Effect of Modeling Resins on Microhardness of Resin Composites

Ezgi T Bayraktar, Pinar Y Atali, Bora Korkut, Ezgi G Kesimli, Bilge Tarcin, Cafer Turkmen, Ezgi T Bayraktar, Pinar Y Atali, Bora Korkut, Ezgi G Kesimli, Bilge Tarcin, Cafer Turkmen

Abstract

Objectives: This study was aimed to determine the effects of modeling resins on the surface microhardness of composites.

Materials and methods: Six resin-based composites (Charisma Smart, Estellite Asteria, CeramX-One SphereTEC, Admira Fusion, Filtek Ultimate, and Clearfil Majesty Es-2) and three wetting agents (Modeling Liquid, Composite Primer, and Modeling Resin) were investigated. In all, 240 specimens were prepared, and wetting agents were applied prior to light curing in the experimental groups. After 24 hours, specimens were polished and Vickers microhardness (VHN) values were measured.

Statistical analysis: Shapiro-Wilk and two-way analysis of variance (ANOVA) were used for analyses (p < 0.05).

Results: Both modeling resin and composites were determined to be effective factors (p < 0.001). The control group showed the highest VHN (70.37 ± 7.94), followed by Modeling Liquid (64.68 ± 12.07), Composite Primer (59.84 ± 6.33), and Modeling Resin (58 ± 3.52b; p < 0.001). Filtek Ultimate showed the highest VHN (76.62 ± 9.78c), whereas Charisma Smart (58.87 ± 7.95), and Clearfil Majesty (67.27 ± 2.58) showed the lowest (p < 0.001). Clearfil Majesty-Modeling Liquid (46.62 ± 5.33) and Charisma Smart-Composite Primer (50.81 ± 0.39) combinations showed the lowest VHN, whereas Filtek Ultimate-control (87.15 ± 2.12) and Filtek Ultimate-Modeling Liquid (84.24 ± 3.11) showed the highest (p < 0.001).

Conclusion: All tested modeling resins decreased VHN value, and the amount of reduction varied among composites and wetting agents. It might be safer not to use wetting agents unless they are necessary.

Conflict of interest statement

None declared.

European Journal of Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Figures

Fig. 1
Fig. 1
Mean and standard deviation of VHN values, regarding modelling resins and composites. VHN, Vickers microhardness.

References

    1. Choi J W, Lee M J, Oh S H, Kim K M. Changes in the physical properties and color stability of aesthetic restorative materials caused by various beverages. Dent Mater J. 2019;38(01):33–40.
    1. Tuncer S, Demirci M, Tiryaki M, Unlü N, Uysal Ö. The effect of a modeling resin and thermocycling on the surface hardness, roughness, and color of different resin composites. J Esthet Restor Dent. 2013;25(06):404–419.
    1. de Paula F C, Valentin R deS, Borges B CD, Medeiros M CS, de Oliveira R F, da Silva A O. Effect of instrument lubricants on the surface degree of conversion and crosslinking density of nanocomposites. J Esthet Restor Dent. 2016;28(02):85–91.
    1. Korkut B. Smile makeover with direct composite veneers: a two-year follow-up report. J Dent Res Dent Clin Dent Prospect. 2018;12(02):146–151.
    1. Sedrez-Porto J A, Münchow E A, Brondani L P. Cenci MS, Pereira-Cenci T. Effects of modeling liquid/resin and polishing on the color change of resin composite. Braz Oral Res. 2016;30(01):1–9.
    1. Perdigăo J, Gomes G. Effect of instrument lubricant on the cohesive strength of a hybrid resin composite. Quintessence Int. 2006;37(08):621–625.
    1. Kutuk Z B, Erden E, Aksahin D L, Durak Z E, Dulda A C. Influence of modeling agents on the surface properties of an esthetic nano-hybrid composite. Restor Dent Endod. 2020;45(02):e13.
    1. Barcellos D C, Pucci C R, Torres C RG, Goto E H, Inocencio A C. Effects of resinous monomers used in restorative dental modeling on the cohesive strength of composite resin. J Adhes Dent. 2008;10(05):351–354.
    1. Perea-Lowery L, Tolvanen M, Vallittu P K. Evaluation of the effect of monomer systems on the softening of a composite resin. Int J Prosthodont. 2019;32(01):101–103.
    1. Dunn W J, Strong T C. Effect of alcohol and unfilled resin in the incremental buildup of resin composite. Quintessence Int. 2007;38(01):e20–e26.
    1. Münchow E A, Sedrez-Porto J A, Piva E. Pereira-Cenci T, Cenci MS. Use of dental adhesives as modeler liquid of resin composites. Dent Mater. 2016;32(04):570–577.
    1. Araujo F S, Barros M CR, Santana M LC et al.Effects of adhesive used as modeling liquid on the stability of the color and opacity of composites. J Esthet Restor Dent. 2018;30(05):427–433.
    1. Sedrez-Porto J A, Munchow E A, Cenci M S, Pereira-Cenci T. Translucency and color stability of resin composite and dental adhesives as modeling liquids - A one-year evaluation. Braz Oral Res. 2017;31:54–61.
    1. Scribante A, Bollardi M, Chiesa M, Poggio C, Colombo M. Flexural properties and elastic modulus of different esthetic restorative materials: evaluation after exposure to acidic drink. BioMed Res Int. 2019;2019:5.109481E6.
    1. Ruschel V C, Bona V S, Baratieri L N, Maia H P. Effect of surface sealants and polishing time on composite surface roughness and microhardness. Oper Dent. 2018;43(04):408–415.
    1. Khalichi P, Singh J, Cvitkovitch D G, Santerre J P. The influence of triethylene glycol derived from dental composite resins on the regulation of Streptococcus mutans gene expression. Biomaterials. 2009;30(04):452–459.
    1. Elzoheiry A, Hafez A, Amr H. Microhardness testing of resin cement versus sonic bulk fill resin composite material for cementation of CAD/CAM composite block with different thickness. Egypt Dent J. 2019;65:69–78.
    1. Toras F M, Hamouda I M. Effect of nano filler on microhardness, diametral tensile strength and compressive strength of nano-filled glass ionomer. Int J Dentistry Oral Sci. 2017;4:413–417.
    1. Liebermann A, Spintzyk S, Reymus M, Schweizer E, Stawarczyk B. Nine prophylactic polishing pastes: impact on discoloration, gloss, and surface properties of a CAD/CAM resin composite. Clin Oral Investig. 2019;23(01):327–335.
    1. Sahbaz C, Bahsi E, Ince B, Bakir E P, Cellik O. Effect of the different finishing and polishing procedures on the surface roughness of three different posterior composite resins. Scanning. 2016;38(05):448–454.
    1. Dhananjaya K M, Vadavadagi S V, Almalki S A, Verma T, Arora S, Kumar N N. In vitro analysis of different polishing systems on the color stability and surface roughness of nanocomposite resins. J Contemp Dent Pract. 2019;20(11):1335–1338.
    1. Toz Akalin T, Genç G, Korkmaz Ceyhan Y, Ozturk Bozkurt F. The effect of mouth rinses on the color stability of sonicfill and a nanohybrid composite. J Istanb Univ Fac Dent. 2016;50(02):17–23.
    1. Poggio C, Lombardini M, Gaviati S, Chiesa M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J Conserv Dent. 2012;15(03):237–241.
    1. Mandikos M N, McGivney G P, Davis E, Bush P J, Carter J M. A comparison of the wear resistance and hardness of indirect composite resins. J Prosthet Dent. 2001;85(04):386–395.
    1. Başeren M. Surface roughness of nanofill and nanohybrid composite resin and ormocer-based tooth-colored restorative materials after several finishing and polishing procedures. J Biomater Appl. 2004;19(02):121–134.
    1. Nayyer M, Zahid S, Hassan S H et al.Comparative abrasive wear resistance and surface analysis of dental resin-based materials. Eur J Dent. 2018;12(01):57–66.
    1. Ilie N, Hilton T J, Heintze S D et al.Academy of dental materials guidance-resin composites: part i-mechanical properties. Dent Mater. 2017;33(08):880–894.
    1. Ali M, Hussein M A, Al-Aqeeli N. Optimization of spark plasma sintering parameters using the taguchi method for developing Mg-based composites. J Miner Met Mater Soc. 2020;72:1186–1194.
    1. de Moraes R R, Gonçalves L deS, Lancellotti A C, Consani S, Correr-Sobrinho L, Sinhoreti M A. Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins? Oper Dent. 2009;34(05):551–557.
    1. Kim K-H, Ong J L, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002;87(06):642–649.
    1. Blackham J T, Vandewalle K S, Lien W. Properties of hybrid resin composite systems containing prepolymerized filler particles. Oper Dent. 2009;34(06):697–702.
    1. Koc-Vural U, Baltacioglu I, Altinci P. Color stability of bulk-fill and incremental-fill resin-based composites polished with aluminum-oxide impregnated disks. Restor Dent Endod. 2017;42(02):118–124.
    1. Barszczewska-Rybarek I M. Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dent Mater. 2009;25(09):1082–1089.
    1. Pratap B, Gupta R K, Bhardwaj B, Nag M. Resin based restorative dental materials: characteristics and future perspectives. Jpn Dent Sci Rev. 2019;55(01):126–138.
    1. Chou K F, Han C C, Lee S. Water transport in 2-hydroxyethyl methacrylate copolymer irradiated by γ rays in air and related phenomena. J Polym Sci Pol. 2000;38:659–671.
    1. Lu K P, Fu Y K, Lee S. Hardness of irradiated hydroxyethyl methacrylate copolymer at elevated temperatures. J Appl Polym Sci. 2009;113:657–661.
    1. Kundie F, Azhari C H, Muchtar A, Ahmad Z A. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. J Physiol Sci. 2018;29:141–165.
    1. Prentice L H, Tyas M J, Burrow M F. The effect of ytterbium fluoride and barium sulphate nanoparticles on the reactivity and strength of a glass-ionomer cement. Dent Mater. 2006;22(08):746–751.
    1. Klapdohr S, Moszner N. New inorganic components for dental filling composites. Monatsh Chem/Chemical Monthly. 2005;136:21–45.
    1. Liu Y, Sun Y, Zeng F, Xie W, Liu Y, Geng L. Effect of nano SiO2particles on the morphology and mechanical properties of POSS nanocomposite dental resins. J Nanopart Res. 2014;16:1–8.

Source: PubMed

3
購読する