The Role of Gut Dysbiosis in the Bone-Vascular Axis in Chronic Kidney Disease

Pieter Evenepoel, Sander Dejongh, Kristin Verbeke, Bjorn Meijers, Pieter Evenepoel, Sander Dejongh, Kristin Verbeke, Bjorn Meijers

Abstract

Patients with chronic kidney disease (CKD) are at increased risk of bone mineral density loss and vascular calcification. Bone demineralization and vascular mineralization often concur in CKD, similar to what observed in the general population. This contradictory association is commonly referred to as the 'calcification paradox' or the bone-vascular axis. Mounting evidence indicates that CKD-associated gut dysbiosis may be involved in the pathogenesis of the bone-vascular axis. A disrupted intestinal barrier function, a metabolic shift from a predominant saccharolytic to a proteolytic fermentation pattern, and a decreased generation of vitamin K may, alone or in concert, drive a vascular and skeletal pathobiology in CKD patients. A better understanding of the role of gut dysbiosis in the bone-vascular axis may open avenues for novel therapeutics, including nutriceuticals.

Keywords: CKD; bone; gut; vascular calcification.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The kidney–gut–bone–vascular axis. Chronic kidney disease is associated with gut dysbiosis, characterized by a metabolic shift towards a predominantly proteolytic fermentation pattern and a leaky gut. Gut dysbiosis may induce bone loss and vascular calcification and as such may play a pathogenic role in the bone–vascular axis in CKD. Underlying pathophysiological mechanisms include increased exposure to protein fermentation metabolites (such as p-cresyl sulfate (PCS) and indoxyl sulfate (IndS)), a leaky gut contributing to inflammation, and deficiency of vitamin K and short-chain fatty acids (SCFAs).

References

    1. Moe S., Drueke T., Cunningham J., Goodman W., Martin K., Olgaard K., Ott S., Sprague S., Lameire N., Eknoyan G. Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2006;69:1945–1953. doi: 10.1038/sj.ki.5000414.
    1. Evenepoel P., Opdebeeck B., David K., D’Haese P.C. Bone-Vascular Axis in Chronic Kidney Disease. Adv. Chronic. Kidney Dis. 2019;26:472–483. doi: 10.1053/j.ackd.2019.09.006.
    1. Stein M.S., Packham D.K., Ebeling P.R., Wark J.D., Becker G.J. Prevalence and risk factors for osteopenia in dialysis patients. Am. J. Kidney Dis. 1996;28:515–522. doi: 10.1016/S0272-6386(96)90461-8.
    1. Rix M., Andreassen H., Eskildsen P., Langdahl B., Olgaard K. Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney Int. 1999;56:1084–1093. doi: 10.1046/j.1523-1755.1999.00617.x.
    1. Urena P., Bernard-Poenaru O., Ostertag A., Baudoin C., Cohen-Solal M., Cantor T., de Vernejoul M.C. Bone mineral density, biochemical markers and skeletal fractures in haemodialysis patients. Nephrol. Dial. Transplant. 2003;18:2325–2331. doi: 10.1093/ndt/gfg403.
    1. Evenepoel P., Claes K., Meijers B., Laurent M.R., Bammens B., Naesens M., Sprangers B., Pottel H., Cavalier E., Kuypers D. Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int. 2019;95:1461–1470. doi: 10.1016/j.kint.2018.12.024.
    1. Chen H., Lips P., Vervloet M.G., van Schoor N.M., de Jongh R.T. Association of renal function with bone mineral density and fracture risk in the Longitudinal Aging Study Amsterdam. Osteoporos. Int. 2018;29:2129–2138. doi: 10.1007/s00198-018-4592-8.
    1. Klawansky S., Komaroff E., Cavanaugh P.F., Jr., Mitchell D.Y., Gordon M.J., Connelly J.E., Ross S.D. Relationship between age, renal function and bone mineral density in the US population. Osteoporos. Int. 2003;14:570–576. doi: 10.1007/s00198-003-1435-y.
    1. Ishani A., Blackwell T., Jamal S.A., Cummings S.R., Ensrud K.E. The effect of raloxifene treatment in postmenopausal women with CKD. J. Am. Soc. Nephrol. 2008;19:1430–1438. doi: 10.1681/ASN.2007050555.
    1. Ketteler M., Block G.A., Evenepoel P., Fukagawa M., Herzog C.A., McCann L., Moe S.M., Shroff R., Tonelli M.A., Toussaint N.D., et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int. 2017;92:26–36. doi: 10.1016/j.kint.2017.04.006.
    1. Malluche H.H., Porter D.S., Monier-Faugere M.C., Mawad H., Pienkowski D. Differences in bone quality in low- and high-turnover renal osteodystrophy. J. Am. Soc. Nephrol. 2012;23:525–532. doi: 10.1681/ASN.2010121253.
    1. Jadoul M., Albert J.M., Akiba T., Akizawa T., Arab L., Bragg-Gresham J.L., Mason N., Prutz K.G., Young E.W., Pisoni R.L. Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2006;70:1358–1366. doi: 10.1038/sj.ki.5001754.
    1. Rodriguez G.M., Naves D.M., Cannata Andia J.B. Bone metabolism, vascular calcifications and mortality: Associations beyond mere coincidence. J. Nephrol. 2005;18:458–463.
    1. Tentori F., McCullough K., Kilpatrick R.D., Bradbury B.D., Robinson B.M., Kerr P.G., Pisoni R.L. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85:166–173. doi: 10.1038/ki.2013.279.
    1. Naves M., Diaz-Lopez J.B., Gomez C., Rodriguez-Rebollar A., Rodriguez-Garcia M., Cannata-Andia J.B. The effect of vertebral fracture as a risk factor for osteoporotic fracture and mortality in a Spanish population. Osteoporos. Int. 2003;14:520–524. doi: 10.1007/s00198-003-1405-4.
    1. Vervloet M., Cozzolino M. Vascular calcification in chronic kidney disease: Different bricks in the wall? Kidney Int. 2017;91:808–817. doi: 10.1016/j.kint.2016.09.024.
    1. Budoff M.J., Rader D.J., Reilly M.P., Mohler III E.R., Lash J., Yang W., Rosen L., Glenn M., Teal V., Feldman H.I. Relationship of estimated GFR and coronary artery calcification in the CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney Dis. 2011;58:519–526. doi: 10.1053/j.ajkd.2011.04.024.
    1. Neven E., De Schutter T.M., De Broe M.E., D’Haese P.C. Cell biological and physicochemical aspects of arterial calcification. Kidney Int. 2011;79:1166–1177. doi: 10.1038/ki.2011.59.
    1. Schlieper G. Vascular calcification in chronic kidney disease: Not all arteries are created equal. Kidney Int. 2014;85:501–503. doi: 10.1038/ki.2013.423.
    1. Shanahan C.M., Crouthamel M.H., Kapustin A., Giachelli C.M. Arterial calcification in chronic kidney disease: Key roles for calcium and phosphate. Circ. Res. 2011;109:697–711. doi: 10.1161/CIRCRESAHA.110.234914.
    1. O’Neill W.C., Adams A.L. Breast arterial calcification in chronic kidney disease: Absence of smooth muscle apoptosis and osteogenic transdifferentiation. Kidney Int. 2014;85:668–676. doi: 10.1038/ki.2013.351.
    1. Okuno S., Ishimura E., Kitatani K., Fujino Y., Kohno K., Maeno Y., Maekawa K., Yamakawa T., Imanishi Y., Inaba M., et al. Presence of abdominal aortic calcification is significantly associated with all-cause and cardiovascular mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2007;49:417–425. doi: 10.1053/j.ajkd.2006.12.017.
    1. Claes K.J., Heye S., Bammens B., Kuypers D.R., Meijers B., Naesens M., Vanrenterghem Y., Evenepoel P. Aortic calcifications and arterial stiffness as predictors of cardiovascular events in incident renal transplant recipients. Transpl. Int. 2013;26:973–981. doi: 10.1111/tri.12151.
    1. Chen Z., Qureshi A.R., Ripsweden J., Wennberg L., Heimburger O., Lindholm B., Barany P., Haarhaus M., Brismar T.B., Stenvinkel P. Vertebral bone density associates with coronary artery calcification and is an independent predictor of poor outcome in end-stage renal disease patients. Bone. 2016;92:50–57. doi: 10.1016/j.bone.2016.08.007.
    1. Viaene L., Behets G.J., Heye S., Claes K., Monbaliu D., Pirenne J., D’Haese P.C., Evenepoel P. Inflammation and the bone-vascular axis in end-stage renal disease. Osteoporos. Int. 2016;27:489–497. doi: 10.1007/s00198-015-3233-8.
    1. Naves M., Rodriguez-Garcia M., Diaz-Lopez J.B., Gomez-Alonso C., Cannata-Andia J.B. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos. Int. 2008;19:1161–1166. doi: 10.1007/s00198-007-0539-1.
    1. Adragao T., Herberth J., Monier-Faugere M.C., Branscum A.J., Ferreira A., Frazao J.M., Dias C.J., Malluche H.H. Low bone volume--a risk factor for coronary calcifications in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2009;4:450–455. doi: 10.2215/CJN.01870408.
    1. Cejka D., Weber M., Diarra D., Reiter T., Kainberger F., Haas M. Inverse association between bone microarchitecture assessed by HR-pQCT and coronary artery calcification in patients with end-stage renal disease. Bone. 2014;64:33–38. doi: 10.1016/j.bone.2014.03.048.
    1. Barreto D.V., Barreto F.C., Carvalho A.B., Cuppari L., Cendoroglo M., Draibe S.A., Moyses R.M., Neves K.R., Jorgetti V., Blair A., et al. Coronary calcification in hemodialysis patients: The contribution of traditional and uremia-related risk factors. Kidney Int. 2005;67:1576–1582. doi: 10.1111/j.1523-1755.2005.00239.x.
    1. Schulz E., Arfai K., Liu X., Sayre J., Gilsanz V. Aortic calcification and the risk of osteoporosis and fractures. J. Clin. Endocrinol. Metab. 2004;89:4246–4253. doi: 10.1210/jc.2003-030964.
    1. Tanko L.B., Christiansen C., Cox D.A., Geiger M.J., McNabb M.A., Cummings S.R. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J. Bone Miner. Res. 2005;20:1912–1920. doi: 10.1359/JBMR.050711.
    1. Hyder J.A., Allison M.A., Wong N., Papa A., Lang T.F., Sirlin C., Gapstur S.M., Ouyang P., Carr J.J., Criqui M.H. Association of coronary artery and aortic calcium with lumbar bone density: The MESA Abdominal Aortic Calcium Study. Am. J. Epidemiol. 2009;169:186–194. doi: 10.1093/aje/kwn303.
    1. Lampropoulos C.E., Papaioannou I., D’Cruz D.P. Osteoporosis—A risk factor for cardiovascular disease? Nat. Rev. Rheumatol. 2012;8:587–598. doi: 10.1038/nrrheum.2012.120.
    1. Flipon E., Liabeuf S., Fardellone P., Mentaverri R., Ryckelynck T., Grados F., Kamel S., Massy Z.A., Dargent-Molina P., Brazier M. Is vascular calcification associated with bone mineral density and osteoporotic fractures in ambulatory, elderly women? Osteoporos. Int. 2011 doi: 10.1007/s00198-011-1762-3.
    1. Persy V., D’Haese P. Vascular calcification and bone disease: The calcification paradox. Trends Mol. Med. 2009;15:405–416. doi: 10.1016/j.molmed.2009.07.001.
    1. London G.M., Marty C., Marchais S.J., Guerin A.P., Metivier F., de Vernejoul M.C. Arterial Calcifications and Bone Histomorphometry in End-Stage Renal Disease. J. Am. Soc. Nephrol. 2004;15:1943–1951. doi: 10.1097/01.ASN.0000129337.50739.48.
    1. Rodriguez-Garcia M., Gomez-Alonso C., Naves-Diaz M., Diaz-Lopez J.B., Diaz-Corte C., Cannata-Andia J.B. Vascular calcifications, vertebral fractures and mortality in haemodialysis patients. Nephrol. Dial. Transplant. 2009;24:239–246. doi: 10.1093/ndt/gfn466.
    1. Meijers B., Evenepoel P., Anders H.J. Intestinal microbiome and fitness in kidney disease. Nat. Rev. Nephrol. 2019;15:531–545. doi: 10.1038/s41581-019-0172-1.
    1. Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–336. doi: 10.1038/nature10213.
    1. Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106.
    1. Vaziri N.D., Wong J., Pahl M., Piceno Y.M., Yuan J., Desantis T.Z., Ni Z., Nguyen T.H., Andersen G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2012 doi: 10.1038/ki.2012.345.
    1. Jiang S., Xie S., Lv D., Wang P., He H., Zhang T., Zhou Y., Lin Q., Zhou H., Jiang J., et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci. Rep. 2017;7:2870. doi: 10.1038/s41598-017-02989-2.
    1. Poesen R., Windey K., Neven E., Kuypers D., De Preter V., Augustijns P., D’Haese P., Evenepoel P., Verbeke K., Meijers B. The Influence of CKD on Colonic Microbial Metabolism. J. Am. Soc. Nephrol. 2016;27:1389–1399. doi: 10.1681/ASN.2015030279.
    1. Bammens B., Verbeke K., Vanrenterghem Y., Evenepoel P. Evidence for impaired assimilation of protein in chronic renal failure. Kidney Int. 2003;64:2196–2203. doi: 10.1046/j.1523-1755.2003.00314.x.
    1. Evenepoel P., Meijers B.K.I., Bammens B.R.M., Verbeke K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 2009;76:S12–S19. doi: 10.1038/ki.2009.402.
    1. Maier L., Pruteanu M., Kuhn M., Zeller G., Telzerow A., Anderson E.E., Brochado A.R., Fernandez K.C., Dose H., Mori H., et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–628. doi: 10.1038/nature25979.
    1. Wong J., Piceno Y.M., Desantis T.Z., Pahl M., Andersen G.L., Vaziri N.D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014;39:230–237. doi: 10.1159/000360010.
    1. Jiang S., Xie S., Lv D., Zhang Y., Deng J., Zeng L., Chen Y. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Leeuwenhoek. 2016;109:1389–1396. doi: 10.1007/s10482-016-0737-y.
    1. Poesen R., Ramezani A., Claes K., Augustijns P., Kuypers D., Barrows I.R., Muralidharan J., Evenepoel P., Meijers B., Raj D.S. Associations of Soluble CD14 and Endotoxin with Mortality, Cardiovascular Disease, and Progression of Kidney Disease among Patients with CKD. Clin. J. Am. Soc. Nephrol. 2015;10:1525–1533. doi: 10.2215/CJN.03100315.
    1. McIntyre C.W., Harrison L.E., Eldehni M.T., Jefferies H.J., Szeto C.C., John S.G., Sigrist M.K., Burton J.O., Hothi D., Korsheed S., et al. Circulating endotoxemia: A novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011;6:133–141. doi: 10.2215/CJN.04610510.
    1. Andersen K., Kesper M.S., Marschner J.A., Konrad L., Ryu M., Kumar V.S., Kulkarni O.P., Mulay S.R., Romoli S., Demleitner J., et al. Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflammation. J. Am. Soc. Nephrol. 2017;28:76–83. doi: 10.1681/ASN.2015111285.
    1. Wei M., Wang Z., Liu H., Jiang H., Wang M., Liang S., Shi K., Feng J. Probiotic Bifidobacterium animalis subsp. lactis Bi-07 alleviates bacterial translocation and ameliorates microinflammation in experimental uraemia. Nephrology (Carlton.) 2014;19:500–506. doi: 10.1111/nep.12272.
    1. Magnusson M., Magnusson K.E., Sundqvist T., Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut. 1991;32:754–759. doi: 10.1136/gut.32.7.754.
    1. Anders H.J., Andersen K., Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83:1010–1016. doi: 10.1038/ki.2012.440.
    1. Vaziri N.D., Yuan J., Nazertehrani S., Ni Z., Liu S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am. J. Nephrol. 2013;38:99–103. doi: 10.1159/000353764.
    1. Vaziri N.D., Yuan J., Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am. J. Nephrol. 2013;37:1–6. doi: 10.1159/000345969.
    1. Bach Knudsen K.E., Laerke H.N., Hedemann M.S., Nielsen T.S., Ingerslev A.K., Gundelund Nielsen D.S., Theil P.K., Purup S., Hald S., Schioldan A.G., et al. Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients. 2018;10:499. doi: 10.3390/nu10101499.
    1. Kelly C.J., Zheng L., Campbell E.L., Saeedi B., Scholz C.C., Bayless A.J., Wilson K.E., Glover L.E., Kominsky D.J., Magnuson A., et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host. Microbe. 2015;17:662–671. doi: 10.1016/j.chom.2015.03.005.
    1. Hatayama H., Iwashita J., Kuwajima A., Abe T. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem. Biophys. Res. Commun. 2007;356:599–603. doi: 10.1016/j.bbrc.2007.03.025.
    1. Schilderink R., Verseijden C., Seppen J., Muncan V., van den Brink G.R., Lambers T.T., van Tol E.A., de Jonge W.J. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am. J. Physiol. Gastrointest. Liver Physiol. 2016;310:G1138–G1146. doi: 10.1152/ajpgi.00411.2015.
    1. Chang P.V., Hao L., Offermanns S., Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA. 2014;111:2247–2252. doi: 10.1073/pnas.1322269111.
    1. Weaver C.M. Diet, gut microbiome, and bone health. Curr. Osteoporos. Rep. 2015;13:125–130. doi: 10.1007/s11914-015-0257-0.
    1. Hernandez C.J., Guss J.D., Luna M., Goldring S.R. Links Between the Microbiome and Bone. J. Bone Miner. Res. 2016;31:1638–1646. doi: 10.1002/jbmr.2887.
    1. Zaiss M.M., Jones R.M., Schett G., Pacifici R. The gut-bone axis: How bacterial metabolites bridge the distance. J. Clin. Investig. 2019;129:3018–3028. doi: 10.1172/JCI128521.
    1. Karlsson F.H., Fak F., Nookaew I., Tremaroli V., Fagerberg B., Petranovic D., Backhed F., Nielsen J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 2012;3:1245. doi: 10.1038/ncomms2266.
    1. Jie Z., Xia H., Zhong S.L., Feng Q., Li S., Liang S., Zhong H., Liu Z., Gao Y., Zhao H., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8:845. doi: 10.1038/s41467-017-00900-1.
    1. Jovanovich A., Isakova T., Stubbs J. Microbiome and Cardiovascular Disease in CKD. Clin. J. Am. Soc. Nephrol. 2018;13:1598–1604. doi: 10.2215/CJN.12691117.
    1. Evenepoel P., Claus D., Geypens B., Hiele M., Geboes K., Rutgeerts P., Ghoos Y. Amount and fate of egg protein escaping assimilation in the small intestine of humans. AJP-Gastrointest. Liver Physiol. 1999;277:G935–G943. doi: 10.1152/ajpgi.1999.277.5.G935.
    1. Meijers B., Farre R., Dejongh S., Vicario M., Evenepoel P. Intestinal Barrier Function in Chronic Kidney Disease. Toxins (Basel) 2018;10:298. doi: 10.3390/toxins10070298.
    1. Poesen R., Evenepoel P., de Loor H., Kuypers D., Augustijns P., Meijers B. Metabolism, Protein Binding, and Renal Clearance of Microbiota-Derived p-Cresol in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2016;11:1136–1144. doi: 10.2215/CJN.00160116.
    1. Poesen R., Viaene L., Verbeke K., Claes K., Bammens B., Sprangers B., Naesens M., Vanrenterghem Y., Kuypers D., Evenepoel P., et al. Renal clearance and intestinal generation of p-cresyl sulfate and indoxyl sulfate in CKD. Clin. J. Am. Soc. Nephrol. 2013;8:1508–1514. doi: 10.2215/CJN.00300113.
    1. Vanholder R., Schepers E., Pletinck A., Nagler E.V., Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014;25:1897–1907. doi: 10.1681/ASN.2013101062.
    1. Gryp T., Vanholder R., Vaneechoutte M., Glorieux G. p-Cresyl Sulfate. Toxins (Basel) 2017;9:52. doi: 10.3390/toxins9020052.
    1. Tumur Z., Shimizu H., Enomoto A., Miyazaki H., Niwa T. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am. J. Nephrol. 2010;31:435–441. doi: 10.1159/000299798.
    1. Muteliefu G., Enomoto A., Jiang P., Takahashi M., Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol. Dial. Transplant. 2009;24:2051–2058. doi: 10.1093/ndt/gfn757.
    1. Meijers B.K., Van K.S., Verbeke K., Dehaen W., Vanrenterghem Y., Hoylaerts M.F., Evenepoel P. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am. J. Kidney Dis. 2009;54:891–901. doi: 10.1053/j.ajkd.2009.04.022.
    1. Buendia P., Montes de Oca A., Madueno J.A., Merino A., Martin-Malo A., Aljama P., Ramirez R., Rodriguez M., Carracedo J. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J. 2015;29:173–181. doi: 10.1096/fj.14-249706.
    1. Rodrigues S.D., Santos S.S., Meireles T., Romero N., Glorieux G., Pecoits-Filho R., Zhang D.D., Nakao L.S. Uremic toxins promote accumulation of oxidized protein and increased sensitivity to hydrogen peroxide in endothelial cells by impairing the autophagic flux. Biochem. Biophys. Res. Commun. 2019 doi: 10.1016/j.bbrc.2019.12.022.
    1. Zhang H., Chen J., Shen Z., Gu Y., Xu L., Hu J., Zhang X., Ding X. Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/beta-catenin signaling. Toxicol. Lett. 2018;284:29–36. doi: 10.1016/j.toxlet.2017.11.033.
    1. Stockler-Pinto M.B., Soulage C.O., Borges N.A., Cardozo L.F.M.F., Dolenga C.J., Nakao L.S., Pecoits-Filho R., Fouque D., Mafra D. From bench to the hemodialysis clinic: Protein-bound uremic toxins modulate NF-kappaB/Nrf2 expression. Int Urol. Nephrol. 2018;50:347–354. doi: 10.1007/s11255-017-1748-y.
    1. Adijiang A., Goto S., Uramoto S., Nishijima F., Niwa T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol. Dial. Transplant. 2008;23:1892–1901. doi: 10.1093/ndt/gfm861.
    1. Adijiang A., Higuchi Y., Nishijima F., Shimizu H., Niwa T. Indoxyl sulfate, a uremic toxin, promotes cell senescence in aorta of hypertensive rats. Biochem. Biophys. Res. Commun. 2010;399:637–641. doi: 10.1016/j.bbrc.2010.07.130.
    1. Opdebeeck B., Maudsley S., Azmi A., De M.A., De L.W., Meijers B., Verhulst A., Evenepoel P., D’Haese P.C., Neven E. Indoxyl Sulfate and p-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance. J. Am. Soc. Nephrol. 2019;30:751–766. doi: 10.1681/ASN.2018060609.
    1. Meijers B.K.I., Claes K., Bammens B., de Loor H., Viaene L., Verbeke K., Kuypers D., Vanrenterghem Y., Evenepoel P. p-Cresol and Cardiovascular Risk in Mild-to-Moderate Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010;5:1182–1189. doi: 10.2215/CJN.07971109.
    1. Barreto F.C., Barreto D.V., Liabeuf S., Meert N., Glorieux G., Temmar M., Choukroun G., Vanholder R., Massy Z.A. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009;4:1551–1558. doi: 10.2215/CJN.03980609.
    1. Liabeuf S., Barreto D.V., Barreto F.C., Meert N., Glorieux G., Schepers E., Temmar M., Choukroun G., Vanholder R., Massy Z.A., et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol. Dial. Transplant. 2010;25:1183–1191. doi: 10.1093/ndt/gfp592.
    1. Viaene L., Thijs L., Jin Y., Liu Y., Gu Y., Meijers B., Claes K., Staessen J., Evenepoel P. Heritability and Clinical Determinants of Serum Indoxyl Sulfate and p-Cresyl Sulfate, Candidate Biomarkers of the Human Microbiome Enterotype. PLoS ONE. 2014;9:e79682. doi: 10.1371/journal.pone.0079682.
    1. Kazama J.J., Iwasaki Y., Fukagawa M. Uremic osteoporosis. Kidney Int. Suppl. (2011) 2013;3:446–450. doi: 10.1038/kisup.2013.93.
    1. Tanaka H., Iwasaki Y., Yamato H., Mori Y., Komaba H., Watanabe H., Maruyama T., Fukagawa M. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone. 2013;56:347–354. doi: 10.1016/j.bone.2013.07.002.
    1. Kim Y.H., Kwak K.A., Gil H.W., Song H.Y., Hong S.Y. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells. BMC. Pharmacol. Toxicol. 2013;14:60. doi: 10.1186/2050-6511-14-60.
    1. Mozar A., Louvet L., Godin C., Mentaverri R., Brazier M., Kamel S., Massy Z.A. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol. Dial. Transplant. 2012;27:2176–2181. doi: 10.1093/ndt/gfr647.
    1. Lanza D., Perna A.F., Oliva A., Vanholder R., Pletinck A., Guastafierro S., Di N.A., Vigorito C., Capasso G., Jankowski V., et al. Impact of the uremic milieu on the osteogenic potential of mesenchymal stem cells. PLoS ONE. 2015;10:e0116468. doi: 10.1371/journal.pone.0116468.
    1. Iwasaki Y., Kazama J.J., Yamato H., Fukagawa M. Changes in chemical composition of cortical bone associated with bone fragility in rat model with chronic kidney disease. Bone. 2011;48:1260–1267. doi: 10.1016/j.bone.2011.03.672.
    1. Iwasaki Y., Kazama J.J., Yamato H., Shimoda H., Fukagawa M. Accumulated uremic toxins attenuate bone mechanical properties in rats with chronic kidney disease. Bone. 2013;57:477–483. doi: 10.1016/j.bone.2013.07.037.
    1. Nii-Kono T., Iwasaki Y., Uchida M., Fujieda A., Hosokawa A., Motojima M., Yamato H., Kurokawa K., Fukagawa M. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007 doi: 10.1038/sj.ki.5002097.
    1. Evenepoel P., Bover J., Urena T.P. Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int. 2016;90:1184–1190. doi: 10.1016/j.kint.2016.06.041.
    1. Sun C.Y., Chang S.C., Wu M.S. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. 2012;81:640–650. doi: 10.1038/ki.2011.445.
    1. Chen J., Zhang X., Zhang H., Liu T., Zhang H., Teng J., Ji J., Ding X. Indoxyl Sulfate Enhance the Hypermethylation of Klotho and Promote the Process of Vascular Calcification in Chronic Kidney Disease. Int, J. Biol. Sci. 2016;12:1236–1246. doi: 10.7150/ijbs.15195.
    1. Mencke R., Hillebrands J.L. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res. Rev. 2017;35:124–146. doi: 10.1016/j.arr.2016.09.001.
    1. Kawaguchi H., Manabe N., Miyaura C., Chikuda H., Nakamura K., Kuro-o M. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J. Clin. Investig. 1999;104:229–237. doi: 10.1172/JCI5705.
    1. Lindberg K., Olauson H., Amin R., Ponnusamy A., Goetz R., Taylor R.F., Mohammadi M., Canfield A., Kublickiene K., Larsson T.E. Arterial klotho expression and FGF23 effects on vascular calcification and function. PLoS ONE. 2013;8:e60658. doi: 10.1371/journal.pone.0060658.
    1. Rhee Y., Bivi N., Farrow E., Lezcano V., Plotkin L.I., White K.E., Bellido T. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone. 2011;49:636–643. doi: 10.1016/j.bone.2011.06.025.
    1. Komaba H., Kaludjerovic J., Hu D.Z., Nagano K., Amano K., Ide N., Sato T., Densmore M.J., Hanai J.I., Olauson H., et al. Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int. 2017;92:599–611. doi: 10.1016/j.kint.2017.02.014.
    1. Louis P., Flint H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017;19:29–41. doi: 10.1111/1462-2920.13589.
    1. Stumpff F. A look at the smelly side of physiology: Transport of short chain fatty acids. Pflugers Arch. 2018;470:571–598. doi: 10.1007/s00424-017-2105-9.
    1. Mishima E., Fukuda S., Mukawa C., Yuri A., Kanemitsu Y., Matsumoto Y., Akiyama Y., Fukuda N.N., Tsukamoto H., Asaji K., et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92:634–645. doi: 10.1016/j.kint.2017.02.011.
    1. Terpstra M.L., Sinnige M.J., Hugenholtz F., Peters-Sengers H., Remmerswaal E.B., Geerlings S.E., Bemelman F.J. Butyrate production in patients with end-stage renal disease. Int, J. Nephrol. Renovasc. Dis. 2019;12:87–101. doi: 10.2147/IJNRD.S200297.
    1. Wang S., Lv D., Jiang S., Jiang J., Liang M., Hou F., Chen Y. Quantitative reduction in short-chain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clin. Sci. (Lond.) 2019;133:1857–1870. doi: 10.1042/CS20190171.
    1. Jadoon A., Mathew A.V., Byun J., Gadegbeku C.A., Gipson D.S., Afshinnia F., Pennathur S. Gut Microbial Product Predicts Cardiovascular Risk in Chronic Kidney Disease Patients. Am. J. Nephrol. 2018;48:269–277. doi: 10.1159/000493862.
    1. Lucas S., Omata Y., Hofmann J., Bottcher M., Iljazovic A., Sarter K., Albrecht O., Schulz O., Krishnacoumar B., Kronke G., et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun. 2018;9:55. doi: 10.1038/s41467-017-02490-4.
    1. Katono T., Kawato T., Tanabe N., Suzuki N., Iida T., Morozumi A., Ochiai K., Maeno M. Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts. Arch. Oral Biol. 2008;53:903–909. doi: 10.1016/j.archoralbio.2008.02.016.
    1. Montalvany-Antonucci C.C., Duffles L.F., de Arruda J.A.A., Zicker M.C., de Oliveira S., Macari S., Garlet G.P., Madeira M.F.M., Fukada S.Y., Andrade I., et al. Short-chain fatty acids and FFAR2 as suppressors of bone resorption. Bone. 2019;125:112–121. doi: 10.1016/j.bone.2019.05.016.
    1. Tyagi A.M., Yu M., Darby T.M., Vaccaro C., Li J.Y., Owens J.A., Hsu E., Adams J., Weitzmann M.N., Jones R.M., et al. The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity. 2018;49:1116–1131. doi: 10.1016/j.immuni.2018.10.013.
    1. Schroeder T.M., Westendorf J.J. Histone deacetylase inhibitors promote osteoblast maturation. J. Bone Miner. Res. 2005;20:2254–2263. doi: 10.1359/JBMR.050813.
    1. Yan J., Herzog J.W., Tsang K., Brennan C.A., Bower M.A., Garrett W.S., Sartor B.R., Aliprantis A.O., Charles J.F. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA. 2016;113:E7554–E7563. doi: 10.1073/pnas.1607235113.
    1. Evenepoel P., Viaene L., Meijers B. Calcium balance in chronic kidney disease: Walking the tightrope. Kidney Int. 2012;81:1057–1059. doi: 10.1038/ki.2012.33.
    1. Sun B., Jia Y., Yang S., Zhao N., Hu Y., Hong J., Gao S., Zhao R. Sodium butyrate protects against high-fat diet-induced oxidative stress in rat liver by promoting expression of nuclear factor E2-related factor 2. Br. J. Nutr. 2019;122:400–410. doi: 10.1017/S0007114519001399.
    1. Wu J., Jiang Z., Zhang H., Liang W., Huang W., Zhang H., Li Y., Wang Z., Wang J., Jia Y., et al. Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2. Free Radic. Biol. Med. 2018;124:454–465. doi: 10.1016/j.freeradbiomed.2018.06.034.
    1. Yaku K., Enami Y., Kurajyo C., Matsui-Yuasa I., Konishi Y., Kojima-Yuasa A. The enhancement of phase 2 enzyme activities by sodium butyrate in normal intestinal epithelial cells is associated with Nrf2 and p53. Mol. Cell Biochem. 2012;370:7–14. doi: 10.1007/s11010-012-1392-x.
    1. Guo W., Liu J., Sun J., Gong Q., Ma H., Kan X., Cao Y., Wang J., Fu S. Butyrate alleviates oxidative stress by regulating NRF2 nuclear accumulation and H3K9/14 acetylation via GPR109A in bovine mammary epithelial cells and mammary glands. Free Radic. Biol. Med. 2020 doi: 10.1016/j.freeradbiomed.2020.01.016.
    1. Ranganna K., Mathew O.P., Yatsu F.M., Yousefipour Z., Hayes B.E., Milton S.G. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation. FEBS J. 2007;274:5962–5978. doi: 10.1111/j.1742-4658.2007.06119.x.
    1. Wei R., Enaka M., Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci. Rep. 2019;9:10366. doi: 10.1038/s41598-019-46824-2.
    1. Groenen-van Dooren M.M., Ronden J.E., Soute B.A., Vermeer C. Bioavailability of phylloquinone and menaquinones after oral and colorectal administration in vitamin K-deficient rats. Biochem. Pharmacol. 1995;50:797–801. doi: 10.1016/0006-2952(95)00202-B.
    1. Komai M., Shirakawa H., Kimura S. Newly developed model for vitamin K deficiency in germfree mice. Int, J. Vitam. Nutr. Res. 1988;58:55–59.
    1. Allison P.M., Mummah-Schendel L.L., Kindberg C.G., Harms C.S., Bang N.U., Suttie J.W. Effects of a vitamin K-deficient diet and antibiotics in normal human volunteers. J. Lab. Clin. Med. 1987;110:180–188.
    1. Frick P.G., Riedler G., Brogli H. Dose response and minimal daily requirement for vitamin K in man. J. Appl. Physiol. 1967;23:387–389. doi: 10.1152/jappl.1967.23.3.387.
    1. Guss J.D., Taylor E., Rouse Z., Roubert S., Higgins C.H., Thomas C.J., Baker S.P., Vashishth D., Donnelly E., Shea M.K., et al. The microbial metagenome and bone tissue composition in mice with microbiome-induced reductions in bone strength. Bone. 2019;127:146–154. doi: 10.1016/j.bone.2019.06.010.
    1. Krueger T., Westenfeld R., Ketteler M., Schurgers L.J., Floege J. Vitamin K deficiency in CKD patients: A modifiable risk factor for vascular calcification? Kidney Int. 2009;76:18–22. doi: 10.1038/ki.2009.126.
    1. Holden R.M., Morton A.R., Garland J.S., Pavlov A., Day A.G., Booth S.L. Vitamins K and D status in stages 3-5 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010;5:590–597. doi: 10.2215/CJN.06420909.
    1. Cranenburg E.C., Schurgers L.J., Uiterwijk H.H., Beulens J.W., Dalmeijer G.W., Westerhuis R., Magdeleyns E.J., Herfs M., Vermeer C., Laverman G.D. Vitamin K intake and status are low in hemodialysis patients. Kidney Int. 2012;82:605–610. doi: 10.1038/ki.2012.191.
    1. Schlieper G., Westenfeld R., Kruger T., Cranenburg E.C., Magdeleyns E.J., Brandenburg V.M., Djuric Z., Damjanovic T., Ketteler M., Vermeer C., et al. Circulating nonphosphorylated carboxylated matrix gla protein predicts survival in ESRD. J. Am. Soc. Nephrol. 2011;22:387–395. doi: 10.1681/ASN.2010040339.
    1. Boxma P.Y., van den Berg E., Geleijnse J.M., Laverman G.D., Schurgers L.J., Vermeer C., Kema I.P., Muskiet F.A., Navis G., Bakker S.J., et al. Vitamin k intake and plasma desphospho-uncarboxylated matrix Gla-protein levels in kidney transplant recipients. PLoS ONE. 2012;7:e47991. doi: 10.1371/journal.pone.0047991.
    1. Evenepoel P., Claes K., Meijers B., Laurent M., Bammens B., Naesens M., Sprangers B., Pottel H., Cavalier E., Kuypers D. Poor Vitamin K Status Is Associated With Low Bone Mineral Density and Increased Fracture Risk in End-Stage Renal Disease. J. Bone Miner. Res. 2019;34:262–269. doi: 10.1002/jbmr.3608.
    1. Jansz T.T., Neradova A., van Ballegooijen A.J., Verhaar M.C., Vervloet M.G., Schurgers L.J., van Jaarsveld B.C. The role of kidney transplantation and phosphate binder use in vitamin K status. PLoS ONE. 2018;13:e0203157. doi: 10.1371/journal.pone.0203157.
    1. Kaesler N., Magdeleyns E., Herfs M., Schettgen T., Brandenburg V., Fliser D., Vermeer C., Floege J., Schlieper G., Kruger T. Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation. Kidney Int. 2014;86:286–293. doi: 10.1038/ki.2013.530.
    1. Delanaye P., Krzesinski J.M., Warling X., Moonen M., Smelten N., Medart L., Pottel H., Cavalier E. Dephosphorylated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC. Nephrol. 2014;15:145. doi: 10.1186/1471-2369-15-145.
    1. Fain M.E., Kapuku G.K., Paulson W.D., Williams C.F., Raed A., Dong Y., Knapen M.H.J., Vermeer C., Pollock N.K. Inactive Matrix Gla Protein, Arterial Stiffness, and Endothelial Function in African American Hemodialysis Patients. Am. J. Hypertens. 2018;31:735–741. doi: 10.1093/ajh/hpy049.
    1. Schurgers L.J., Barreto D.V., Barreto F.C., Liabeuf S., Renard C., Magdeleyns E.J., Vermeer C., Choukroun G., Massy Z.A. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: A preliminary report. Clin. J. Am. Soc. Nephrol. 2010;5:568–575. doi: 10.2215/CJN.07081009.
    1. Fusaro M., Noale M., Viola V., Galli F., Tripepi G., Vajente N., Plebani M., Zaninotto M., Guglielmi G., Miotto D., et al. Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J. Bone Miner. Res. 2012;27:2271–2278. doi: 10.1002/jbmr.1677.
    1. Zoch M.L., Clemens T.L., Riddle R.C. New insights into the biology of osteocalcin. Bone. 2016;82:42–49. doi: 10.1016/j.bone.2015.05.046.
    1. Azuma K., Shiba S., Hasegawa T., Ikeda K., Urano T., Horie-Inoue K., Ouchi Y., Amizuka N., Inoue S. Osteoblast-Specific gamma-Glutamyl Carboxylase-Deficient Mice Display Enhanced Bone Formation with Aberrant Mineralization. J. Bone Miner. Res. 2015;30:1245–1254. doi: 10.1002/jbmr.2463.
    1. Suzuki Y., Maruyama-Nagao A., Sakuraba K., Kawai S. Level of serum undercarboxylated osteocalcin correlates with bone quality assessed by calcaneal quantitative ultrasound sonometry in young Japanese females. Exp. Ther. Med. 2017;13:1937–1943. doi: 10.3892/etm.2017.4206.
    1. Tabb M.M., Sun A., Zhou C., Grun F., Errandi J., Romero K., Pham H., Inoue S., Mallick S., Lin M., et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J. Biol. Chem. 2003;278:43919–43927. doi: 10.1074/jbc.M303136200.
    1. Shea M.K., Booth S.L., Massaro J.M., Jacques P.F., D’Agostino R.B., Sr., Dawson-Hughes B., Ordovas J.M., O’Donnell C.J., Kathiresan S., Keaney J.F., et al. Vitamin K and vitamin D status: Associations with inflammatory markers in the Framingham Offspring Study. Am. J. Epidemiol. 2008;167:313–320. doi: 10.1093/aje/kwm306.
    1. Stenvinkel P., Wanner C., Metzger T., Heimburger O., Mallamaci F., Tripepi G., Malatino L., Zoccali C. Inflammation and outcome in end-stage renal failure: Does female gender constitute a survival advantage? Kidney Int. 2002;62:1791–1798. doi: 10.1046/j.1523-1755.2002.00637.x.
    1. Kotanko P., Carter M., Levin N.W. Intestinal bacterial microflora--a potential source of chronic inflammation in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2006;21:2057–2060. doi: 10.1093/ndt/gfl281.
    1. Vaziri N.D. CKD impairs barrier function and alters microbial flora of the intestine: A major link to inflammation and uremic toxicity. Curr. Opin. Nephrol. Hypertens. 2012;21:587–592. doi: 10.1097/MNH.0b013e328358c8d5.
    1. Lau W.L., Kalantar-Zadeh K., Vaziri N.D. The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron. 2015;130:92–98. doi: 10.1159/000381990.
    1. Gonzalez A., Krieg R., Massey H.D., Carl D., Ghosh S., Gehr T.W.B., Ghosh S.S. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol. Dial. Transplant. 2019;34:783–794. doi: 10.1093/ndt/gfy238.
    1. Yang J., Lim S.Y., Ko Y.S., Lee H.Y., Oh S.W., Kim M.G., Cho W.Y., Jo S.K. Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol. Dial. Transplant. 2019;34:419–428. doi: 10.1093/ndt/gfy172.
    1. Vaziri N.D., Dure-Smith B., Miller R., Mirahmadi M.K. Pathology of gastrointestinal tract in chronic hemodialysis patients: An autopsy study of 78 cases. Am. J. Gastroenterol. 1985;80:608–611.
    1. Schepers E., Meert N., Glorieux G., Goeman J., Van der Eycken J., Vanholder R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol. Dial. Transplant. 2007;22:592–596. doi: 10.1093/ndt/gfl584.
    1. Nakano T., Katsuki S., Chen M., Decano J.L., Halu A., Lee L.H., Pestana D.V.S., Kum A.S.T., Kuromoto R.K., Golden W.S., et al. Uremic Toxin Indoxyl Sulfate Promotes Proinflammatory Macrophage Activation Via the Interplay of OATP2B1 and Dll4-Notch Signaling. Circulation. 2019;139:78–96. doi: 10.1161/CIRCULATIONAHA.118.034588.
    1. Viaene L., Evenepoel P., Meijers B., Vanderschueren D., Overbergh L., Mathieu C. Uremia Suppresses Immune Signal-Induced CYP27B1 Expression in Human Monocytes. Am. J. Nephrol. 2012;36:497–508. doi: 10.1159/000345146.
    1. Hsu H.J., Yen C.H., Wu I.W., Hsu K.H., Chen C.K., Sun C.Y., Chou C.C., Chen C.Y., Tsai C.J., Wu M.S., et al. The association of uremic toxins and inflammation in hemodialysis patients. PLoS ONE. 2014;9:e102691. doi: 10.1371/journal.pone.0102691.
    1. Youm Y.H., Nguyen K.Y., Grant R.W., Goldberg E.L., Bodogai M., Kim D., D’Agostino D., Planavsky N., Lupfer C., Kanneganti T.D., et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 2015;21:263–269. doi: 10.1038/nm.3804.
    1. Tedelind S., Westberg F., Kjerrulf M., Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World, J. Gastroenterol. 2007;13:2826–2832. doi: 10.3748/wjg.v13.i20.2826.
    1. Meijer K., de Vos P., Priebe M.G. Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:715–721. doi: 10.1097/MCO.0b013e32833eebe5.
    1. Koh A., De V.F., Kovatcheva-Datchary P., Backhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041.
    1. Hjortnaes J., Butcher J., Figueiredo J.L., Riccio M., Kohler R.H., Kozloff K.M., Weissleder R., Aikawa E. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: A role for inflammation. Eur. Heart, J. 2010;31:1975–1984. doi: 10.1093/eurheartj/ehq237.
    1. Khosla S. The bone and beyond: A shift in calcium. Nat. Med. 2011;17:430–431. doi: 10.1038/nm0411-430.
    1. New S.E., Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 2011;108:1381–1391. doi: 10.1161/CIRCRESAHA.110.234146.
    1. Panuccio V., Enia G., Tripepi R., Aliotta R., Mallamaci F., Tripepi G., Zoccali C. Pro-inflammatory cytokines and bone fractures in CKD patients. An exploratory single centre study. BMC. Nephrol. 2012;13:134. doi: 10.1186/1471-2369-13-134.
    1. Oh J., Wunsch R., Turzer M., Bahner M., Raggi P., Querfeld U., Mehls O., Schaefer F. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106:100–105. doi: 10.1161/01.CIR.0000020222.63035.C0.
    1. Guerin A.P., London G.M., Marchais S.J., Metivier F. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol. Dial. Transplant. 2000;15:1014–1021. doi: 10.1093/ndt/15.7.1014.
    1. Cauley J.A., Barbour K.E., Harrison S.L., Cloonan Y.K., Danielson M.E., Ensrud K.E., Fink H.A., Orwoll E.S., Boudreau R. Inflammatory Markers and the Risk of Hip and Vertebral Fractures in Men: The Osteoporotic Fractures in Men (MrOS) J. Bone Miner. Res. 2016;31:2129–2138. doi: 10.1002/jbmr.2905.
    1. Al-Aly Z., Shao J.S., Lai C.F., Huang E., Cai J., Behrmann A., Cheng S.L., Towler D.A. Aortic Msx2-Wnt Calcification Cascade Is Regulated by TNF-+¦GÇôDependent Signals in Diabetic LdlrGêÆ/GêÆ Mice. Arterioscler. Thromb. Vasc. Biol. 2007;27:2589–2596. doi: 10.1161/ATVBAHA.107.153668.
    1. Henze L.A., Luong T.T.D., Boehme B., Masyout J., Schneider M.P., Brachs S., Lang F., Pieske B., Pasch A., Eckardt K.U., et al. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. Aging (Albany. NY) 2019;11:5445–5462. doi: 10.18632/aging.102130.
    1. Ketteler M., Bongartz P., Westenfeld R., Wildberger J.E., Mahnken A.H., Böhm R., Metzger T., Wanner C., Jahnen-Dechent W., Floege J. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: A cross-sectional study. Lancet. 2003;361:827–833. doi: 10.1016/S0140-6736(03)12710-9.
    1. Feyen J.H., Elford P., Di Padova F.E., Trechsel U. Interleukin-6 is produced by bone and modulated by parathyroid hormone. J. Bone Miner. Res. 1989;4:633–638. doi: 10.1002/jbmr.5650040422.
    1. Pfeilschifter J., Chenu C., Bird A., Mundy G.R., Roodman G.D. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J. Bone Miner. Res. 1989;4:113–118. doi: 10.1002/jbmr.5650040116.
    1. Ferreira A., Saraiva M., Behets G., Macedo A., Galvao M., D’Haese P., Drueke T.B. Evaluation of bone remodeling in hemodialysis patients: Serum biochemistry, circulating cytokines and bone histomorphometry. J. Nephrol. 2009;22:783–793.
    1. Cafiero C., Gigante M., Brunetti G., Simone S., Chaoul N., Oranger A., Ranieri E., Colucci S., Pertosa G.B., Grano M., et al. Inflammation induces osteoclast differentiation from peripheral mononuclear cells in chronic kidney disease patients: Crosstalk between the immune and bone systems. Nephrol. Dial. Transplant. 2018;33:65–75. doi: 10.1093/ndt/gfx222.
    1. Hofbauer L.C., Lacey D.L., Dunstan C.R., Spelsberg T.C., Riggs B.L., Khosla S. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone. 1999;25:255–259. doi: 10.1016/S8756-3282(99)00162-3.
    1. Kobayashi K., Takahashi N., Jimi E., Udagawa N., Takami M., Kotake S., Nakagawa N., Kinosaki M., Yamaguchi K., Shima N., et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 2000;191:275–286. doi: 10.1084/jem.191.2.275.
    1. Barreto F.C., Barreto D.V., Moyses R.M., Neves C.L., Jorgetti V., Draibe S.A., Canziani M.E., Carvalho A.B. Osteoporosis in hemodialysis patients revisited by bone histomorphometry: A new insight into an old problem. Kidney Int. 2006;69:1852–1857. doi: 10.1038/sj.ki.5000311.
    1. Tousen Y., Matsumoto Y., Nagahata Y., Kobayashi I., Inoue M., Ishimi Y. Resistant Starch Attenuates Bone Loss in Ovariectomised Mice by Regulating the Intestinal Microbiota and Bone-Marrow Inflammation. Nutrients. 2019;11:297. doi: 10.3390/nu11020297.
    1. McCabe L., Britton R.A., Parameswaran N. Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome. Curr. Osteoporos. Rep. 2015;13:363–371. doi: 10.1007/s11914-015-0292-x.
    1. Kasahara K., Krautkramer K.A., Org E., Romano K.A., Kerby R.L., Vivas E.I., Mehrabian M., Denu J.M., Backhed F., Lusis A.J., et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat. Microbiol. 2018;3:1461–1471. doi: 10.1038/s41564-018-0272-x.
    1. Lampe J.W., Navarro S.L., Hullar M.A., Shojaie A. Inter-individual differences in response to dietary intervention: Integrating omics platforms towards personalised dietary recommendations. Proc. Nutr. Soc. 2013;72:207–218. doi: 10.1017/S0029665113000025.
    1. Derrien M., Veiga P. Rethinking Diet to Aid Human-Microbe Symbiosis. Trends Microbiol. 2017;25:100–112. doi: 10.1016/j.tim.2016.09.011.

Source: PubMed

3
購読する