Time Course of Perceived Visual Distortion and Axial Length Growth in Myopic Children Undergoing Orthokeratology

Guihua Liu, Yiyuan Wu, Hua Bi, Biying Wang, Tianpu Gu, Bei Du, Jianliang Tong, Bin Zhang, Ruihua Wei, Guihua Liu, Yiyuan Wu, Hua Bi, Biying Wang, Tianpu Gu, Bei Du, Jianliang Tong, Bin Zhang, Ruihua Wei

Abstract

Purpose: To establish the time course of the subjective visual function changes during the first month of orthokeratology treatment in myopic children, and to investigate how the time course variations are associated with the objective optical quality changes and the axial length growth (ALG) after 1 year of treatment. Methods: A total of 58 myopic children aged from 8 to 16 years participated in this self-controlled prospective study. All subjects were fitted with designed spherical four-zone orthokeratology lenses. Subjective visual function was evaluated with orientation discrimination threshold (ODT), and objective optical quality was quantified with the high-order aberration root-mean-square (HOA-RMS) and the changing speed of HOA. The measurements were done before the lens fitting and 1 day, 1-, 2-, and 4-weeks after lens wear. Axial length was obtained at baseline and 1-year follow-up, and ALG was defined as the difference. One-way ANOVA was conducted to compare the difference for statistical analysis. Results: After lens fitting, the ODT time courses peaked on day 1 in 28 children, 1 week in 15 children, 2 weeks in 11 children, and 4 weeks in 4 children. In contrast, the HOA-RMS steadily rose during the first month, and the changing speed of HOA was only transiently elevated on day 1 after the initial lens wear. The ALG was 0.12 ± 0.20 mm in subjects whose ODT peaked at day 1, 0.08 ± 0.09 mm in subjects whose ODT peaked on 1-week, and 0.12 ± 0.15 mm in subjects whose ODT peaked on 2-week or later. There was no difference in axial growth among the subjects whose ODT peaked at different days (P = 0.734). Conclusion: While half ODT time course resembled the changing speed of HOA with a transient elevation on day 1, about a quarter of the ODT time course resemble the steadily rising of HOA-RMS, and the rest was located in the middle. The ALGs in children with different types of ODT time courses were similar.

Keywords: axial length; high-order aberration; orientation discrimination threshold; orthokeratology; visual distortion.

Conflict of interest statement

JT hold patents (8092025, 7806528) on the ODT described in this article. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Liu, Wu, Bi, Wang, Gu, Du, Tong, Zhang and Wei.

Figures

FIGURE 1
FIGURE 1
High-order aberration (HOA) measurement schedule. (A) A subject’s HOA-RMS. (B) The subject’s changing speed of HOA at each follow-up visit.
FIGURE 2
FIGURE 2
Methods to measure ODT. (A) The subject’s task was to answer which interval contains the parallel lines, 1st or 2nd. (B) A subject’s ODT measured at each follow-up visit.
FIGURE 3
FIGURE 3
Time courses separated according to the ODT peaking time. Top row: discrimination threshold (ODT), Middle row: Residua Mean Square (RMS) of high-order aberrations (HOA), Bottom row: changing speeding of HOA. The left column shows subjects whose ODT peaked at day 1 (red shade); the middle column shows subjects whose ODT peaked at 1 week (gray shade), and the right two columns show subjects whose ODT peaked at 2 weeks (blue shade) or 4 weeks (purple shade), respectively.
FIGURE 4
FIGURE 4
Time courses of spherical aberration (A), horizontal coma (B), and vertical coma (C). Redline: subjects whose ODT peaked at day 1, black line: subjects whose ODT peaked at 1 week, blue line: subjects whose ODT peaked at 2 weeks, and purple line: subjects whose ODT peaked at 4 weeks. The shaded area indicates mean ± one standard error.
FIGURE 5
FIGURE 5
The averaged ODT time course for subjects grouped by age.
FIGURE 6
FIGURE 6
The decomposition of ODT time course. (A) The ODT time course is decomposed as a linear combination of the time courses of HOA-RMS and HOA changing speed. (B) The distribution of coefficients of subjects peaked at day 1 (red), day 7 (black), and at or after day 14 (blue). SPD, speed. * means multiplication.
FIGURE 7
FIGURE 7
The correlation between axial length growth and age. Circles indicating subjects whose ODT peaked at day 1 (red), 1 week (black), and 2 weeks or later (blue).

References

    1. Adams W. J., Banks M. S., van Ee R. (2001). Adaptation to three-dimensional distortions in human vision. Nat. Neurosci. 4 1063–1064. 10.1038/nn729
    1. Bao M., Engel S. A. (2012). Distinct mechanism for long-term contrast adaptation. Proc. Natl. Acad. Sci. U.S.A. 109 5898–5903. 10.1073/pnas.1113503109
    1. Bao M., Fast E., Mesik J., Engel S. (2013). Distinct mechanisms control contrast adaptation over different timescales. J. Vis. 13:14. 10.1167/13.10.14
    1. Belmore S. C., Shevell S. K. (2008). Very-long-term chromatic adaptation: test of gain theory and a new method. Vis. Neurosci. 25 411–414. 10.1017/S0952523808080450
    1. Belmore S. C., Shevell S. K. (2011). Very-long-term and short-term chromatic adaptation: are their influences cumulative? Vis. Res. 51 362–366. 10.1016/j.visres.2010.11.011
    1. Brainard D. H. (1997). The psychophysics toolbox. Spat. Vis. 10 433–436.
    1. Brito P., Salgado-Borges J., Neves H., Gonzalez-Meijome J., Monteiro M. (2015). Light-distortion analysis as a possible indicator of visual quality after refractive lens exchange with diffractive multifocal intraocular lenses. J. Cataract Refract. Surg. 41 613–622. 10.1016/j.jcrs.2014.07.033
    1. Chang C. F., Cheng H. C. (2020). Effect of orthokeratology lens on contrast sensitivity function and high-order aberrations in children and adults. Eye Contact Lens 46 375–380. 10.1097/ICL.0000000000000667
    1. Charm J., Cho P. (2013). High myopia-partial reduction ortho-k: a 2-year randomized study. Optom. Vis. Sci. 90 530–539. 10.1097/OPX.0b013e318293657d
    1. Chen T., Su B., Chen Z., Tong J., Bedell H., Song Z., et al. (2018). The associations among metamorphopsia, orientation discrimination threshold, and retinal layer thickness in patients with idiopathic epiretinal membrane. Curr. Eye Res. 43 1151–1159. 10.1080/02713683.2018.1481515
    1. Chen Z., Niu L., Xue F., Qu X., Zhou Z., Zhou X., et al. (2012). Impact of pupil diameter on axial growth in orthokeratology. Optom. Vis. Sci. 89 1636–1640. 10.1097/OPX.0b013e31826c1831
    1. Clifford C. W., Webster M. A., Stanley G. B., Stocker A. A., Kohn A., Sharpee T. O., et al. (2007). Visual adaptation: neural, psychological and computational aspects. Vis. Res. 47 3125–3131. 10.1016/j.visres.2007.08.023
    1. De Weerd P., Gattass R., Desimone R., Ungerleider L. G. (1995). Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma. Nature 377 731–734. 10.1038/377731a0
    1. Delahunt P. B., Webster M. A., Ma L., Werner J. S. (2004). Long-term renormalization of chromatic mechanisms following cataract surgery. Vis. Neurosci. 21 301–307. 10.1017/s0952523804213025
    1. Diether S., Schaeffel F. (1997). Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vis. Res. 37 659–668. 10.1016/s0042-6989(96)00224-6
    1. Dolgin E. (2015). The myopia boom. Nature 519 276–278. 10.1038/519276a
    1. Eisner A., Enoch J. M. (1982). Some effects of 1 week’s monocular exposure to long-wavelength stimuli. Percept. Psychophys. 31 169–174. 10.3758/bf03206217
    1. Fricke T. R., Holden B. A., Wilson D. A., Schlenther G., Naidoo K. S., Resnikoff S., et al. (2012). Global cost of correcting vision impairment from uncorrected refractive error. Bull. World Health Organ. 90 728–738. 10.2471/BLT.12.104034
    1. Fu H., Zhang B., Tong J., Bedell H., Zhang H., Yang Y., et al. (2017). Relationships of orientation discrimination threshold and visual acuity with macular lesions in age-related macular degeneration. PLoS One 12:e0185070. 10.1371/journal.pone.0185070
    1. Greenstein S. A., Fry K. L., Hersh M. J., Hersh P. S. (2012). Higher-order aberrations after corneal collagen crosslinking for keratoconus and corneal ectasia. J. Cataract. Refract. Surg. 38 292–302. 10.1016/j.jcrs.2011.08.041
    1. Gyldenkerne A., Ivarsen A., Hjortdal J. O. (2015). Comparison of corneal shape changes and aberrations induced By FS-LASIK and SMILE for myopia. J. Refract. Surg. 31 223–229. 10.3928/1081597X-20150303-01
    1. Habtegiorgis S. W., Rifai K., Lappe M., Wahl S. (2017). Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects. Front. Psychol. 8:1158. 10.3389/fpsyg.2017.01158
    1. Habtegiorgis S. W., Rifai K., Lappe M., Wahl S. (2018). Experience-dependent long-term facilitation of skew adaptation. J. Vis. 18:7. 10.1167/18.9.7
    1. Hiraoka T., Okamoto C., Ishii Y., Kakita T., Oshika T. (2007). Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology. Invest. Ophthalmol. Vis. Sci. 48 550–556. 10.1167/iovs.06-0914
    1. Holden B. A., Fricke T. R., Wilson D. A., Jong M., Naidoo K. S., Sankaridurg P., et al. (2016). Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123 1036–1042. 10.1016/j.ophtha.2016.01.006
    1. King-Smith P. E., Grigsby S. S., Vingrys A. J., Benes S. C., Supowit A. (1994). Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation. Vis. Res. 34 885–912. 10.1016/0042-6989(94)90039-6
    1. Kwon M., Legge G. E., Fang F., Cheong A. M., He S. (2009). Adaptive changes in visual cortex following prolonged contrast reduction. J. Vis. 9 20.1–16. 10.1167/9.2.20
    1. Li X., Friedman I. B., Medow N. B., Zhang C. (2017). Update on orthokeratology in managing progressive myopia in children: efficacy, mechanisms, and concerns. J. Pediatr. Ophthalmol. Strabismus 54 142–148. 10.3928/01913913-20170106-01
    1. Liu G., Chen Z., Xue F., Li J., Tian M., Zhou X., et al. (2017). Effects of myopic orthokeratology on visual performance and optical quality. Eye Contact Lens 44 316–321. 10.1097/ICL.0000000000000372
    1. Lu Y., Lin Z., Wen L., Gao W., Pan L., Li X., et al. (2020). The adaptation and acceptance of defocus incorporated multiple segment lens for chinese children. Am. J. Ophthalmol. 211 207–216. 10.1016/j.ajo.2019.12.002
    1. Matesanz B. M., Issolio L., Arranz I., de la Rosa C., Menendez J. A., Mar S., et al. (2011). Temporal retinal sensitivity in mesopic adaptation. Ophthalmic Physiol. Opt. 31 615–624. 10.1111/j.1475-1313.2011.00859.x
    1. Meister D. J., Fisher S. W. (2008). Progress in the spectacle correction of presbyopia. Part 1: design and development of progressive lenses. Clin. Exp. Optom. 91 240–250. 10.1111/j.1444-0938.2007.00245.x
    1. Miles F. A., Wallman J. (1990). Local ocular compensation for imposed local refractive error. Vis. Res. 30 339–349. 10.1016/0042-6989(90)90076-w
    1. Neitz J., Carroll J., Yamauchi Y., Neitz M., Williams D. R. (2002). Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron 35 783–792. 10.1016/s0896-6273(02)00818-8
    1. Nichols J. J., Marsich M. M., Nguyen M., Barr J. T., Bullimore M. A. (2000). Overnight orthokeratology. Optom. Vis. Sci. 77 252–259.
    1. Pan C. W., Dirani M., Cheng C. Y., Wong T. Y., Saw S. M. (2015). The age-specific prevalence of myopia in Asia: a meta-analysis. Optom. Vis. Sci. 92 258–266. 10.1097/OPX.0000000000000516
    1. Pinero D. P., Alio J. L., Aleson A., Escaf M., Miranda M. (2009). Pentacam posterior and anterior corneal aberrations in normal and keratoconic eyes. Clin. Exp. Optom. 92 297–303. 10.1111/j.1444-0938.2009.00357.x
    1. Ramachandran V. S., Gregory R. L. (1991). Perceptual filling in of artificially induced scotomas in human vision. Nature 350 699–702. 10.1038/350699a0
    1. Read S. A., Collins M. J., Sander B. P. (2010). Human optical axial length and defocus. Invest. Ophthalmol. Vis. Sci. 51 6262–6269. 10.1167/iovs.10-5457
    1. Rudolph M., Laaser K., Bachmann B. O., Cursiefen C., Epstein D., Kruse F. E. (2012). Corneal higher-order aberrations after Descemet’s membrane endothelial keratoplasty. Ophthalmology 119 528–535. 10.1016/j.ophtha.2011.08.034
    1. Santodomingo-Rubido J., Villa-Collar C., Gilmartin B., Gutierrez-Ortega R., Sugimoto K. (2017). Long-term efficacy of orthokeratology contact lens wear in controlling the progression of childhood myopia. Curr. Eye Res. 42 713–720. 10.1080/02713683.2016.1221979
    1. Santolaria Sanz E., Cervino A., Queiros A., Villa-Collar C., Lopes-Ferreira D., Gonzalez-Meijome J. M. (2015). Short-term changes in light distortion in orthokeratology subjects. Biomed. Res. Int. 2015:278425. 10.1155/2015/278425
    1. Santolaria-Sanz E., Cervino A., Gonzalez-Meijome J. M. (2016). Corneal aberrations, contrast sensitivity, and light distortion in orthokeratology patients: 1-year results. J. Ophthalmol. 2016:8453462. 10.1155/2016/8453462
    1. Smith E. L., III, Huang J., Hung L. F., Blasdel T. L., Humbird T. L., Bockhorst K. H. (2009). Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys. Invest. Ophthalmol. Vis. Sci. 50 5057–5069. 10.1167/iovs.08-3232
    1. Stillitano I., Schor P., Lipener C., Hofling-Lima A. L. (2008). Long-term follow-up of orthokeratology corneal reshaping using wavefront aberrometry and contrast sensitivity. Eye Contact Lens 34 140–145. 10.1097/ICL.0b013e318145ab5d
    1. Swarbrick H. A. (2006). Orthokeratology review and update. Clin. Exp. Optom. 89 124–143. 10.1111/j.1444-0938.2006.00044.x
    1. Takemura Y., Ito M., Shimizu Y., Okano K., Okano T. (2020). Adaptive light: a lighting control method aligned with dark adaptation of human vision. Sci. Rep. 10:11204. 10.1038/s41598-020-68119-7
    1. Tarita-Nistor L., Brent M. H., Steinbach M. J., Gonzalez E. G. (2012). Fixation patterns in maculopathy: from binocular to monocular viewing. Optom. Vis. Sci. 89 277–287. 10.1097/OPX.0b013e318244e8b1
    1. Tarita-Nistor L., Gill I., Gonzalez E. G., Steinbach M. J. (2017). Fixation stability recording: how long for eyes with central vision loss? Optom. Vis. Sci. 94 311–316. 10.1097/OPX.0000000000001033
    1. Troilo D., Gottlieb M. D., Wallman J. (1987). Visual deprivation causes myopia in chicks with optic nerve section. Curr. Eye Res. 6 993–999. 10.3109/02713688709034870
    1. Wallman J., Gottlieb M. D., Rajaram V., Fugate-Wentzek L. A. (1987). Local retinal regions control local eye growth and myopia. Science 237 73–77. 10.1126/science.3603011
    1. Wildsoet C. (2003). Neural pathways subserving negative lens-induced emmetropization in chicks–insights from selective lesions of the optic nerve and ciliary nerve. Curr. Eye Res. 27 371–385. 10.1076/ceyr.27.6.371.18188
    1. Williams R. A., Enoch J. M., Essock E. A. (1984). The resistance of selected hyperacuity configurations to retinal image degradation. Invest. Ophthalmol. Vis. Sci. 25 389–399.
    1. Xia R., Su B., Bi H., Tang J., Lin Z., Zhang B., et al. (2020). Good visual performance despite reduced optical quality during the first month of orthokeratology lens wear. Curr. Eye Res. 45 440–449. 10.1080/02713683.2019.1668950
    1. Yehezkel O., Sagi D., Sterkin A., Belkin M., Polat U. (2010). Learning to adapt: dynamics of readaptation to geometrical distortions. Vis. Res. 50 1550–1558. 10.1016/j.visres.2010.05.014

Source: PubMed

3
購読する