Application of Surface Electromyography in Exercise Fatigue: A Review

Jiaqi Sun, Guangda Liu, Yubing Sun, Kai Lin, Zijian Zhou, Jing Cai, Jiaqi Sun, Guangda Liu, Yubing Sun, Kai Lin, Zijian Zhou, Jing Cai

Abstract

Exercise fatigue is a common physiological phenomenon in human activities. The occurrence of exercise fatigue can reduce human power output and exercise performance, and increased the risk of sports injuries. As physiological signals that are closely related to human activities, surface electromyography (sEMG) signals have been widely used in exercise fatigue assessment. Great advances have been made in the measurement and interpretation of electromyographic signals recorded on surfaces. It is a practical way to assess exercise fatigue with the use of electromyographic features. With the development of machine learning, the application of sEMG signals in human evaluation has been developed. In this article, we focused on sEMG signal processing, feature extraction, and classification in exercise fatigue. sEMG based multisource information fusion for exercise fatigue was also introduced. Finally, the development trend of exercise fatigue detection is prospected.

Keywords: classification; exercise fatigue; feature extraction; machine learning; sEMG.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Sun, Liu, Sun, Lin, Zhou and Cai.

References

    1. Ahmadizadeh C., Khoshnam M., Menon C. (2021). Human machine interfaces in upper-limb prosthesis control: a survey of techniques for preprocessing and processing of biosignals. IEEE Signal Proc. Magaz. 38 12–22. 10.1109/msp.2021.3057042
    1. Ahmed S. F., Joyo M. K., Mahdi H. F., Kiwarkis I. J. (2020). “Muscle fatigue detection and analysis using EMG sensor,” in Proceedings of the 2020 IEEE 7th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Kuala Lumpur. 10.1109/ICETAS51660.2020.9484230
    1. Alam M. M., Khan A. A., Farooq M. (2020). Effects of vibration therapy on neuromuscular efficiency & features of the EMG signal based on endurance test. J. Bodywork Movement Ther. 24 325–335. 10.1016/j.jbmt.2020.06.037
    1. Alberto R., Draicchio F., Varrecchia T., Silvetti A., Iavicoli S. (2018). Wearable monitoring devices for biomechanical risk assessment at work: current status and future challengesa systematic review. Int. J. Environ. Res. Public Health 15:26. 10.3390/ijerph15092001
    1. Asmussen E. (1993). Muscle fatigue. june 1979. Med. Sci. Sports Exerc. 25 411–420.
    1. Avian C., Prakosa S. W., Faisal M., Leu J. S. (2022). Estimating finger joint angles on surface EMG using manifold learning and long short-term memory with attention mechanism. Biomed. Signal Proc. Control 71:15. 10.1016/j.bspc.2021.103099
    1. Barszap A. G., Skavhaug I.-M., Joshi S. S. (2016). Effects of muscle fatigue on the usability of a myoelectric human-computer interface. Hum. Movement Sci. 49 225–238. 10.1016/j.humov.2016.06.009
    1. Bharathi K. D., Karthick P. A., Ramakrishnan S. (2022). Automated detection of muscle fatigue conditions from cyclostationary based geometric features of surface electromyography signals. Comput. Methods Biomechan. Biomed. Eng. 25 320–332. 10.1080/10255842.2021.1955104
    1. Bilgin G., Hindistan I. E., Özkaya Y. G., Köklükaya E., Polat Ö, Çolak ÖH. (2015). Determination of fatigue following maximal loaded treadmill exercise by using wavelet packet transform analysis and MLPNN from MMG-EMG data combinations. J. Med. Syst. 39:108. 10.1007/s10916-015-0304-5
    1. Bukhari W. M., Yun C. J., Kassim A. M., Tokhi M. O. (2020). Study of K-nearest neighbour classification performance on fatigue and non-fatigue EMG signal features. Int. J. Adv. Comput. Sci. Appl. 11 41–47.
    1. Chai G., Wang Y., Wu J., Yang H., Tang Z., Zhang L. (2019). Study on the recognition of exercise intensity and fatigue on runners based on subjective and objective information. Healthcare 7:4.
    1. Chandra S., Hayashibe M., Thondiyath A. (2020). Muscle fatigue induced hand tremor clustering in dynamic laparoscopic manipulation. IEEE Trans. Syst. Man Cybernet. Syst. 50 5420–5431. 10.1109/tsmc.2018.2882957
    1. Chang K.-M., Liu S.-H., Wu X.-H. (2012). A wireless sEMG recording system and its application to muscle fatigue detection. Sensors 12 489–499. 10.3390/s120100489
    1. Chapman M., Larumbe-Zabala E., Gosss-Sampson M., Colpus M., Triplett N. T., Naclerio F. (2019). Perceptual, mechanical, and electromyographic responses to different relative loads in the parallel squat. J. Stren. Condit. Res. 33 8–16. 10.1519/jsc.0000000000001867
    1. Chen L. L., Zhang C., Liu Z. J., Zhang T. Y. (2018). Evaluation of muscle fatigue based on CRP and RQA for upper limb exoskeleton. Chin. Automat. Cong. 2018 4210–4215.
    1. Chen S. K., Xu K. L., Yao X. W., Zhu S. Y., Zhang B. H., Zhou H. D., et al. (2021b). Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas. Comput. Biol. Med. 133:14. 10.1016/j.compbiomed.2021.104413
    1. Chen S. K., Xu K. L., Yao X. W., Ge J., Li L., Zhu S. Y., et al. (2021a). Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals. Comput. Methods Prog. Biomed. 211:17. 10.1016/j.cmpb.2021.106451
    1. Chlif M., Keochkerian D., Temfemo A., Choquet D., Ahmaidi S. (2018). Relationship between electromyogram spectrum parameters and the tension-time index during incremental exercise in trained subjects. J. Sports Sci. Med. 17 509–514.
    1. Cortez L., Mackay K., Contreras E., Penailillo L. (2017). Acute effect of caffeine ingestion on reaction time and electromyographic activity of the dollyo chagi round kick in taekwondo fighters. Ricyde Rev. Int. De Cien. Del Dep. 13 52–62. 10.5232/ricyde2017.04704
    1. Cui C. H., Xin E. Q., Qu M. L., Jiang S. (2021). Fatigue and abnormal state detection by using EMG signal during football training. Int. J. Dis. Syst. Technol. 12 13–23. 10.4018/ijdst.2021040102
    1. Cui W., Chen X., Cao S., Zhang X. (2017). Muscle fatigue analysis of the deltoid during three head-related static isometric contraction tasks. Entropy 19:5.
    1. De la Pena S., Polo A., Robles-Algarin C. (2019). Implementation of a portable electromyographic prototype for the detection of muscle fatigue. Electronics 8:15. 10.3390/electronics8060619
    1. Dieterich A. V., Botter A., Vieira T. M., Peolsson A., Petzke F., Davey P., et al. (2017). Spatial variation and inconsistency between estimates of onset of muscle activation from EMG and ultrasound. Sci. Rep. 7:42011. 10.1038/srep42011
    1. Elsais W. M., Preece S. J., Jones R. K., Herrington L. (2020). Could relative movement between the adductor muscles and the skin invalidate surface electromyography measurement? J. Appl. Biomechan. 36 1–7.
    1. Fan X., Xu H. B., Huang W. Y., Lin Y. F. (2018). “Muscle fatigue recognition based on sEMG characteristics,” in Proceeding of the International Conference on Electrical, Control, Automation and Robotics, (Lancaster: Destech Publications, Inc; ), 493–497.
    1. Fang C. M., He B. W., Wang Y. X., Cao J., Gao S. (2020). EMG-centered multisensory based technologies for pattern recognition in rehabilitation: state of the art and challenges. Biosensors Basel 10:30. 10.3390/bios10080085
    1. Fang N. L., Zhang C., Lv J. (2021). Effects of vertical lifting distance on upper-body muscle fatigue. Int. J. Environ. Res. Public Health 18:17. 10.3390/ijerph18105468
    1. Fundaro C., Gazzoni M., Pinna G. D., Dallocchio C., Rainoldi A., Casale R. (2021). Is fatigue a muscular phenomenon in parkinson’s disease? Implications for rehabilitation. Eur. J. Phys. Rehabilit. Med. 57 691–700. 10.23736/s1973-9087.21.06621-1
    1. Gandevia S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 81 1725–1789.
    1. Gaudet S., Tremblay J., Dal Maso F. (2018). Evolution of muscular fatigue in periscapular and rotator cuff muscles during isokinetic shoulder rotations. J. Sports Sci. 36 2121–2128. 10.1080/02640414.2018.1440513
    1. Ghapanchizadeh H., Ahmad S. A., Ishak A. J. (2016). Recommended surface EMG electrode position for wrist extension and flexion. Biomed. Eng. Sci. 108–112.
    1. Gonzalez-Zamora P., Benitez V. H., Pacheco J. (2022). A feature-based processing framework for real-time implementation of muscle fatigue measurement. Cluster Comput. J. Networks Software Tools Appl. 10:343. 10.1007/s10586-021-03437-7
    1. Goubault E., Martinez R., Bouffard J., Dowling-Medley J., Begon M., Dal Maso F. (2022). Shoulder electromyography-based indicators to assess manifestation of muscle fatigue during laboratory-simulated manual handling task. Ergonomics 65 118–133. 10.1080/00140139.2021.1958013
    1. Greco A., Valenza G., Bicchi A., Bianchi M., Scilingo E. P. (2019). Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates. Biomed. Signal Proc. Control 51 42–49. 10.1016/j.bspc.2019.02.007
    1. Gupta A., Mudie K. L., Clothier P. J. (2014). The reliability of determining the onset of medial gastrocnemius muscle activity during a stretch-shorten-cycle action. J. Electr. Kinesiol. 24 588–592.
    1. Halson H., Shona L. (2014). Monitoring training load to understand fatigue in athletes. Sports Med. 44:S139.
    1. Harmon K. K., Hamilton A. S., Johnson B. D., Bartek F. J., Girts R. M., MacLennan R. J., et al. (2021). Motor unit action potential amplitude during low torque fatiguing contractions versus high-torque non-fatiguing contractions: a multilevel analysis. Eur. J. Appl. Physiol. 121 1145–1157. 10.1007/s00421-021-04606-7
    1. Hedayatpour N., Rashid D. M. S., Izanloo Z., Seylaneh H., Falla D. (2021). Men and women show different adaptations of quadriceps activity following fatiguing contractions: an explanation for the increased incidence of sports-related knee injuries in women? J. Electr. Kinesiol. 58:6. 10.1016/j.jelekin.2021.102552
    1. Hernandez L., Camic C. (2019). Fatigue-mediated loss of complexity is contraction-type dependent in vastus lateralis electromyographic signals. Sports 7:4.
    1. Hou X., Wang X. L., Griffin L., Liao F. Y., Peters J., Jan Y. K. (2021). Immediate and delayed effects of cupping therapy on reducing neuromuscular fatigue. Front. Bioeng. Biotechnol. 9:10. 10.3389/fbioe.2021.678153
    1. Huebner A., Faenger B., Schenk P., Scholle H. C., Anders C. (2015). Alteration of Surface EMG amplitude levels of five major trunk muscles by defined electrode location displacement. J. Electr. Kinesiol. 25 214–223.
    1. Jero S. E., Ramakrishnan S. (2019). “Analysis of muscle fatigue conditions in surface EMG signal with a novel hilbert marginal spectrum entropy method,” in Proceeding of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (New York: Ieee; ), 2675–2678.
    1. Ji D. L., Huang Q. C. (2021). Self-maintenance and automatic identification of the fatigue status of the human body based on internet of things technology. Sust. Energy Technol. Assess. 45:9. 10.1016/j.seta.2021.101193
    1. Jo M., Ahn S., Kim J., Koo B., Jeong Y., Kim S., et al. (2018). Mechanomyography for the measurement of muscle fatigue caused by repeated functional electrical stimulation. Int. J. Prec. Eng. Manufact. 19 1405–1410. 10.1007/s12541-018-0166-0
    1. Kahl L., Hofmann U. G. (2016). Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals. Med. Eng. Phys. 2016 1260–1269.
    1. Karthick P., Ghosh A., Maitra D., Ramakrishnan S. (2018). Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Comput. Methods Prog. Biomed. 154, 45–56.
    1. Khan T., Lundgren L. E., Jrpe E., Olsson M. C., Viberg P. (2019). A novel method for classification of running fatigue using change-point segmentation. Sensors 19:21.
    1. Kim H., Lee J., Kim J. (2018). Electromyography-signal-based muscle fatigue assessment for knee rehabilitation monitoring systems. Biomed. Eng. Lett. 8 345–353. 10.1007/s13534-018-0078-z
    1. Kuniszyk-Jozkowiak W., Jaszczuk J., Czaplicki A. (2018). Changes in electromyographic signals and skin temperature during standardised effort in volleyball players. Acta Bioeng. Biomechan. 20 115–122. 10.5277/abb-01198-2018-02
    1. Kwon H., Di Cristina J. F., Rutkove S. B., Sanchez B. (2018). Recording characteristics of electrical impedance-electromyography needle electrodes. Physiol. Measure. 39:aabb8c. 10.1088/1361-6579/aabb8c
    1. Lejun W., Yuting W., Aidi M., Guoqiang M., Yu Y., Ruijie L., et al. (2018). A comparative study of EMG indices in muscle fatigue evaluation based on grey relational analysis during all-out cycling exercise. BioMed Res. Int. 2018 1–8.
    1. Li Y. K. (2017). An adaptive muscle fatigue model based on human physiology. Agro Food Industry Hi Tech 28 2107–2111.
    1. Liu J., Ying D., William Z. (2015). Robust muscle activity onset detection using an unsupervised electromyogram learning framework. PLoS One 1–15. 10.1371/journal.pone.0127990
    1. Liu S. H., Lin C. B., Chen Y., Chen W. X., Huang T. S., Hsu C. Y. (2019). An EMG patch for the real-time monitoring of muscle-fatigue conditions during exercise. Sensors 19:15. 10.3390/s19143108
    1. Liu X. L., Li Z. B. (2021). Influence mechanism of running sportswear fatigue based on BP neural network. Eurasip J. Adv. Signal Proc. 2021:15. 10.1186/s13634-021-00778-8
    1. Makaram N., Karthick P. A., Swaminathan R. (2021). Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach. IEEE Trans. Instrument. Measure. 70:8. 10.1109/tim.2021.3063777
    1. Marco G., Alberto B., Taian V. (2017). Surface EMG and muscle fatigue: multi-channel approaches to the study of myoelectric manifestations of muscle fatigue. Physiol. Meas. 38 R27–R60. 10.1088/1361-6579/aa60b9
    1. Martinez-Aguilar G. M., Gutierrez D. (2019). Using cortico-muscular and cortico-cardiac coherence to study the role of the brain in the development of muscular fatigue. Biomed. Signal Proc. Control 48 153–160. 10.1016/j.bspc.2018.10.011
    1. Meng Q., Zhang J. J., Yang X. (2019). Virtual rehabilitation training system based on surface EMG feature extraction and analysis. J. Med. Syst. 43:11. 10.1007/s10916-019-1166-z
    1. Na Y. J., Lee H. J., Kwon S. (2020). Investigating the effects of long-term contractions on myoelectric recognition of wrist movements from stroke patients. Int. J. Precis. Eng. Manufact. 21 1771–1779. 10.1007/s12541-020-00364-2
    1. Nijs J., Aelbrecht S., Meeus M., Van Oosterwijck J., Zinzen E., Clarys P. (2011). Tired of being inactive: a systematic literature review of physical activity, physiological exercise capacity and muscle strength in patients with chronic fatigue syndrome. Disabili. Rehabilit. 33 1493–1500. 10.3109/09638288.2010.541543
    1. Pakosz P., Konieczny M. (2020). Training induced fatigability assessed by sEMG in pre-olympic ice-skaters. Sci. Rep. 10:1052. 10.1038/s41598-020-71052-4
    1. Pancholi S., Joshi A. M. (2018). Portable EMG data acquisition module for upper limb prosthesis application. IEEE Sen. J. 18 3436–3443. 10.1109/JSEN.2018.2809458
    1. Park S. Y., Park C. H. (2021). Diagnosis of muscle fatigue using surface electromyography and analysis of associated factors in type 2 diabetic patients with neuropathy: a preliminary study. Int. J. Environ. Res. Public Health 18:8. 10.3390/ijerph18189635
    1. Qi L. P., Ma X. C., Zhou D. D., Guan S., Gao F. S., Cong P. X. (2020). Wavelet and principal component analysis of electromyographic activity and slow component of oxygen uptake during heavy and severe cycling exercise. Appl. Physiol. Nutr. Metab. 45 187–192. 10.1139/apnm-2019-0037
    1. Qi M. S., Xie P., Zhang Y. Y., Yang W. J., Liu Z. J., Cheng S. C., et al. (2018). Driver fatigue assessment based on the feature fusion and transfer learning of EEG and EMG. Chin. Automat. Cong. 2018 1314–1317.
    1. Quittmann O. J., Abel T., Albracht K., Struder H. K. (2020). Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants. Sports Biomechan. [Epub ahead of print]. 10.1080/14763141.2020.1745266
    1. Rejith R., Raj R., Sivanandan K. S. (2016). “Estimation of elbow kinematics under fatigue and non-fatigue conditions using MLPN network based on sEMG signal,” in Proceeding of the 2016 International Conference on Inventive Computation Technologies (ICICT)), 1–5.
    1. Rodriguez-Rosell D., Yanez-Garcia J. M., Mora-Custodio R., Sanchez-Medina L., Ribas-Serna J., Gonzalez-Badillo J. J. (2021). Effect of velocity loss during squat training on neuromuscular performance. Scand. J. Med. Sci. Sports 31 1621–1635. 10.1111/sms.13967
    1. Sae-Lim W., Phukpattaranont P., Thongpull K. (2019). “Effect of electrode skin impedance on electromyography signal quality,” in Proceeding of the 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)).
    1. Sato H., Nishimura Y., Tsuboi H., Minoshima Y., Sakata T., Umezu Y., et al. (2021). Differences in fatigability of vastus medialis muscle between patients with limb symmetry index of 90% and 90% after chronic anterior cruciate ligament reconstruction. KNEE 31 39–45. 10.1016/j.knee.2021.05.005
    1. Scano A., Pirovano I., Manunza M. E., Spinelli L., Re R. (2020). Sustained fatigue assessment during isometric exercises with time-domain near infrared spectroscopy and surface electromyography signals. Biomed. Opt. Exp. 11:7357.
    1. Shahmoradi S., Zare A., Behzadipour S. (2017). “Fatigue status recognition in a post-stroke rehabilitation exercise with sEMG signal,” in Proceeding of the 24th National Iranian Conference on Biomedical Engineering/2nd International Iranian Conference on Biomedical Engineering (ICBME)), 162–166.
    1. Silva M. F., Dias J. M., Dela Bela L. F., Pelegrinelli A. R. M., Lima T. B., Carvalho R. G. D., et al. (2020). A review on muscle activation behaviour during gait in shallow water and deep-water running and surface electromyography procedures. J. Bodywork Movement Ther. 24 432–441. 10.1016/j.jbmt.2020.06.005
    1. Silvetti A., Chini G., Ranavolo A., Draicchio F. (2017). “Upper limb repetitive movement risk assessment by means of sEMG parameters,” in Proceeding of the International Conference on Social& Occupational Ergonomics/8th International Conference on Applied Human Factors and Ergonomics (AHFE), (CHAM: Springer International Publishing Ag; ), 213–221.
    1. Simsek D. (2017). Different fatigue-resistant leg muscles and EMG response during whole-body vibration. J. Electr. Kinesiol. 37 147–154. 10.1016/j.jelekin.2017.10.006
    1. Subasi A., Kiymik M. K. (2010). Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks. J. Med. Syst. 34 777–785. 10.1007/s10916-009-9292-7
    1. Tang D. X., Yu Z., He Y., Asghar W., Zheng Y. N., Li F. L., et al. (2020). Strain-insensitive elastic surface electromyographic (sEMG) electrode for efficient recognition of exercise intensities. Micromachines 11:12. 10.3390/mi11030239
    1. Tapia C., Daud O., Ruiz-Del-Solar J. (2017). EMG signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns. J. Med. Biol. Eng. 37 140–155. 10.1007/s40846-016-0201-5
    1. Too J., Abdullah A. R., Saad N. M., Ali N. M., Tee W. (2018b). A new competitive binary grey wolf optimizer to solve the feature selection problem in EMG signals classification. Computers 7:18. 10.3390/computers7040058
    1. Too J., Abdullah A. R., Saad N. M., Ali N. M. (2018a). Feature selection based on binary tree growth algorithm for the classification of myoelectric signals. Machines 6:65. 10.3390/machines6040065
    1. Triwiyanto T., Wahyunggoro O., Adi Nugroho H., Herianto H. (2017). Continuous wavelet transform analysis of surface electromyography for muscle fatigue assessment on the elbow joint motion. Adv. Electr. Electr. Eng. 15 424–434. 10.15598/aeee.v15i3.2173
    1. Triwiyanto T., Wahyunggoro O., Nugroho H. A., Herianto (2018). Adaptive threshold to compensate the effect of muscle fatigue on elbow-joint angle estimation based on electromyography. J. Mechan. Eng. Sci. 12 3786–3796. 10.15282/jmes.12.3.2018.3.0334
    1. Wan J. J., Qin Z., Wang P. Y., Sun Y., Liu X. (2017). Muscle fatigue: general understanding and treatment. Exp. Mol. Med. 49:e384. 10.1038/emm.2017.194
    1. Wang C. (2021). Analyzing the influencing factors of sports fatigue based on algorithm. Revista Brasileira De Medicina Do Esporte 27 377–380. 10.1590/1517-8692202127042021_0125
    1. Wang J., Sun Y., Sun S. (2020). Recognition of muscle fatigue status based on improved wavelet threshold and CNN-SVM. IEEE Access 8 207914–207922.
    1. Wang J. H., Sun S. M., Sun Y. N. (2021). A muscle fatigue classification model based on LSTM and improved wavelet packet threshold. Sensors 21:16. 10.3390/s21196369
    1. Wang L., Wang H., Liu J. (2021). Discrimination of driver fatigue based on distortion energy density theory and multiple physiological signals. IEEE Access 9 151824–151833. 10.1109/ACCESS.2021.3125052
    1. Wang S. R., Tang H., Wang B., Mo J. (2018). A novel approach to detecting muscle fatigue based on sEMG by using neural architecture search framework. IEEE Trans. Neural Networks Learn. Syst. 1–12. 10.1109/tnnls.2021.3124330
    1. Whittaker R. L., Sonne M. W., Potvin J. R. (2019). Ratings of perceived fatigue predict fatigue induced declines in muscle strength during tasks with different distributions of effort and recovery. J. Electr. Kinesiol. 47 88–95. 10.1016/j.jelekin.2019.05.012
    1. Wu Q., Xi C., Ding L., Wei C., Ren H., Law R., et al. (2017). Classification of EMG signals by BFA-optimized GSVCM for diagnosis of fatigue status. IEEE Trans. Autom. Sci. Eng. 14, 915–930.
    1. Yamagishi K., Nakanishi T., Mihara S., Azuma M., Takeoka S., Kanosue K., et al. (2019). Elastic kirigami patch for electromyographic analysis of the palm muscle during baseball pitching. NPG Asia Mater. 11:183. 10.1038/s41427-019-0183-1
    1. Yousif H. A., Norasmadi A. R., Salleh A. B., Zakaria A., Alfarhan K. A. (2019). Assessment of muscles fatigue during 400-meters Running Strategies Based on the surface EMG signals. J. Biomimet. Biomat. Biomed. Eng. 42 1–13.
    1. Yu N., Hong L., Guo J. (2021). Analysis of upper-limb muscle fatigue in the process of rotary handling. Int. J. Industr. Ergon. 83:9. 10.1016/j.ergon.2021.103109
    1. Zanca G. G., Oliveira A., Ansanello W., Barros F. C., Mattiello S. M. (2014). EMG of upper trapezius electrode sites and association with clavicular kinematics. J. Electr. Kinesiol. Off. J. Int. Soc. Electr. Kinesiol. 24 868–874.
    1. Zeng J., Zhou Y., Yang Y. C., Xu Z. L., Zhang H. W., Liu H. H. (2021). “Robustness of combined sEMG and ultrasound modalities against muscle fatigue in force estimation,” in Proceeding of the 14th International Conference on Intelligent Robotics and Applications (ICIRA)), 213–221.
    1. Zhang C., Chen X., Cao S., Zhang X., Chen X. (2019). A novel HD-sEMG preprocessing method integrating muscle activation heterogeneity analysis and kurtosis-guided filtering for high-accuracy joint force estimation. IEEE Trans. Neural Syst. Rehabili. Eng. 27 1920–1930. 10.1109/tnsre.2019.2933811
    1. Zhang X., Zhou P. (2012). Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes. J. Electr. Kinesiol. 22:6.
    1. Zhang Y., Chen S., Cao W., Guo P., Gao D., Wang M., et al. (2021). MFFNet: multi-dimensional feature fusion network based on attention mechanism for sEMG analysis to detect muscle fatigue. Exp. Syst. Appl. 185:115639. 10.1016/j.eswa.2021.115639
    1. Zhao S. M., Liu J. X., Gong Z. D., Lei Y. S., OuYang X., Chan C. C., et al. (2020). Wearable physiological monitoring system based on electrocardiography and electromyography for upper limb rehabilitation training. Sensors 20:17. 10.3390/s20174861
    1. Zheng Y., Hu X. G. (2019). Interference removal from electromyography based on independent component analysis. IEEE Trans. Neural Syst. Rehabili. Eng. 27 887–894. 10.1109/tnsre.2019.2910387

Source: PubMed

3
購読する