Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography

Guy Lamouche, Brendan F Kennedy, Kelsey M Kennedy, Charles-Etienne Bisaillon, Andrea Curatolo, Gord Campbell, Valérie Pazos, David D Sampson, Guy Lamouche, Brendan F Kennedy, Kelsey M Kennedy, Charles-Etienne Bisaillon, Andrea Curatolo, Gord Campbell, Valérie Pazos, David D Sampson

Abstract

We review the development of phantoms for optical coherence tomography (OCT) designed to replicate the optical, mechanical and structural properties of a range of tissues. Such phantoms are a key requirement for the continued development of OCT techniques and applications. We focus on phantoms based on silicone, fibrin and poly(vinyl alcohol) cryogels (PVA-C), as we believe these materials hold the most promise for durable and accurate replication of tissue properties.

Keywords: (110.4500) Optical coherence tomography; (170.3660) Light propagation in tissues; (170.7050) Turbid media.

Figures

Fig. 1
Fig. 1
Typical average OCT signal, on a logarithmic scale, as a function of depth. The straight line illustrates a fit performed between the two vertical lines to extract the parameters A and μt.
Fig. 2
Fig. 2
(a) Backscattered amplitude and (b) total attenuation coefficient of silicone phantoms with different concentrations of alumina. Red line in (a) illustrates a fitted square-law dependency of the backscattered amplitude upon the concentration of alumina.
Fig. 3
Fig. 3
(a) SEM image of fibrin gel, and; (b) Attenuation coefficient, μt, measured for phantoms with different % w/v concentrations of Intralipid.
Fig. 4
Fig. 4
(a) Backscattered amplitude and (b) total attenuation coefficient for PVA-C with one and two FTCs for various concentrations of alumina.
Fig. 5
Fig. 5
Measurements of elasticity and viscoelasticity of materials and apparatus. (a) Stress-strain curve, highlighting the region of linear elasticity from which elastic modulus is calculated. (b) Creep curve for characterization of viscoelastic materials. (c) Photograph of Instron compression tester.
Fig. 6
Fig. 6
Creep strain curves for: (a) silicone fluid phantoms; and (b) fibrin phantoms. (c) Comparison of range of elastic moduli of phantom materials and soft tissue
Fig. 7
Fig. 7
Tensile test results for a PVA-C artery phantom, a silicone artery phantom and human media and intima. Reproduced from [48] with permission.
Fig. 8
Fig. 8
OCT imaging of 2D-structured silicone phantoms: (a) Skin simulating phantom; (b) Its 3-D reconstruction; (c) 200-μm channel filled with 20% Intralipid; and (d) its 3-D reconstruction. Reproduced from [39] with permission.
Fig. 9
Fig. 9
Cross-sectional OCT images of a 3D-structured phantom: (a) B-scan view (x-z plane); (b) y-z plane view; (c) en face view (x-y plane); (Scale bars: 100 μm) and (d) Orientation of planes with respect to the features. Solid renderings of: (e) Phantom with no scatterers in surrounding layer; and (f) Phantom with scatterers in surrounding layer. Reproduced from [77] with permission.
Fig. 10
Fig. 10
(a) Experimental setup to fabricate multilayer tubular silicone phantoms and (b) OCT image of an artery phantom. (RS rotating shaft, LM layer mixture, DS deposition syringe, B blade, RTS rotation and translation stage, HE heating element, t thickness). Reproduced from [31] with permission.
Fig. 11
Fig. 11
Bilayer fibrin phantom, with different Intralipid concentration in both layers.
Fig. 12
Fig. 12
OCT images of: (a) a multilayer PVA-C artery phantom; (b) a 4 mm-thick PVA-C sample with 2 FTCs; and (c) a 0.380 mm-thick PVA-C sample with 2FTCs. Reproduced from [48] with permission.

References

    1. Pogue B. W., Patterson M. S., “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).10.1117/1.2335429
    1. Nordstrom R. J., “Phantoms as standards in optical measurements,” Proc. SPIE 7906, 79060H (2011).10.1117/12.876374
    1. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).
    1. Schmitt J. M., “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).10.1364/OE.3.000199
    1. Oldenburg A. L., Toublan F. J.-J., Suslick K. S., Wei A., Boppart S. A., “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).10.1364/OPEX.13.006597
    1. Li X., Chudoba C., Ko T., Pitris C., Fujimoto J. G., “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).10.1364/OL.25.001520
    1. Tearney G. J., Waxman S., Shishkov M., Vakoc B. J., Suter M. J., Freilich M. I., Desjardins A. E., Oh W. Y., Bartlett L. A., Rosenberg M., Bouma B. E., “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).10.1016/j.jcmg.2008.06.007
    1. Pan Y., Birngruber R., Rosperich J., Engelhardt R., “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34(28), 6564–6574 (1995).10.1364/AO.34.006564
    1. Schmitt J., Lee S., Yung K., “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).10.1016/S0030-4018(97)00280-0
    1. Woolliams P. D., Ferguson R. A., Hart C., Grimwood A., Tomlins P. H., “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).10.1364/AO.49.002014
    1. Moffitt T., Chen Y.-C., Prahl S. A., “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).10.1117/1.2240972
    1. Kennedy B. F., Hillman T. R., McLaughlin R. A., Quirk B. C., Sampson D. D., “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).10.1364/OE.17.021762
    1. Bays R., Wagnières G., Robert D., Theumann J. F., Vitkin A., Savary J. F., Monnier P., van den Bergh H., “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21(3), 227–234 (1997).10.1002/(SICI)1096-9101(1997)21:3<227::AID-LSM2>;2-S
    1. Kennedy B. F., Loitsch S., McLaughlin R. A., Scolaro L., Rigby P., Sampson D. D., “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).10.1117/1.3427249
    1. Surry K. J., Austin H. J., Fenster A., Peters T. M., “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49(24), 5529–5546 (2004).10.1088/0031-9155/49/24/009
    1. Kaetsu H., Uchida T., Shinya N., “Increased effectiveness of fibrin sealant with a higher fibrin concentration,” Int. J. Adhes. Adhes. 20(1), 27–31 (2000).10.1016/S0143-7496(99)00011-1
    1. Kharine A., Manohar S., Seeton R., Kolkman R. G. M., Bolt R. A., Steenbergen W., de Mul F. F. M., “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).10.1088/0031-9155/48/3/306
    1. Hebden J. C., Price B. D., Gibson A. P., Royle G., “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol. 51(21), 5581–5590 (2006).10.1088/0031-9155/51/21/013
    1. Devi C. U., Vasu R. M., Sood A. K., “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt. 10(4), 044020 (2005).10.1117/1.2003833
    1. Wang R. K., Ma Z., Kirkpatrick S. J., “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).10.1063/1.2357854
    1. Kirkpatrick S. J., Wang R. K., Duncan D. D., “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).10.1364/OE.14.011585
    1. G. van Soest, F. Mastik, and A. F. van der Steen, “Polyvinyl alcohol cryogel-tissue mimicking material for vascular optical elastography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper Tul33.
    1. Tsai M.-T., Lee H.-C., Lu C.-W., Wang Y.-M., Lee C.-K., Yang C. C., Chiang C.-P., “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt. 13(4), 044012 (2008).10.1117/1.2960632
    1. McLaughlin R. A., Scolaro L., Robbins P., Saunders C., Jacques S. L., Sampson D. D., “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt. 15(4), 046029 (2010).10.1117/1.3479931
    1. Scolaro L., McLaughlin R. A., Klyen B. R., Wood B. A., Robbins P. D., Saunders C. M., Jacques S. L., Sampson D. D., “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express 3(2), 366–379 (2012).10.1364/BOE.3.000366
    1. Tomlins P. H., Adegun O., Hagi-Pavli E., Piper K., Bader D., Fortune F., “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt. 15(6), 066003 (2010).10.1117/1.3505019
    1. Xu C., Schmitt J. M., Carlier S. G., Virmani R., “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).10.1117/1.2927464
    1. van Soest G., Goderie T., Regar E., Koljenović S., van Leenders G. L. J. H., Gonzalo N., van Noorden S., Okamura T., Bouma B. E., Tearney G. J., Oosterhuis J. W., Serruys P. W., van der Steen A. F. W., “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).10.1117/1.3280271
    1. van Leeuwen T. G., Faber D. J., Aalders M. C., “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).10.1109/JSTQE.2003.813299
    1. Bisaillon C.-E., Lamouche G., Maciejko R., Dufour M., Monchalin J. P., “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).10.1088/0031-9155/53/13/N01
    1. Bisaillon C.-E., Dufour M. L., Lamouche G., “Artery phantoms for intravascular optical coherence tomography: healthy arteries,” Biomed. Opt. Express 2(9), 2599–2613 (2011).10.1364/BOE.2.002599
    1. Wang R. K., “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).10.1088/0031-9155/47/13/307
    1. Yadlowsky M. J., Schmitt J. M., Bonner R. F., “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34(25), 5699–5707 (1995).10.1364/AO.34.005699
    1. Schmitt J. M., Xiang S., Yung K. M., “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95 (1999).10.1117/1.429925
    1. Hillman T. R., Adie S. G., Seemann V., Armstrong J. J., Jacques S. L., Sampson D. D., “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett. 31(2), 190–192 (2006).10.1364/OL.31.000190
    1. Hillman T. R., Curatolo A., Kennedy B. F., Sampson D. D., “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Opt. Lett. 35(12), 1998–2000 (2010).10.1364/OL.35.001998
    1. Kennedy B. F., Curatolo A., Hillman T. R., Saunders C. M., Sampson D. D., “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt. 16(2), 020506 (2011).10.1117/1.3548239
    1. Liang X., Oldenburg A. L., Crecea V., Chaney E. J., Boppart S. A., “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).10.1364/OE.16.011052
    1. de Bruin D. M., Bremmer R. H., Kodach V. M., de Kinkelder R., van Marle J., van Leeuwen T. G., Faber D. J., “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).10.1117/1.3369003
    1. Grimwood A., Garcia L., Bamber J., Holmes J., Woolliams P., Tomlins P., Pankhurst Q. A., “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).10.1088/0031-9155/55/18/016
    1. Agrawal A., Pfefer T. J., Gilani N., Drezek R., “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010).10.1364/OL.35.002269
    1. Bisaillon C.-E., Lanthier M.-M., Dufour M. L., Lamouche G., “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE 7161, 71612E (2009).
    1. Lualdi M., Colombo A., Farina B., Tomatis S., Marchesini R., “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med. 28(3), 237–243 (2001).10.1002/lsm.1044
    1. D. L. Wise, Encyclopedic Handbook of Biomaterials and Bioengineering: Materials, Volume 1 (Marcel Dekker, 1995).
    1. van Staveren H. J., Moes C. J. M., van Marie J., Prahl S. A., van Gemert M. J. C., “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).10.1364/AO.30.004507
    1. Mano I., Goshima H., Nambu M. I., Iio M., “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med. 3(6), 921–926 (1986).10.1002/mrm.1910030612
    1. Bisaillon C.-E., Campbell G., De Grandpre C., Lamouche G., “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE 7567, 75650I (2010).
    1. Bisaillon C.-E., Campbell G., Pazos V., Lamouche G., “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE 7906, 79060J (2011).10.1117/12.875912
    1. Hyon S., Cha W., Ikada Y., “Preparation of transparent poly((vinyl alcohol) hydrogel,” Polym. Bull. 22(2), 119–122 (1989).10.1007/BF00255200
    1. Skala M. C., Crow M. J., Wax A., Izatt J. A., “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).10.1021/nl802351p
    1. Azarnoush H., Vergnole S., Boulet B., DiRaddo R., Lamouche G., “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng. 59(3), 697–705 (2012).10.1109/TBME.2011.2172685
    1. Azarnoush H., Vergnole S., Boulet B., Sowa M., Lamouche G., “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng. 59(5), 1488–1495 (2012).10.1109/TBME.2012.2189884
    1. Jung W., Kim J., Jeon M., Chaney E. J., Stewart C. N., Boppart S. A., “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).10.1109/TBME.2010.2096816
    1. Krouskop T. A., Wheeler T. M., Kallel F., Garra B. S., Hall T., “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
    1. Samani A., Bishop J., Luginbuhl C., Plewes D. B., “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).10.1088/0031-9155/48/14/310
    1. P. Wellman, R. D. Howe, E. Dalton, and K. A. Kern, “Breast tissue stiffness in compression is correlated to histological diagnosis,” Harvard BioRobotics Laboratory Technical Report (1999).
    1. N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: an Introduction (Springer-Verlag Berlin, 1989).
    1. Y. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, 1993).
    1. Insana M. F., Pellot-Barakat C., Sridhar M., Lindfors K. K., “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia 9(4), 393–404 (2004).10.1007/s10911-004-1409-5
    1. Crecea V., Oldenburg A. L., Liang X., Ralston T. S., Boppart S. A., “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).10.1364/OE.17.023114
    1. Jiang S., Pogue B. W., McBride T. O., Doyley M. M., Poplack S. P., Paulsen K. D., “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613 (2003).10.1117/1.1587153
    1. Wacker Silicones, “Processing RTV-2 silicone rubbers,”
    1. Azar F. S., Metaxas D. N., Schnall M. D., “Methods for modeling and predicting mechanical deformations of the breast under external perturbations,” Med. Image Anal. 6(1), 1–27 (2002).10.1016/S1361-8415(01)00053-6
    1. Morriss L., Wittek A., Miller K., “Compression testing of very soft biological tissues using semi-confined configuration--a word of caution,” J. Biomech. 41(1), 235–238 (2008).10.1016/j.jbiomech.2007.06.025
    1. Wan W. K., Campbell G., Zhang Z. F., Hui A. J., Boughner D. R., “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res. 63(6), 854–861 (2002).10.1002/jbm.10333
    1. Pazos V., Mongrain R., Tardif J. C., “Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models,” J. Mech. Behav. Biomed. Mater. 2(5), 542–549 (2009).10.1016/j.jmbbm.2009.01.003
    1. Nambu M., “Rubber-like poly(viny1 alcohol)) gel,” Kobunshi Ronbunshu 47(9), 695–703 (1990) (In Japanese)10.1295/koron.47.695
    1. Chu K. C., Rutt B. K., “Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med. 37(2), 314–319 (1997).10.1002/mrm.1910370230
    1. Beck G., Akgün N., Rück A., Steiner R., “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).10.1007/s101030050070
    1. Madsen E. L., Zagzebski J. A., Banjavie R. A., Jutila R. E., “Tissue mimicking materials for ultrasound phantoms,” Med. Phys. 5(5), 391–394 (1978).10.1118/1.594483
    1. Rownd J. J., Madsen E. L., Zagzebski J. A., Frank G. R., Dong F., “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol. 23(2), 245–260 (1997).10.1016/S0301-5629(96)00205-0
    1. Computerized Imaging Reference Systems, “Ultrasound phantoms for 2D & 3D evaluation” (CIRS 2011).
    1. Pan Y., Birngruber R., Engelhardt R., “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36(13), 2979–2983 (1997).10.1364/AO.36.002979
    1. Iftimia N., Bouma B. E., Tearney G. J., “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).10.1117/1.1559060
    1. Tomlins P. H., Smith G. N., Woolliams P. D., Rasakanthan J., Sugden K., “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express 2(5), 1319–1327 (2011).10.1364/BOE.2.001319
    1. Liew Y. M., McLaughlin R. A., Wood F. M., Sampson D. D., “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt. 16(11), 116018 (2011).10.1117/1.3652710
    1. Curatolo A., Kennedy B. F., Sampson D. D., “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express 19(20), 19480–19485 (2011).10.1364/OE.19.019480
    1. Bisaillon C.-E., Dufour M. L., Lamouche G., “Durable phantoms of atherosclerotic arteries for optical coherence tomography,” Proc. SPIE 7548, 75483G (2010).10.1117/12.842403

Source: PubMed

3
購読する