Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function

Won Ho Kim, Kyung Won Shin, Sang-Hwan Ji, Young-Eun Jang, Ji-Hyun Lee, Chang Wook Jeong, Cheol Kwak, Young-Jin Lim, Won Ho Kim, Kyung Won Shin, Sang-Hwan Ji, Young-Eun Jang, Ji-Hyun Lee, Chang Wook Jeong, Cheol Kwak, Young-Jin Lim

Abstract

The association between acute kidney injury (AKI) and long-term renal function after radical nephrectomy has not been evaluated fully. We reviewed 558 cases of radical nephrectomy. Postoperative AKI was defined by the Kidney Disease: Improving Global Outcomes (KDIGO) serum creatinine criteria. Values of estimated glomerular filtration rate (eGFR) were collected up to 36 months (median 35 months) after surgery. The primary outcome was new-onset chronic kidney disease (CKD) stage 3a or higher or all-cause mortality within three years after nephrectomy. The functional change ratio (FCR) of eGFR was defined as the ratio of the most recent GFR (24-36 months after surgery) to the new baseline during 3-12 months. A multivariable Cox proportional hazard regression analysis for new-onset CKD and a multivariable linear regression analysis for FCR were performed to evaluate the association between AKI and long-term renal outcomes. A correlation analysis was performed with the serum creatinine ratio and used to determine AKI and FCR. AKI occurred in 43.2% (n = 241/558) and our primary outcome developed in 40.5% (n = 226/558) of patients. The incidence of new-onset CKD was significantly higher in patients with AKI than those without at all follow-up time points after surgery. The Cox regression analysis showed a graded association between AKI and our primary outcome (AKI stage 1: Hazard ratio 1.71, 95% confidence interval 1.25-2.32; AKI stage 2 or 3: Hazard ratio 2.72, 95% confidence interval 1.78-4.10). The linear regression analysis for FCR showed that AKI was significantly associated with FCR (β = -0.168 ± 0.322, p = 0.011). There was a significant negative correlation between the serum creatinine ratio and FCR. In conclusion, our analysis demonstrated a robust and graded association between AKI after radical nephrectomy and long-term renal functional deterioration.

Keywords: acute kidney injury; chronic kidney disease; functional change ratio; radical nephrectomy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Serial change in mean estimated glomerular filtration rate before surgery to three years after surgery according to the stages of acute kidney injury. * Significant difference between groups.
Figure 2
Figure 2
Comparison of the cumulative incidence of chronic kidney disease (estimated glomerular filtration rate (eGFR) 2) at follow-up time points between the patients without acute kidney injury (AKI), those with stage 1 AKI, and those with stage 2 or 3 AKI. There were significant differences in the incidence of chronic kidney disease at all time-points.
Figure 3
Figure 3
Kaplan–Meier survival curve analysis for new-onset chronic kidney disease stage 3a or higher (estimated glomerular filtration rate 2) or all-cause mortality as the primary outcome between different AKI groups. There were significant differences between the no AKI and AKI stage 1 groups (log-rank test p < 0.001) and between AKI stage 1 and stage 2 or 3 (log-rank test p = 0.023). The numbers of patients who had follow-up eGFR values at each time point were shown at the bottom of the figure.
Figure 4
Figure 4
Distribution of the long-term functional change ratio across the different creatinine ratios which were used to determine acute kidney injury stages. There was a significant correlation between the functional change ratio and creatinine change ratio from baseline (p < 0.001).
Figure 5
Figure 5
Comparison of the distribution of the Kidney Disease: Improving Global Outcomes chronic kidney disease (KDIGO CKD) stages during the follow-up period of 36 months between the patients with and without AKI after radical nephrectomy.

References

    1. Cho A., Lee J.E., Kwon G.Y., Huh W., Lee H.M., Kim Y.G., Kim D.J., Oh H.Y., Choi H.Y. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol. Dial. Transpl. 2011;26:3496–3501. doi: 10.1093/ndt/gfr094.
    1. Garofalo C., Liberti M.E., Russo D., Russo L., Fuiano G., Cianfrone P., Conte G., De Nicola L., Minutolo R., Borrelli S. Effect of post-nephrectomy acute kidney injury on renal outcome: A retrospective long-term study. World J. Urol. 2018;36:59–63. doi: 10.1007/s00345-017-2104-7.
    1. Shin S., Han Y., Park H., Chung Y.S., Ahn H., Kim C.S., Cho Y.P., Kwon T.W. Risk factors for acute kidney injury after radical nephrectomy and inferior vena cava thrombectomy for renal cell carcinoma. J. Vasc. Surg. 2013;58:1021–1027. doi: 10.1016/j.jvs.2013.02.247.
    1. Chawla L.S., Eggers P.W., Star R.A., Kimmel P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014;371:58–66. doi: 10.1056/NEJMra1214243.
    1. Hill A.B. The Environment and disease: Association or causation? Proc. R. Soc. Med. 1965;58:295–300. doi: 10.1177/003591576505800503.
    1. Zabell J., Isharwal S., Dong W., Abraham J., Wu J., Suk-Ouichai C., Palacios D.A., Remer E., Li J., Campbell S.C. Acute Kidney Injury after Partial Nephrectomy of Solitary Kidneys: Impact on Long-Term Stability of Renal Function. J. Urol. 2018;200:1295–1301. doi: 10.1016/j.juro.2018.07.042.
    1. Miller I.J., Suthanthiran M., Riggio R.R., Williams J.J., Riehle R.A., Vaughan E.D., Stubenbord W.T., Mouradian J., Cheigh J.S., Stenzel K.H. Impact of renal donation. Long-term clinical and biochemical follow-up of living donors in a single center. Am. J. Med. 1985;79:201–208. doi: 10.1016/0002-9343(85)90010-5.
    1. Ibrahim H.N., Foley R., Tan L., Rogers T., Bailey R.F., Guo H., Gross C.R., Matas A.J. Long-term consequences of kidney donation. N. Engl. J. Med. 2009;360:459–469. doi: 10.1056/NEJMoa0804883.
    1. Lee H.J., Bae J., Kwon Y., Jang H.S., Yoo S., Jeong C.W., Kim J.T., Kim W.H. General Anesthetic Agents and Renal Function after Nephrectomy. J. Clin. Med. 2019;8:1530. doi: 10.3390/jcm8101530.
    1. Levey A.S., Bosch J.P., Lewis J.B., Greene T., Rogers N., Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999;130:461–470. doi: 10.7326/0003-4819-130-6-199903160-00002.
    1. Levey A.S., Coresh J., Balk E., Kausz A.T., Levin A., Steffes M.W., Hogg R.J., Perrone R.D., Lau J., Eknoyan G. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003;139:137–147. doi: 10.7326/0003-4819-139-2-200307150-00013.
    1. KDIGO working group KDIGO 2012 clinical practice guidelines for evaluation and management of chronic kidney disease. Kidney Int. 2013;3:1–150.
    1. Thomas M.E., Blaine C., Dawnay A., Devonald M.A., Ftouh S., Laing C., Latchem S., Lewington A., Milford D.V., Ostermann M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015;87:62–73. doi: 10.1038/ki.2014.328.
    1. Shin S.R., Kim W.H., Kim D.J., Shin I.W., Sohn J.T. Prediction and Prevention of Acute Kidney Injury after Cardiac Surgery. Biomed. Res. Int. 2016;2016:2985148. doi: 10.1155/2016/2985148.
    1. Govindarajulu U.S., Spiegelman D., Thurston S.W., Ganguli B., Eisen E.A. Comparing smoothing techniques in Cox models for exposure-response relationships. Stat. Med. 2007;26:3735–3752. doi: 10.1002/sim.2848.
    1. Durrleman S., Simon R. Flexible regression models with cubic splines. Stat. Med. 1989;8:551–561. doi: 10.1002/sim.4780080504.
    1. Demler O.V., Paynter N.P., Cook N.R. Tests of calibration and goodness-of-fit in the survival setting. Stat. Med. 2015;34:1659–1680. doi: 10.1002/sim.6428.
    1. Harrell F.E., Jr., Lee K.L., Mark D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996;15:361–387. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>;2-4.
    1. Yokoyama M., Fujii Y., Iimura Y., Saito K., Koga F., Masuda H., Kawakami S., Kihara K. Longitudinal change in renal function after radical nephrectomy in Japanese patients with renal cortical tumors. J. Urol. 2011;185:2066–2071. doi: 10.1016/j.juro.2011.02.005.
    1. Barlow L.J., Korets R., Laudano M., Benson M., McKiernan J. Predicting renal functional outcomes after surgery for renal cortical tumours: A multifactorial analysis. BJU Int. 2010;106:489–492. doi: 10.1111/j.1464-410X.2009.09147.x.
    1. Huang W.C., Levey A.S., Serio A.M., Snyder M., Vickers A.J., Raj G.V., Scardino P.T., Russo P. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: A retrospective cohort study. Lancet Oncol. 2006;7:735–740. doi: 10.1016/S1470-2045(06)70803-8.
    1. Li L., Lau W.L., Rhee C.M., Harley K., Kovesdy C.P., Sim J.J., Jacobsen S., Chang A., Landman J., Kalantar-Zadeh K. Risk of chronic kidney disease after cancer nephrectomy. Nat. Rev. Nephrol. 2014;10:135–145. doi: 10.1038/nrneph.2013.273.
    1. Patel H.D., Pierorazio P.M., Johnson M.H., Sharma R., Iyoha E., Allaf M.E., Bass E.B., Sozio S.M. Renal Functional Outcomes after Surgery, Ablation, and Active Surveillance of Localized Renal Tumors: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2017;12:1057–1069. doi: 10.2215/CJN.11941116.
    1. McIntosh A.G., Parker D.C., Egleston B.L., Uzzo R.G., Haseebuddin M., Joshi S.S., Viterbo R., Greenberg R.E., Chen D.Y.T., Smaldone M.C., et al. Prediction of significant estimated glomerular filtration rate decline after renal unit removal to aid in the clinical choice between radical and partial nephrectomy in patients with a renal mass and normal renal function. BJU Int. 2019;124:999–1005. doi: 10.1111/bju.14839.
    1. Fergany A.F., Hafez K.S., Novick A.C. Long-term results of nephron sparing surgery for localized renal cell carcinoma: 10-year followup. J. Urol. 2000;163:442–445. doi: 10.1016/S0022-5347(05)67896-2.
    1. Patard J.J., Shvarts O., Lam J.S., Pantuck A.J., Kim H.L., Ficarra V., Cindolo L., Han K.R., De La Taille A., Tostain J., et al. Safety and efficacy of partial nephrectomy for all T1 tumors based on an international multicenter experience. J. Urol. 2004;171:2181–2185. doi: 10.1097/01.ju.0000124846.37299.5e.
    1. Klarenbach S., Moore R.B., Chapman D.W., Dong J., Braam B. Adverse renal outcomes in subjects undergoing nephrectomy for renal tumors: A population-based analysis. Eur. Urol. 2011;59:333–339. doi: 10.1016/j.eururo.2010.11.013.
    1. Sun M., Bianchi M., Hansen J., Trinh Q.D., Abdollah F., Tian Z., Sammon J., Shariat S.F., Graefen M., Montorsi F., et al. Chronic kidney disease after nephrectomy in patients with small renal masses: A retrospective observational analysis. Eur. Urol. 2012;62:696–703. doi: 10.1016/j.eururo.2012.03.051.
    1. Alam R., Patel H.D., Osumah T., Srivastava A., Gorin M.A., Johnson M.H., Trock B.J., Chang P., Wagner A.A., McKiernan J.M., et al. Comparative effectiveness of management options for patients with small renal masses: A prospective cohort study. BJU Int. 2019;123:42–50. doi: 10.1111/bju.14490.
    1. Campbell S.C., Novick A.C., Belldegrun A., Blute M.L., Chow G.K., Derweesh I.H., Faraday M.M., Kaouk J.H., Leveillee R.J., Matin S.F., et al. Guideline for management of the clinical T1 renal mass. J. Urol. 2009;182:1271–1279. doi: 10.1016/j.juro.2009.07.004.
    1. Coca S.G., Singanamala S., Parikh C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012;81:442–448. doi: 10.1038/ki.2011.379.
    1. Ishani A., Xue J.L., Himmelfarb J., Eggers P.W., Kimmel P.L., Molitoris B.A., Collins A.J. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 2009;20:223–228. doi: 10.1681/ASN.2007080837.
    1. Lo L.J., Go A.S., Chertow G.M., McCulloch C.E., Fan D., Ordonez J.D., Hsu C.Y. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76:893–899. doi: 10.1038/ki.2009.289.
    1. Kim J.S., Kim Y.J., Ryoo S.M., Sohn C.H., Seo D.W., Ahn S., Lim K.S., Kim W.Y. One—Year Progression and Risk Factors for the Development of Chronic Kidney Disease in Septic Shock Patients with Acute Kidney Injury: A Single-Centre Retrospective Cohort Study. J. Clin. Med. 2018;7:554. doi: 10.3390/jcm7120554.
    1. Hori D., Katz N.M., Fine D.M., Ono M., Barodka V.M., Lester L.C., Yenokyan G., Hogue C.W. Defining oliguria during cardiopulmonary bypass and its relationship with cardiac surgery-associated acute kidney injury. Br. J. Anaesth. 2016;117:733–740. doi: 10.1093/bja/aew340.
    1. Mizota T., Yamamoto Y., Hamada M., Matsukawa S., Shimizu S., Kai S. Intraoperative oliguria predicts acute kidney injury after major abdominal surgery. Br. J. Anaesth. 2017;119:1127–1134. doi: 10.1093/bja/aex255.
    1. Gaffney A.M., Sladen R.N. Acute kidney injury in cardiac surgery. Curr. Opin. Anaesthesiol. 2015;28:50–59. doi: 10.1097/ACO.0000000000000154.
    1. Anderson R.J., Linas S.L., Berns A.S., Henrich W.L., Miller T.R., Gabow P.A., Schrier R.W. Nonoliguric acute renal failure. N. Engl. J. Med. 1977;296:1134–1138. doi: 10.1056/NEJM197705192962002.
    1. Anderson R.G., Bueschen A.J., Lloyd L.K., Dubovsky E.V., Burns J.R. Short-term and long-term changes in renal function after donor nephrectomy. J. Urol. 1991;145:11–13. doi: 10.1016/S0022-5347(17)38232-0.
    1. Vincenti F., Amend W.J., Jr., Kaysen G., Feduska N., Birnbaum J., Duca R., Salvatierra O. Long-term renal function in kidney donors. Sustained compensatory hyperfiltration with no adverse effects. Transplantation. 1983;36:626–629. doi: 10.1097/00007890-198336060-00006.
    1. Talseth T., Fauchald P., Skrede S., Djoseland O., Berg K.J., Stenstrom J., Heilo A., Brodwall E.K., Flatmark A. Long-term blood pressure and renal function in kidney donors. Kidney Int. 1986;29:1072–1076. doi: 10.1038/ki.1986.109.
    1. Najarian J.S., Chavers B.M., McHugh L.E., Matas A.J. 20 years or more of follow-up of living kidney donors. Lancet. 1992;340:807–810. doi: 10.1016/0140-6736(92)92683-7.
    1. Giglio M., Dalfino L., Puntillo F., Brienza N. Hemodynamic goal-directed therapy and postoperative kidney injury: An updated meta-analysis with trial sequential analysis. Crit. Care. 2019;23:232. doi: 10.1186/s13054-019-2516-4.
    1. Hur M., Park S.K., Yoo S., Choi S.N., Jeong C.W., Kim W.H., Kim J.T., Kwak C., Bahk J.H. The association between intraoperative urine output and postoperative acute kidney injury differs between partial and radical nephrectomy. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-018-37432-7.
    1. Jeon H.G., Jeong I.G., Lee J.W., Lee S.E., Lee E. Prognostic factors for chronic kidney disease after curative surgery in patients with small renal tumors. Urology. 2009;74:1064–1068. doi: 10.1016/j.urology.2009.05.090.
    1. Kim N.Y., Hong J.H., Koh D.H., Lee J., Nam H.J., Kim S.Y. Effect of Diabetes Mellitus on Acute Kidney Injury after Minimally Invasive Partial Nephrectomy: A Case-Matched Retrospective Analysis. J. Clin. Med. 2019;8:468. doi: 10.3390/jcm8040468.
    1. Bijol V., Mendez G.P., Hurwitz S., Rennke H.G., Nose V. Evaluation of the nonneoplastic pathology in tumor nephrectomy specimens: Predicting the risk of progressive renal failure. Am. J. Surg. Pathol. 2006;30:575–584. doi: 10.1097/01.pas.0000194296.74097.87.
    1. Kil H.K., Kim J.Y., Choi Y.D., Lee H.S., Kim T.K., Kim J.E. Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study. J. Clin. Med. 2018;7:470. doi: 10.3390/jcm7120470.
    1. Bravi C.A., Larcher A., Capitanio U., Mari A., Antonelli A., Artibani W., Barale M., Bertini R., Bove P., Brunocilla E., et al. Perioperative Outcomes of Open, Laparoscopic, and Robotic Partial Nephrectomy: A Prospective Multicenter Observational Study (The RECORd 2 Project) Eur. Urol. Focus. 2019 doi: 10.1016/j.euf.2019.10.013.

Source: PubMed

3
購読する