω-3 Polyunsaturated fatty acids and chronic obstructive pulmonary disease. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:128–132. doi: 10.1097/MCO.0000000000000142.
    1. Chambless L.E., Heiss G., Folsom A.R., Rosamond W., Szklo M., Sharrett A.R., Clegg L.X. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: The Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am. J. Epidemiol. 1997;146:483–494. doi: 10.1093/oxfordjournals.aje.a009302.
    1. Cox C.S., Rothwell S.T., Madans J.H., Finucane F.F., Freid V., Kleinman J.C., Barbano H.E., Feldman J.J. Plan and operation of the NHANES I Epidemiologic Followup Study, 1987. Vital Health Stat. 1. 1992;27:1–190.
    1. Schwartz J. Role of polyunsaturated fatty acids in lung disease. Am. J. Clin. Nutr. 2000;71:393S–396S.
    1. Hirayama F., Lee A.H., Binns C.W., Hiramatsu N., Mori M., Nishimura K. Dietary intake of isoflavones and polyunsaturated fatty acids associated with lung function, breathlessness and the prevalence of chronic obstructive pulmonary disease: Possible protective effect of traditional Japanese diet. Mol. Nutr. Food Res. 2010;54:909–917. doi: 10.1002/mnfr.200900316.
    1. Ng T.P., Niti M., Yap K.B., Tan W.C. Dietary and supplemental antioxidant and anti-inflammatory nutrient intakes and pulmonary function. Public Health Nutr. 2014;17:2081–2086. doi: 10.1017/S1368980013002590.
    1. Fulton A.S., Hill A.M., Williams M.T., Howe P.R., Coates A.M. Paucity of evidence for a relationship between long-chain ω-3 fatty acid intake and chronic obstructive pulmonary disease: A systematic review. Nutr. Rev. 2015;73:612–623. doi: 10.1093/nutrit/nuv017.
    1. Atlantis E., Cochrane B. The association of dietary intake and supplementation of specific polyunsaturated fatty acids with inflammation and functional capacity in chronic obstructive pulmonary disease: A systematic review. Int. J. Evid. Based Healthc. 2016;14:53–63. doi: 10.1097/XEB.0000000000000056.
    1. Wallner S., Schmitz G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem. Phys. Lipids. 2011;164:573–589. doi: 10.1016/j.chemphyslip.2011.06.008.
    1. Spiteller G. Peroxyl radicals: Inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic. Biol. Med. 2006;41:362–387. doi: 10.1016/j.freeradbiomed.2006.03.013.
    1. De Castro J., Hernández-Hernández A., Rodríguez M.C., Sardina J.L., Llanillo M., Sánchez-Yagüe J. Comparison of changes in erythrocyte and platelet phospholipid and fatty acid composition and protein oxidation in chronic obstructive pulmonary disease and asthma. Platelets. 2007;18:43–51. doi: 10.1080/09537100600800776.
    1. Zuo L., He F., Sergakis G.G., Koozehchian M.S., Stimpfl J.N., Rong Y., Diaz P.T., Best T.M. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014;307:L205–L218. doi: 10.1152/ajplung.00330.2013.
    1. Kirkham P.A., Barnes P.J. Oxidative stress in COPD. Chest. 2013;144:266–273. doi: 10.1378/chest.12-2664.
    1. Yang S.-R., Chida A.S., Bauter M.R., Shafiq N., Seweryniak K., Maggirwar S.B., Kilty I., Rahman I. Cigarette smoke induces proinflammatory cytokine release by activation of NF-κB and posttranslational modifications of histone deacetylase in macrophages. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2006;291:L46–L57. doi: 10.1152/ajplung.00241.2005.
    1. Morissette M.C., Shen P., Thayaparan D., Stampfli M.R. Disruption of pulmonary lipid homeostasis drives cigarette smoke-induced lung inflammation in mice. Eur. Respir. J. 2015;46:1451–1460. doi: 10.1183/09031936.00216914.
    1. Yanbaeva D.G., Dentener M.A., Creutzberg E.C., Wesseling G., Wouters E.F. Systemic effects of smoking. Chest J. 2007;131:1557–1566. doi: 10.1378/chest.06-2179.
    1. Zuo L., Hallman A.H., Yousif M.K., Chien M.T. Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease. Front. Biol. 2012;7:506–513. doi: 10.1007/s11515-012-1251-x.
    1. Powell W.S., Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim. Biophys. Acta. 2015;1851:340–355. doi: 10.1016/j.bbalip.2014.10.008.
    1. Henriksson P., Hamberg M., Diczfalusy U. Formation of 15-HETE as a major hydroxyeicosatetraenoic acid in the atherosclerotic vessel wall. Biochim. Biophys. Acta. 1985;834:272–274. doi: 10.1016/0005-2760(85)90166-3.
    1. Kundumani-Sridharan V., Dyukova E., Hansen D.E., Rao G.N. 12/15-Lipoxygenase mediates high-fat diet-induced endothelial tight junction disruption and monocyte transmigration: A new role for 15 (S)-hydroxyeicosatetraenoic acid in endothelial cell dysfunction. J. Biol. Chem. 2013;288:15830–15842. doi: 10.1074/jbc.M113.453290.
    1. Song Y.S., Kim M.S., Lee D.H., Oh D.K., Yoon D.Y. 15-Hydroxyeicosatetraenoic acid inhibits phorbol-12-myristate-13-acetate-induced MUC5AC expression in NCI-H292 respiratory epithelial cells. J. Microbiol. Biotechnol. 2015;25:589–597. doi: 10.4014/jmb.1501.01052.
    1. Spector A.A., Norris A.W. Action of epoxyeicosatrienoic acids on cellular function. Am. J. Physiol. Cell Physiol. 2007;292:C996–C1012. doi: 10.1152/ajpcell.00402.2006.
    1. Fang X., Kaduce T.L., Weintraub N.L., Harmon S., Teesch L.M., Morisseau C., Thompson D.A., Hammock B.D., Spector A.A. Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells: Implications for the vascular effects of soluble epoxide hydrolase inhibition. J. Biol. Chem. 2001;276:14867–14874. doi: 10.1074/jbc.M011761200.
    1. Lu T., Katakam P.V.G., VanRollins M., Weintraub N.L., Spector A.A., Lee H.-C. Dihydroxyeicosatrienoic acids are potent activators of Ca2+-activated K+ channels in isolated rat coronary arterial myocytes. J. Physiol. 2001;534:651–667. doi: 10.1111/j.1469-7793.2001.t01-1-00651.x.
    1. Suzuki S., Oguro A., Osada-Oka M., Funae Y., Imaoka S. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. J. Pharmacol. Sci. 2008;108:79–88. doi: 10.1254/jphs.08122FP.
    1. Fang X., Hu S., Xu B., Snyder G.D., Harmon S., Yao J., Liu Y., Sangras B., Falck J.R., Weintraub N.L., et al. 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-α. Am. J. Physiol. Heart Circ. Physiol. 2006;290:H55–H63. doi: 10.1152/ajpheart.00427.2005.
    1. Podolin P.L., Bolognese B.J., Foley J.F., Long Iii E., Peck B., Umbrecht S., Zhang X., Zhu P., Schwartz B., Xie W., et al. In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor. Prostaglandins Other Lipid Mediat. 2013;104–105:25–31. doi: 10.1016/j.prostaglandins.2013.02.001.
    1. Smith K.R., Pinkerton K.E., Watanabe T., Pedersen T.L., Ma S.J., Hammock B.D. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc. Natl. Acad. Sci. USA. 2005;102:2186–2191. doi: 10.1073/pnas.0409591102.
    1. Dandona P., Mohanty P., Ghanim H., Aljada A., Browne R., Hamouda W., Prabhala A., Afzal A., Garg R. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J. Clin. Endocrinol. Metab. 2001;86:355–362. doi: 10.1210/jc.86.1.355.
    1. Yoshida Y., Umeno A., Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 2013;52:9–16. doi: 10.3164/jcbn.12-112.
    1. Yoshida Y., Niki E. Detection of lipid peroxidation in vivo: Total hydroxyoctadecadienoic acid and 7-hydroxycholesterol as oxidative stress marker. Free Radic. Res. 2004;38:787–794. doi: 10.1080/10715760410001700460.
    1. Rise P., Ghezzi S., Galli C. Relative potencies of statins in reducing cholesterol synthesis and enhancing linoleic acid metabolism. Eur. J. Pharmacol. 2003;467:73–75. doi: 10.1016/S0014-2999(03)01594-2.
    1. Jula A., Marniemi J., Ronnemaa T., Virtanen A., Huupponen R. Effects of diet and simvastatin on fatty acid composition in hypercholesterolemic men: A randomized controlled trial. Arterioscler. Thromb. Vasc. Biol. 2005;25:1952–1959. doi: 10.1161/01.ATV.0000177812.84927.fa.
    1. Nordestgaard B.G., Langsted A., Mora S., Kolovou G., Baum H., Bruckert E., Watts G.F., Sypniewska G., Wiklund O., Boren J., et al. Fasting is not routinely required for determination of a lipid profile: Clinical and laboratory implications including flagging at desirable concentration cut-points—A joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur. Heart J. 2016;37:1944–1958.
    1. Mora S. Nonfasting for routine lipid testing: From evidence to action. JAMA Intern. Med. 2016;176:1005–1006. doi: 10.1001/jamainternmed.2016.1979.
    1. Ekroos K. Unraveling Glycerophospholipidomes by Lipidomics. In: Wang F., editor. Biomarker Methods in Drug Discovery and Development. Humana Press; New York, NY, USA: 2008. pp. 369–384.
    1. Ståhlman M., Ejsing C.S., Tarasov K., Perman J., Borén J., Ekroos K. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J. Chromatogr. B. 2009;877:2664–2672.
    1. Ejsing C.S., Duchoslav E., Sampaio J., Simons K., Bonner R., Thiele C., Ekroos K., Shevchenko A. Automated Identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 2006;78:6202–6214. doi: 10.1021/ac060545x.
    1. Ekroos K., Chernushevich I.V., Simons K., Shevchenko A. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal. Chem. 2002;74:941–949. doi: 10.1021/ac015655c.
    1. Hermansson M., Uphoff A., Käkelä R., Somerharju P. Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal. Chem. 2005;77:2166–2175. doi: 10.1021/ac048489s.
    1. Ansari S., Baumer K., Boue S., Dijon S., Dulize R., Ekroos K., Elamin A., Foong C., Guedj E., Hoeng J., et al. Comprehensive systems biology analysis of a 7-month cigarette smoke inhalation study in C57BL/6 mice. Sci. Data. 2016;3:150077. doi: 10.1038/sdata.2015.77.
    1. Haug K., Salek R.M., Conesa P., Hastings J., de Matos P., Rijnbeek M., Mahendraker T., Williams M., Neumann S., Rocca-Serra P. MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013;41:D781–D786. doi: 10.1093/nar/gks1004.
    1. R Development Core Team R: A Language and Environment for Statistical Computing. [(accessed on 15 September 2016)]. Available online: .
    1. Gentleman R.C., Carey V.J., Bates D.M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y., Gentry J. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80.
    1. Kuhn M. Building predictive models in R using the caret package. J. Stat. Softw. 2008;28:i05. doi: 10.18637/jss.v028.i05.
    1. Powers D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011;2:37–63.
    1. Väremo L., Nielsen J., Nookaew I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 2013;41:4378–4391.
    1. Fahy E., Subramaniam S., Murphy R.C., Nishijima M., Raetz C.R., Shimizu T., Spener F., van Meer G., Wakelam M.J., Dennis E.A. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009;50:S9–S14. doi: 10.1194/jlr.R800095-JLR200.

Source: PubMed

3
購読する