The Dual Role of Vitamin K2 in "Bone-Vascular Crosstalk": Opposite Effects on Bone Loss and Vascular Calcification

Domitilla Mandatori, Letizia Pelusi, Valeria Schiavone, Caterina Pipino, Natalia Di Pietro, Assunta Pandolfi, Domitilla Mandatori, Letizia Pelusi, Valeria Schiavone, Caterina Pipino, Natalia Di Pietro, Assunta Pandolfi

Abstract

Osteoporosis (OP) and vascular calcification (VC) represent relevant health problems that frequently coexist in the elderly population. Traditionally, they have been considered independent processes, and mainly age-related. However, an increasing number of studies have reported their possible direct correlation, commonly defined as "bone-vascular crosstalk". Vitamin K2 (VitK2), a family of several natural isoforms also known as menaquinones (MK), has recently received particular attention for its role in maintaining calcium homeostasis. In particular, VitK2 deficiency seems to be responsible of the so-called "calcium paradox" phenomenon, characterized by low calcium deposition in the bone and its accumulation in the vessel wall. Since these events may have important clinical consequences, and the role of VitK2 in bone-vascular crosstalk has only partially been explained, this review focuses on its effects on the bone and vascular system by providing a more recent literature update. Overall, the findings reported here propose the VitK2 family as natural bioactive molecules that could be able to play an important role in the prevention of bone loss and vascular calcification, thus encouraging further in-depth studies to achieve its use as a dietary food supplement.

Keywords: calcium paradox; menaquinone; osteoporosis; vascular calcification; vitamin K2.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Molecular structure of the two main forms of Vitamin K. The upper structure represents Vitamin K1, also known as phylloquinone. The bottom structure is Vitamin K2, also known as menaquinone (MK).
Figure 2
Figure 2
Mechanisms of action of VitK2 in “bone and vascular cross-talk”. At vascular level, VitK2, acting as cofactor for the enzyme GGCX, triggers the conversion of undercarboxylated MGP (ucMGP) in active carboxylated MGP (cMGP). The active cMGP could directly inhibit ectopic Ca2+ precipitation, but also VSMCst trans-differentiation through BMP-2. VitK2 can also inhibit VSMCs apoptosis through the Gas6/ AxL/Akt anti-apoptotic pathway. In bone tissue, VitK2 could promote osteoblasts proliferation and activity through MGP and Wnt/β-catenin pathway, control of oxidative stress (Ox-S) imbalance, via SXR receptor, and the well-established GGCX-dependent pathway. VitK2 may also exert a control of osteoclasts activities through the inhibition of NF-kB.

References

    1. Eriksen E.F., Díez-Pérez A., Boonen S. Update on long-term treatment with bisphosphonates for postmenopausal osteoporosis: A systematic review. Bone. 2014;58:126–135. doi: 10.1016/j.bone.2013.09.023.
    1. Hendrickx G., Boudin E., Van Hul W. A look behind the scenes: The risk and pathogenesis of primary osteoporosis. Nat. Rev. Rheumatol. 2015;11:462–474. doi: 10.1038/nrrheum.2015.48.
    1. Rochette L., Meloux A., Rigal E., Zeller M., Cottin Y., Vergely C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol. Ther. 2018;182:115–132. doi: 10.1016/j.pharmthera.2017.08.015.
    1. Nagy E.E., Nagy-Finna C., Popoviciu H.-V., Kovács B. Soluble Biomarkers of Osteoporosis and Osteoarthritis, from Pathway Mapping to Clinical Trials: An Update. Clin. Interv. Aging. 2020;15:501–518. doi: 10.2147/CIA.S242288.
    1. Speer M.Y., Yang H.-Y., Brabb T., Leaf E., Look A., Lin W.-L., Frutkin A., Dichek D., Giachelli C.M. Smooth Muscle Cells Give Rise to Osteochondrogenic Precursors and Chondrocytes in Calcifying Arteries. Circ. Res. 2009;104:733–741. doi: 10.1161/CIRCRESAHA.108.183053.
    1. Lampropoulos C.E., Papaioannou I., D’Cruz D.P. Osteoporosis—A risk factor for cardiovascular disease? Nat. Rev. Rheumatol. 2012;8:587–598. doi: 10.1038/nrrheum.2012.120.
    1. Karwowski W., Naumnik B., Szczepański M., Myśliwiec M. The mechanism of vascular calcification—A systematic review. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2012;18:RA1–RA11. doi: 10.12659/MSM.882181.
    1. Wu M., Rementer C., Giachelli C.M. Vascular Calcification: An Update on Mechanisms and Challenges in Treatment. Calcif. Tissue Int. 2013;93:365–373. doi: 10.1007/s00223-013-9712-z.
    1. Boström K.I., Jumabay M., Matveyenko A., Nicholas S.B., Yao Y. Activation of Vascular Bone Morphogenetic Protein Signaling in Diabetes Mellitus. Circ. Res. 2011;108:446–457. doi: 10.1161/CIRCRESAHA.110.236596.
    1. Francesco V., Vasuri F., Fittipaldi S., Pasquinelli G. Arterial calcification: Finger-pointing at resident and circulating stem cells. World J. Stem Cells. 2014;6:540–551. doi: 10.4252/wjsc.v6.i5.540.
    1. Shanahan C.M., Cary N.R. Medial localization of mineralization-regulating proteins in association with Monckeberg’s sclerosis: Evidence for smooth muscle cell-mediated vascular calcification. Circulation. 1999;100:2168–2176. doi: 10.1161/01.CIR.100.21.2168.
    1. Moe S.M., Chen N.X. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int. 2009;75:176–184. doi: 10.1038/ki.2008.456.
    1. Tyson K.L., Reynolds J.L. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler. Thromb. Vasc. Biol. 2003;23:489–494. doi: 10.1161/01.ATV.0000059406.92165.31.
    1. Bobryshev Y.V. Transdifferentiation of smooth muscle cells into chondrocytes in atherosclerotic arteries in situ: Implications for diffuse intimal calcification. J. Pathol. 2005;205:641–650. doi: 10.1002/path.1743.
    1. Bostrom K.I., Rajamannan N.M. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ. Res. 2011;109:564–577. doi: 10.1161/CIRCRESAHA.110.234278.
    1. Leopold J.A. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc. Med. 2015;25:267–274. doi: 10.1016/j.tcm.2014.10.021.
    1. McFarlane S.I., Muniyappa R. Osteoporosis and cardiovascular disease: Brittle bones and boned arteries, is there a link? Endocrine. 2004;23:1–10. doi: 10.1385/ENDO:23:1:01.
    1. Sprini D., Rini G.B. Correlation between osteoporosis and cardiovascular disease. Clin. Cases Miner. Bone Metab. 2014;11:117–119. doi: 10.11138/ccmbm/2014.11.2.117.
    1. Vassalle C., Mazzone A. Bone loss and vascular calcification: A bi-directional interplay? Vascul. Pharmacol. 2016;86:77–86. doi: 10.1016/j.vph.2016.07.003.
    1. Chen Y., Zhao X. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler. Thromb. Vasc. Biol. 2020;40:1078–1093. doi: 10.1161/ATVBAHA.120.313131.
    1. Kiel D.P., Kauppila L.I. Bone loss and the progression of abdominal aortic calcification over a 25 year period: The Framingham Heart Study. Calcif. Tissue Int. 2001;68:271–276. doi: 10.1007/BF02390833.
    1. Farhat G.N., Strotmeyer E.S. Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: The health, aging, and body composition study. Calcif. Tissue Int. 2006;79:102–111. doi: 10.1007/s00223-006-0052-0.
    1. Hyder J.A., Allison M.A. Association of coronary artery and aortic calcium with lumbar bone density: The MESA Abdominal Aortic Calcium Study. Am. J. Epidemiol. 2009;169:186–194. doi: 10.1093/aje/kwn303.
    1. Campos-Obando N., Kavousi M. Bone health and coronary artery calcification: The Rotterdam Study. Atherosclerosis. 2015;241:278–283. doi: 10.1016/j.atherosclerosis.2015.02.013.
    1. Trivedi D.P., Khaw K.T. Bone mineral density at the hip predicts mortality in elderly men. Osteoporos. Int. 2001;12:259–265. doi: 10.1007/s001980170114.
    1. Farhat G.N., Newman A.B. The association of bone mineral density measures with incident cardiovascular disease in older adults. Osteoporos. Int. 2007;18:999–1008. doi: 10.1007/s00198-007-0338-8.
    1. Choi S.H., An J.H. Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin. Endocrinol. 2009;71:644–651. doi: 10.1111/j.1365-2265.2009.03535.x.
    1. Schulz E., Arfai K. Aortic calcification and the risk of osteoporosis and fractures. J. Clin. Endocrinol. Metab. 2004;89:4246–4253. doi: 10.1210/jc.2003-030964.
    1. Bagger Y.Z., Tanko L.B. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J. Intern. Med. 2006;259:598–605. doi: 10.1111/j.1365-2796.2006.01640.x.
    1. Khalil Z., Alam B. The Medical Benefits of Vitamin K2 on Calcium-Related Disorders. Nutrients. 2021;13:691. doi: 10.3390/nu13020691.
    1. Persy V., de Broe M. Bisphosphonates prevent experimental vascular calcification: Treat the bone to cure the vessels? Kidney Int. 2006;70:1537–1538. doi: 10.1038/sj.ki.5001899.
    1. Shearer M.J., Newman P. Metabolism and cell biology of vitamin K. Thromb. Haemost. 2008;100:530–547.
    1. Flore R., Ponziani F.R. Something more to say about calcium homeostasis: The role of vitamin K2 in vascular calcification and osteoporosis. Eur. Rev. Med. Pharmacol. Sci. 2013;17:2433–2440.
    1. Dam H., Schonheyder F. The occurrence and chemical nature of vitamin K. Biochem. J. 1936;30:897–901. doi: 10.1042/bj0300897.
    1. Dam H. The formation of coprosterol in the intestine: The action of intestinal bacteria on cholesterol. Biochem. J. 1934;28:820–825. doi: 10.1042/bj0280820.
    1. Dam H. The antihaemorrhagic vitamin of the chick. Biochem. J. 1935;29:1273–1285. doi: 10.1042/bj0291273.
    1. Willems B.A., Vermeer C. The realm of vitamin K dependent proteins: Shifting from coagulation toward calcification. Mol. Nutr. Food Res. 2014;58:1620–1635. doi: 10.1002/mnfr.201300743.
    1. Vermeer C. Vitamin K: The effect on health beyond coagulation—An overview. Food Nutr. Res. 2012:56. doi: 10.3402/fnr.v56i0.5329.
    1. Tie J.K., Stafford D.W. Structural and functional insights into enzymes of the vitamin K cycle. J. Thromb. Haemost. 2016;14:236–247. doi: 10.1111/jth.13217.
    1. Hamidi M.S., Cheung A.M. Vitamin K and musculoskeletal health in postmenopausal women. Mol. Nutr. Food Res. 2014;58:1647–1657. doi: 10.1002/mnfr.201300950.
    1. Schurgers L.J. Vitamin K: Key vitamin in controlling vascular calcification in chronic kidney disease. Kidney Int. 2013;83:782–784. doi: 10.1038/ki.2013.26.
    1. Simes D.C., Viegas C.S.B. Vitamin K as a Powerful Micronutrient in Aging and Age-Related Diseases: Pros and Cons from Clinical Studies. Int. J. Mol. Sci. 2019;20:4150. doi: 10.3390/ijms20174150.
    1. Grober U., Reichrath J. Vitamin K: An old vitamin in a new perspective. Dermatoendocrinology. 2014;6:e968490. doi: 10.4161/19381972.2014.968490.
    1. Palermo A., Tuccinardi D. Vitamin K and osteoporosis: Myth or reality? Metabolism. 2017;70:57–71. doi: 10.1016/j.metabol.2017.01.032.
    1. Sato T., Inaba N. MK-7 and Its Effects on Bone Quality and Strength. Nutrients. 2020;12:965. doi: 10.3390/nu12040965.
    1. Conly J.M., Stein K. Quantitative and qualitative measurements of K vitamins in human intestinal contents. Am. J. Gastroenterol. 1992;87:311–316.
    1. Morishita T., Tamura N. Production of menaquinones by lactic acid bacteria. J. Dairy Sci. 1999;82:1897–1903. doi: 10.3168/jds.S0022-0302(99)75424-X.
    1. Suttie J.W. The importance of menaquinones in human nutrition. Annu. Rev. Nutr. 1995;15:399–417. doi: 10.1146/annurev.nu.15.070195.002151.
    1. Walther B., Karl J.P. Menaquinones, bacteria, and the food supply: The relevance of dairy and fermented food products to vitamin K requirements. Adv. Nutr. 2013;4:463–473. doi: 10.3945/an.113.003855.
    1. Iwamoto J. Vitamin K(2) therapy for postmenopausal osteoporosis. Nutrients. 2014;6:1971–1980. doi: 10.3390/nu6051971.
    1. Gijsbers B.L., Jie K.S. Effect of food composition on vitamin K absorption in human volunteers. Br. J. Nutr. 1996;76:223–229. doi: 10.1079/BJN19960027.
    1. Young M.F. Bone matrix proteins: Their function, regulation, and relationship to osteoporosis. Osteoporos. Int. 2003;14(Suppl. S3):S35–S42. doi: 10.1007/s00198-002-1342-7.
    1. Gorski J.P. Biomineralization of bone: A fresh view of the roles of non-collagenous proteins. Front. Biosci. 2011;16:2598–2621. doi: 10.2741/3875.
    1. Gundberg C.M., Lian J.B. Vitamin K-dependent carboxylation of osteocalcin: Friend or foe? Adv. Nutr. 2012;3:149–157. doi: 10.3945/an.112.001834.
    1. Booth S.L., Centi A. The role of osteocalcin in human glucose metabolism: Marker or mediator? Nat. Rev. Endocrinol. 2013;9:43–55. doi: 10.1038/nrendo.2012.201.
    1. Ferron M., Wei J. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308. doi: 10.1016/j.cell.2010.06.003.
    1. Zoch M.L., Clemens T.L. New insights into the biology of osteocalcin. Bone. 2016;82:42–49. doi: 10.1016/j.bone.2015.05.046.
    1. Lacombe J., Karsenty G. In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Mol. Metab. 2013;2:498–504. doi: 10.1016/j.molmet.2013.08.004.
    1. Kalaiselvi V.S., Prabhu K. The association of serum osteocalcin with the bone mineral density in post menopausal women. J. Clin. Diagn. Res. 2013;7:814–816.
    1. Eastell R., Pigott T. Diagnosis of endocrine disease: Bone turnover markers: Are they clinically useful? Eur. J. Endocrinol. 2018;178:R19–R31. doi: 10.1530/EJE-17-0585.
    1. Lee N.K., Sowa H. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–469. doi: 10.1016/j.cell.2007.05.047.
    1. Karsenty G., Oury F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol. Cell. Endocrinol. 2014;382:521–526. doi: 10.1016/j.mce.2013.10.008.
    1. Kanazawa I. Osteocalcin as a hormone regulating glucose metabolism. World J. Diabetes. 2015;6:1345–1354. doi: 10.4239/wjd.v6.i18.1345.
    1. Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia. 2011;54:1291–1297. doi: 10.1007/s00125-011-2155-z.
    1. Yan M.K., Khalil H. Vitamin supplements in type 2 diabetes mellitus management: A review. Diabetes Metab. Syndr. 2017;11(Suppl. S2):S589–S595. doi: 10.1016/j.dsx.2017.04.009.
    1. Schurgers L.J., Cranenburg E.C. Matrix Gla-protein: The calcification inhibitor in need of vitamin K. Thromb. Haemost. 2008;100:593–603.
    1. Schurgers L.J., Uitto J. Vitamin K-dependent carboxylation of matrix Gla-protein: A crucial switch to control ectopic mineralization. Trends Mol. Med. 2013;19:217–226. doi: 10.1016/j.molmed.2012.12.008.
    1. Price P.A., Rice J.S. Conserved phosphorylation of serines in the Ser-X-Glu/Ser(P) sequences of the vitamin K-dependent matrix Gla protein from shark, lamb, rat, cow, and human. Protein Sci. 1994;3:822–830. doi: 10.1002/pro.5560030511.
    1. Wajih N., Borras T. Processing and transport of matrix γ-carboxyglutamic acid protein and bone morphogenetic protein-2 in cultured human vascular smooth muscle cells: Evidence for an uptake mechanism for serum fetuin. J. Biol. Chem. 2004;279:43052–43060. doi: 10.1074/jbc.M407180200.
    1. Chatrou M.L., Winckers K. Vascular calcification: The price to pay for anticoagulation therapy with vitamin K-antagonists. Blood Rev. 2012;26:155–166. doi: 10.1016/j.blre.2012.03.002.
    1. Scheiber D., Veulemans V. High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification. Nutrients. 2015;7:6991–7011. doi: 10.3390/nu7085318.
    1. Luo G., Ducy P. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997;386:78–81. doi: 10.1038/386078a0.
    1. Munroe P.B., Olgunturk R.O. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat. Genet. 1999;21:142–144. doi: 10.1038/5102.
    1. Hur D.J., Raymond G.V. A novel MGP mutation in a consanguineous family: Review of the clinical and molecular characteristics of Keutel syndrome. Am. J. Med. Genet. A. 2005;135:36–40. doi: 10.1002/ajmg.a.30680.
    1. O’Young J., Liao Y. Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J. Am. Chem. Soc. 2011;133:18406–18412. doi: 10.1021/ja207628k.
    1. Steitz S.A., Speer M.Y. Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ. Res. 2001;89:1147–1154. doi: 10.1161/hh2401.101070.
    1. Engelse M.A., Neele J.M. Vascular calcification: Expression patterns of the osteoblast-specific gene core binding factor alpha-1 and the protective factor matrix gla protein in human atherogenesis. Cardiovasc. Res. 2001;52:281–289. doi: 10.1016/S0008-6363(01)00375-3.
    1. Shioi A., Taniwaki H. Monckeberg’s medial sclerosis and inorganic phosphate in uremia. Am. J. Kidney Dis. 2001;38:S47–S49. doi: 10.1053/ajkd.2001.27396.
    1. Wallin R., Cain D. Modulation of the binding of matrix Gla protein (MGP) to bone morphogenetic protein-2 (BMP-2) Thromb. Haemost. 2000;84:1039–1044.
    1. Bostrom K., Tsao D. Matrix GLA protein modulates differentiation induced by bone morphogenetic protein-2 in C3H10T1/2 cells. J. Biol. Chem. 2001;276:14044–14052. doi: 10.1074/jbc.M008103200.
    1. Zebboudj A.F., Shin V. Matrix GLA protein and BMP-2 regulate osteoinduction in calcifying vascular cells. J. Cell. Biochem. 2003;90:756–765. doi: 10.1002/jcb.10669.
    1. Puzantian H., Akers S.R. Circulating Dephospho-Uncarboxylated Matrix Gla-Protein Is Associated with Kidney Dysfunction and Arterial Stiffness. Am. J. Hypertens. 2018;31:988–994. doi: 10.1093/ajh/hpy079.
    1. Emaus N., Gjesdal C.G. Vitamin K2 supplementation does not influence bone loss in early menopausal women: A randomised double-blind placebo-controlled trial. Osteoporos. Int. 2010;21:1731–1740. doi: 10.1007/s00198-009-1126-4.
    1. Chan R., Leung J. No association between dietary vitamin K intake and fracture risk in chinese community-dwelling older men and women: A prospective study. Calcif. Tissue Int. 2012;90:396–403. doi: 10.1007/s00223-012-9586-5.
    1. Kanellakis S., Moschonis G. Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K(1)) or menaquinone-7 (vitamin K (2)): The Postmenopausal Health Study II. Calcif. Tissue Int. 2012;90:251–262.
    1. Knapen M.H., Drummen N.E. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos. Int. 2013;24:2499–2507. doi: 10.1007/s00198-013-2325-6.
    1. Huang Z.B., Wan S.L. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: A meta-analysis of randomized controlled trials. Osteoporos. Int. 2015;26:1175–1186. doi: 10.1007/s00198-014-2989-6.
    1. Mott A., Bradley T. Effect of vitamin K on bone mineral density and fractures in adults: An updated systematic review and meta-analysis of randomised controlled trials. Osteoporos. Int. 2019;30:1543–1559. doi: 10.1007/s00198-019-04949-0.
    1. van Summeren M.J., Braam L.A. The effect of menaquinone-7 (vitamin K2) supplementation on osteocalcin carboxylation in healthy prepubertal children. Br. J. Nutr. 2009;102:1171–1178. doi: 10.1017/S0007114509382100.
    1. Nakamura E., Aoki M. Low-dose menaquinone-4 improves γ-carboxylation of osteocalcin in young males: A non-placebo-controlled dose-response study. Nutr. J. 2014;13:85. doi: 10.1186/1475-2891-13-85.
    1. Koitaya N., Sekiguchi M. Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. J. Bone Miner. Metab. 2014;32:142–150. doi: 10.1007/s00774-013-0472-7.
    1. Inaba N., Sato T. Low-Dose Daily Intake of Vitamin K(2) (Menaquinone-7) Improves Osteocalcin γ-carboxylation: A Double-Blind, Randomized Controlled Trials. J. Nutr. Sci. Vitaminol. 2015;61:471–480. doi: 10.3177/jnsv.61.471.
    1. Atkins G.J., Welldon K.J. Vitamin K promotes mineralization, osteoblast-to-osteocyte transition, and an anticatabolic phenotype by γ-carboxylation-dependent and -independent mechanisms. Am. J. Physiol. Cell Physiol. 2009;297:C1358–C1367. doi: 10.1152/ajpcell.00216.2009.
    1. Rangel L.B.A., de Siqueira D. Vitamin K Supplementation Modulates Bone Metabolism and Ultra-Structure of Ovariectomized Mice. Cell Physiol. Biochem. 2018;51:356–374. doi: 10.1159/000495234.
    1. Weng S.J., Xie Z.J. Effects of combined menaquinone-4 and PTH1-34 treatment on osetogenesis and angiogenesis in calvarial defect in osteopenic rats. Endocrine. 2019;63:376–384. doi: 10.1007/s12020-018-1761-7.
    1. Akbari S., Rasouli-Ghahroudi A.A. Vitamin K and Bone Metabolism: A Review of the Latest Evidence in Preclinical Studies. Biomed. Res. Int. 2018;2018:4629383. doi: 10.1155/2018/4629383.
    1. Zhang J., Ma Z. Matrix Gla Protein Promotes the Bone Formation by Up-Regulating Wnt/beta-Catenin Signaling Pathway. Front. Endocrinol. 2019;10:891. doi: 10.3389/fendo.2019.00891.
    1. Ye Z.W., Zhang J. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim. Biophys. Acta. 2015;1850:1607–1621. doi: 10.1016/j.bbagen.2014.11.010.
    1. Muszynska M., Ambrozewicz E. Protective Effects of Vitamin K Compounds on the Proteomic Profile of Osteoblasts under Oxidative Stress Conditions. Molecules. 2020;25:1990. doi: 10.3390/molecules25081990.
    1. Tabb M.M., Sun A. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J. Biol. Chem. 2003;278:43919–43927. doi: 10.1074/jbc.M303136200.
    1. Ichikawa T., Horie-Inoue K. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J. Biol. Chem. 2006;281:16927–16934. doi: 10.1074/jbc.M600896200.
    1. Koshihara Y., Hoshi K. Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture. J. Endocrinol. 2003;176:339–348. doi: 10.1677/joe.0.1760339.
    1. Yamaguchi M., Weitzmann M.N. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-kappaB activation. Int. J. Mol. Med. 2011;27:3–14.
    1. Wu W.J., Kim M.S. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption. Food Funct. 2015;6:3351–3358. doi: 10.1039/C5FO00544B.
    1. Mandatori D., Penolazzi L. Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in 2D and 3D dynamic culture systems. J. Tissue Eng. Regen. Med. 2017 doi: 10.1002/term.2471.
    1. Knapen M.H., Braam L.A. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb. Haemost. 2015;113:1135–1144. doi: 10.1160/TH14-08-0675.
    1. Barrett H., O’Keeffe M. Is Matrix Gla Protein Associated with Vascular Calcification? A Systematic Review. Nutrients. 2018;10:415. doi: 10.3390/nu10040415.
    1. Schurgers L.J., Joosen I.A. Vitamin K-antagonists accelerate atherosclerotic calcification and induce a vulnerable plaque phenotype. PLoS ONE. 2012;7:e43229. doi: 10.1371/journal.pone.0043229.
    1. Shea M.K., Holden R.M. Vitamin K status and vascular calcification: Evidence from observational and clinical studies. Adv. Nutr. 2012;3:158–165. doi: 10.3945/an.111.001644.
    1. Sheng K., Zhang P. Association of Matrix Gla protein gene (rs1800801, rs1800802, rs4236) polymorphism with vascular calcification and atherosclerotic disease: A meta-analysis. Sci. Rep. 2017;7:8713. doi: 10.1038/s41598-017-09328-5.
    1. Gallieni M., Fusaro M. Vitamin K and cardiovascular calcification in CKD: Is patient supplementation on the horizon? Kidney Int. 2014;86:232–234. doi: 10.1038/ki.2014.24.
    1. van Gorp R.H., Dijkgraaf I. Off-target effects of oral anticoagulants—Vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant dabigatran etexilate. J. Thromb. Haemost. 2021 doi: 10.1111/jth.15289.
    1. Petsophonsakul P., Furmanik M. Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arterioscler. Thromb. Vasc. Biol. 2019;39:1351–1368. doi: 10.1161/ATVBAHA.119.312787.
    1. Yaghini F.A., Song C.Y. Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation. Hypertension. 2010;55:1461–1467. doi: 10.1161/HYPERTENSIONAHA.110.150029.
    1. Rennenberg R.J., van Varik B.J. Chronic coumarin treatment is associated with increased extracoronary arterial calcification in humans. Blood. 2010;115:5121–5123. doi: 10.1182/blood-2010-01-264598.
    1. Ueland T., Gullestad L. Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J. Intern. Med. 2010;268:483–492. doi: 10.1111/j.1365-2796.2010.02264.x.
    1. Cranenburg E.C., Koos R. Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) species. Thromb. Haemost. 2010;104:811–822. doi: 10.1160/TH09-11-0786.
    1. Donaldson C.J., Harrington D.J. Therapeutic warfarin use and the extrahepatic functions of vitamin K-dependent proteins. Br. J. Biomed. Sci. 2017;74:163–169. doi: 10.1080/09674845.2017.1336854.
    1. Geleijnse J.M., Vermeer C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J. Nutr. 2004;134:3100–3105. doi: 10.1093/jn/134.11.3100.
    1. Gast G.C., de Roos N.M. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 2009;19:504–510. doi: 10.1016/j.numecd.2008.10.004.
    1. Beulens J.W., Bots M.L. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis. 2009;203:489–493. doi: 10.1016/j.atherosclerosis.2008.07.010.
    1. Vissers L.E., Dalmeijer G.W. Intake of dietary phylloquinone and menaquinones and risk of stroke of article. J. Am. Heart Assoc. 2013;2:e000455. doi: 10.1161/JAHA.113.000455.
    1. Juanola-Falgarona M., Salas-Salvado J. Dietary intake of vitamin K is inversely associated with mortality risk. J. Nutr. 2014;144:743–750. doi: 10.3945/jn.113.187740.
    1. Vossen L.M., Schurgers L.J. Menaquinone-7 Supplementation to Reduce Vascular Calcification in Patients with Coronary Artery Disease: Rationale and Study Protocol (VitaK-CAC Trial) Nutrients. 2015;7:8905–8915. doi: 10.3390/nu7115443.
    1. Vissers L.E., Dalmeijer G.W. The relationship between vitamin K and peripheral arterial disease of article. Atherosclerosis. 2016;252:15–20. doi: 10.1016/j.atherosclerosis.2016.07.915.
    1. Haugsgjerd T.R., Egeland G.M. Association of dietary vitamin K and risk of coronary heart disease in middle-age adults: The Hordaland Health Study Cohort. BMJ Open. 2020;10:e035953. doi: 10.1136/bmjopen-2019-035953.
    1. Zwakenberg S.R., den Braver N.R. Vitamin K intake and all-cause and cause specific mortality of article. Clin. Nutr. 2017;36:1294–1300. doi: 10.1016/j.clnu.2016.08.017.
    1. Bartstra J.W., Draaisma F. Six months vitamin K treatment does not affect systemic arterial calcification or bone mineral density in diabetes mellitus 2. Eur. J. Nutr. 2020 doi: 10.1007/s00394-020-02412-z.
    1. Zwakenberg S.R., Burgess S. Circulating phylloquinone, inactive Matrix Gla protein and coronary heart disease risk: A two-sample Mendelian Randomization study of article. Clin. Nutr. 2020;39:1131–1136. doi: 10.1016/j.clnu.2019.04.024.
    1. Van den Heuvel E.G., van Schoor N.M. Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease. Maturitas. 2014;77:137–141. doi: 10.1016/j.maturitas.2013.10.008.
    1. Pivin E., Ponte B. Inactive Matrix Gla-Protein Is Associated with Arterial Stiffness in an Adult Population-Based Study. Hypertension. 2015;66:85–92. doi: 10.1161/HYPERTENSIONAHA.115.05177.
    1. Liabeuf S., Bourron O. Vascular calcification in patients with type 2 diabetes: The involvement of matrix Gla protein. Cardiovasc. Diabetol. 2014;13:85. doi: 10.1186/1475-2840-13-85.
    1. Cheung C.L., Sahni S. Vitamin K intake and mortality in people with chronic kidney disease from NHANES III. Clin. Nutr. 2015;34:235–240. doi: 10.1016/j.clnu.2014.03.011.
    1. Westenfeld R., Krueger T. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: A randomized trial. Am. J. Kidney Dis. 2012;59:186–195. doi: 10.1053/j.ajkd.2011.10.041.
    1. Dalmeijer G.W., van der Schouw Y.T. The effect of menaquinone-7 supplementation on circulating species of matrix Gla protein. Atherosclerosis. 2012;225:397–402. doi: 10.1016/j.atherosclerosis.2012.09.019.
    1. Caluwe R., Vandecasteele S. Vitamin K2 supplementation in haemodialysis patients: A randomized dose-finding study. Nephrol. Dial. Transplant. 2014;29:1385–1390. doi: 10.1093/ndt/gft464.
    1. Aoun M., Makki M. High Dephosphorylated-Uncarboxylated MGP in Hemodialysis patients: Risk factors and response to vitamin K2, A pre-post intervention clinical trial. BMC Nephrol. 2017;18:191. doi: 10.1186/s12882-017-0609-3.
    1. Wang Z., Wang Z. Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE(-/-) mice as well as smooth muscle cells. Vascular. 2018;26:18–26. doi: 10.1177/1708538117713395.
    1. Shanahan C.M., Crouthamel M.H. Arterial calcification in chronic kidney disease: Key roles for calcium and phosphate. Circ. Res. 2011;109:697–711. doi: 10.1161/CIRCRESAHA.110.234914.
    1. Mandatori D., Pipino C. Osteogenic transdifferentiation of vascular smooth muscle cells isolated from spontaneously hypertensive rats and potential menaquinone-4 inhibiting effect. J. Cell Physiol. 2019;234:19761–19773. doi: 10.1002/jcp.28576.
    1. Hasanbasic I., Rajotte I. The role of γ-carboxylation in the anti-apoptotic function of gas6. J. Thromb. Haemost. 2005;3:2790–2797. doi: 10.1111/j.1538-7836.2005.01662.x.
    1. Qiu C., Zheng H. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway. Mol. Cell Biochem. 2017 doi: 10.1007/s11010-017-3023-z.
    1. Jiang X., Tao H. Vitamin K2 regression aortic calcification induced by warfarin via Gas6/Axl survival pathway in rats. Eur. J. Pharmacol. 2016;786:10–18. doi: 10.1016/j.ejphar.2016.05.022.
    1. Shea M.K., Berkner K.L. Perspective: Evidence before Enthusiasm—A Critical Review of the Potential Cardiovascular Benefits of Vitamin K. Adv. Nutr. 2021 doi: 10.1093/advances/nmab004.

Source: PubMed

3
購読する