Pre- and Post-Surgical Nutrition for Preservation of Muscle Mass, Strength, and Functionality Following Orthopedic Surgery

Katie R Hirsch, Robert R Wolfe, Arny A Ferrando, Katie R Hirsch, Robert R Wolfe, Arny A Ferrando

Abstract

Nutritional status is a strong predictor of postoperative outcomes and is recognized as an important component of surgical recovery programs. Adequate nutritional consumption is essential for addressing the surgical stress response and mitigating the loss of muscle mass, strength, and functionality. Especially in older patients, inadequate protein can lead to significant muscle atrophy, leading to a loss of independence and increased mortality risk. Current nutritional recommendations for surgery primarily focus on screening and prevention of malnutrition, pre-surgical fasting protocols, and combating post-surgical insulin resistance, while recommendations regarding macronutrient composition and timing around surgery are less established. The goal of this review is to highlight oral nutrition strategies that can be implemented leading up to and following major surgery to minimize atrophy and the resultant loss of functionality. The role of carbohydrate and especially protein/essential amino acids in combating the surgical stress cascade and supporting recovery are discussed. Practical considerations for nutrient timing to maximize oral nutritional intake, especially during the immediate pre- and post- surgical periods, are also be discussed.

Keywords: aging; anabolic resistance; atrophy; dietary supplements; essential amino acids; nutrient timing; protein quality.

Conflict of interest statement

K.R.H. has no conflict of interest to declare. R.R.W. is an inventor of United States patent 16; 382,984 entitled “Composition for Stimulating Muscle Growth, Repair, and Maintenance,” US Patent (16; 382,984). A.A.F. and R.R.W. are listed as inventors on United States patent 9364463 B2 entitled “Use of amino acid supplementation for improved muscle recovery,” and United States patent application 20200253908 entitled “Use of amino acid supplementation for improved muscle protein synthesis.” R.R.W. is a shareholder in Essential Blends, LLC, and The Amino Company, Inc.

Figures

Figure 1
Figure 1
Example of pre-operative nutrient timing leading up to surgery. Modified from Smith-Ryan et al. (2020).
Figure 2
Figure 2
Protein sources with consideration of food source, protein quality, absorption, and EAA availability.
Figure 3
Figure 3
Example of post-operative nutrient timing. Partially adapted from Smith-Ryan et al. (2020).

References

    1. Wischmeyer P.E., Carli F., Evans D.C., Guilbert S., Kozar R., Pryor A., Thiele R.H., Everett S., Grocott M., Gan T.J., et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Nutrition Screening and Therapy Within a Surgical Enhanced Recovery Pathway. Anesth. Analg. 2018;126:1883–1895. doi: 10.1213/ANE.0000000000002743.
    1. Correia M.I., Waitzberg D.L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin. Nutr. 2003;22:235–239. doi: 10.1016/S0261-5614(02)00215-7.
    1. Thomas M.N., Kufeldt J., Kisser U., Hornung H.-M., Hoffmann J., Andraschko M., Werner J., Rittler P. Effects of malnutrition on complication rates, length of hospital stay, and revenue in elective surgical patients in the G-DRG-system. Nutrition. 2016;32:249–254. doi: 10.1016/j.nut.2015.08.021.
    1. Geurden B., Franck E., Weyler J., Ysebaert D. The risk of malnutrition in community-living elderly on admission to hospital for major surgery. Acta Chir. Belg. 2015;115:341–347. doi: 10.1080/00015458.2015.11681126.
    1. Corish C.A., Kennedy N.P. Protein–energy undernutrition in hospital in-patients. Br. J. Nutr. 2000;83:575–591. doi: 10.1017/S000711450000074X.
    1. Yeung S.E., Hilkewich L., Gillis C., Heine J.A., Fenton T.R. Protein intakes are associated with reduced length of stay: A comparison between Enhanced Recovery After Surgery (ERAS) and conventional care after elective colorectal surgery. Am. J. Clin. Nutr. 2017;106:44–51. doi: 10.3945/ajcn.116.148619.
    1. Aucoin S., McIsaac D.I. Emergency General Surgery in Older Adults: A Review. Anesthesiol. Clin. 2019;37:493–505. doi: 10.1016/j.anclin.2019.04.008.
    1. Weimann A., Braga M., Carli F., Higashiguchi T., Hubner M., Klek S., Laviano A., Ljungqvist O., Lobo D.N., Martindale R., et al. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017;36:623–650. doi: 10.1016/j.clnu.2017.02.013.
    1. Gillis C., Wischmeyer P.E. Pre-operative nutrition and the elective surgical patient: Why, how and what? Anaesthesia. 2019;74(Suppl. 1):27–35. doi: 10.1111/anae.14506.
    1. Demling R.H. Nutrition, anabolism, and the wound healing process: An overview. Eplasty. 2009;9:e9.
    1. Cartwright M.M. The metabolic response to stress: A case of complex nutrition support management. Crit. Care Nurs. Clin. N. Am. 2004;16:467–487. doi: 10.1016/S0899-5885(04)00070-X.
    1. Gillis C., Carli F. Promoting Perioperative Metabolic and Nutritional Care. Anesthesiology. 2015;123:1455–1472. doi: 10.1097/ALN.0000000000000795.
    1. McCowen K.C., Malhotra A., Bistrian B.R. Stress-induced hyperglycemia. Crit. Care Clin. 2001;17:107–124. doi: 10.1016/S0749-0704(05)70154-8.
    1. Finney S.J., Zekveld C., Elia A., Evans T.W. Glucose control and mortality in critically ill patients. JAMA. 2003;290:2041–2047. doi: 10.1001/jama.290.15.2041.
    1. Kilroe S.P., Fulford J., Jackman S.R., LJC V.A.N.L., Wall B.T. Temporal Muscle-specific Disuse Atrophy during One Week of Leg Immobilization. Med. Sci. Sports Exerc. 2020;52:944–954. doi: 10.1249/MSS.0000000000002200.
    1. Dreyer H.C., Strycker L.A., Senesac H.A., Hocker A.D., Smolkowski K., Shah S.N., Jewett B.A. Essential amino acid supplementation in patients following total knee arthroplasty. J. Clin. Invest. 2013;123:4654–4666. doi: 10.1172/JCI70160.
    1. Dreyer H.C., Owen E.C., Strycker L.A., Smolkowski K., Muyskens J.B., Kirkpatrick T.K., Christie A.D., Kuehl K.S., Lantz B.A., Shah S.N., et al. Essential Amino Acid Supplementation Mitigates Muscle Atrophy After Total Knee Arthroplasty: A Randomized, Double-Blind, Placebo-Controlled Trial. JB JS Open Access. 2018;3:e0006. doi: 10.2106/JBJS.OA.18.00006.
    1. Henriksen M.G., Hessov I., Dela F., Hansen H.V., Haraldsted V., Rodt S.A. Effects of preoperative oral carbohydrates and peptides on postoperative endocrine response, mobilization, nutrition and muscle function in abdominal surgery. Acta Anaesthesiol. Scand. 2003;47:191–199. doi: 10.1034/j.1399-6576.2003.00047.x.
    1. Singh J.A., Lewallen D.G. Predictors of activity limitation and dependence on walking aids after primary total hip arthroplasty. J. Am. Geriatr. Soc. 2010;58:2387–2393. doi: 10.1111/j.1532-5415.2010.03182.x.
    1. Smith-Ryan A.E., Hirsch K.R., Saylor H.E., Gould L.M., Blue M.N.M. Nutritional Considerations and Strategies to Facilitate Injury Recovery and Rehabilitation. J. Athl. Train. 2020;55:918–930. doi: 10.4085/1062-6050-550-19.
    1. Burgess L.C., Phillips S.M., Wainwright T.W. What is the role of nutritional supplements in support of total hip replacement and total knee replacement surgeries? A systematic review. Nutrients. 2018;10:820. doi: 10.3390/nu10070820.
    1. Ackerman R.S., Tufts C.W., De Pinto D.G., Chen J., Altshuler J.R., Serdiuk A., Cohen J.B., Patel S.Y. How sweet is this? A review and evaluation of preoperative carbohydrate loading in the enhanced recovery after surgery model. Nutr. Clin. Pract. 2020;35:246–253. doi: 10.1002/ncp.10427.
    1. Nygren J. The metabolic effects of fasting and surgery. Best Pract. Res. Clin. Anaesthesiol. 2006;20:429–438. doi: 10.1016/j.bpa.2006.02.004.
    1. Svanfeldt M., Thorell A., Hausel J., Soop M., Rooyackers O., Nygren J., Ljungqvist O. Randomized clinical trial of the effect of preoperative oral carbohydrate treatment on postoperative whole-body protein and glucose kinetics. Br. J. Surg. 2007;94:1342–1350. doi: 10.1002/bjs.5919.
    1. Rothman D.L., Magnusson I., Katz L.D., Shulman R.G., Shulman G.I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991;254:573–576. doi: 10.1126/science.1948033.
    1. Landau B.R., Wahren J., Chandramouli V., Schumann W.C., Ekberg K., Kalhan S.C. Contributions of gluconeogenesis to glucose production in the fasted state. J. Clin. Invest. 1996;98:378–385. doi: 10.1172/JCI118803.
    1. Schwarz J.M., Chiolero R., Revelly J.P., Cayeux C., Schneiter P., Jequier E., Chen T., Tappy L. Effects of enteral carbohydrates on de novo lipogenesis in critically ill patients. Am. J. Clin. Nutr. 2000;72:940–945. doi: 10.1093/ajcn/72.4.940.
    1. Soop M., Carlson G.L., Hopkinson J., Clarke S., Thorell A., Nygren J., Ljungqvist O. Randomized clinical trial of the effects of immediate enteral nutrition on metabolic responses to major colorectal surgery in an enhanced recovery protocol. Br. J. Surg. 2004;91:1138–1145. doi: 10.1002/bjs.4642.
    1. Svanfeldt M., Thorell A., Nygren J., Ljungqvist O. Postoperative parenteral nutrition while proactively minimizing insulin resistance. Nutrition. 2006;22:457–464. doi: 10.1016/j.nut.2005.06.013.
    1. Phillips S.M., Paddon-Jones D., Layman D.K. Optimizing Adult Protein Intake During Catabolic Health Conditions. Adv. Nutr. 2020;11:S1058–S1069. doi: 10.1093/advances/nmaa047.
    1. Paddon-Jones D. Interplay of stress and physical inactivity on muscle loss: Nutritional countermeasures. J. Nutr. 2006;136:2123–2126. doi: 10.1093/jn/136.8.2123.
    1. Rittig N., Bach E., Thomsen H.H., Johannsen M., Jorgensen J.O., Richelsen B., Jessen N., Moller N. Amino acid supplementation is anabolic during the acute phase of endotoxin-induced inflammation: A human randomized crossover trial. Clin. Nutr. 2016;35:322–330. doi: 10.1016/j.clnu.2015.03.021.
    1. Azhar G., Wei J.Y., Schutzler S.E., Coker K., Gibson R.V., Kirby M.F., Ferrando A.A., Wolfe R.R. Daily consumption of a spe-cially formulated essential amino acid-based dietary supplement improves physical performance in older adults with low physi-cal functioning. J. Gerontol. A Biol. Sci. Med. Sci. :2021. doi: 10.1093/gerona/glab019.
    1. Baldissarro E., Aquilani R., Boschi F., Baiardi P., Iadarola P., Fumagalli M., Pasini E., Verri M., Dossena M., Gambino A., et al. The Hip Functional Retrieval after Elective Surgery May Be Enhanced by Supplemented Essential Amino Acids. BioMed Res. Int. 2016;2016:9318329. doi: 10.1155/2016/9318329.
    1. Ferrando A., Bamman M., Schutzler S., Spencer H., Dawson A., Evans R., Wolfe R. Increased nitrogen intake following hip arthroplasty expedites muscle strength recovery. J. Aging Res. Clin. Pract. 2013;2:369–375.
    1. Aquilani R., Zuccarelli G.C., Condino A.M., Catani M., Rutili C., Del Vecchio C., Pisano P., Verri M., Iadarola P., Viglio S., et al. Despite Inflammation, Supplemented Essential Amino Acids May Improve Circulating Levels of Albumin and Haemoglobin in Patients after Hip Fractures. Nutrients. 2017;9:637. doi: 10.3390/nu9060637.
    1. Jones C., Eddleston J., McCairn A., Dowling S., McWilliams D., Coughlan E., Griffiths R.D. Improving rehabilitation after critical illness through outpatient physiotherapy classes and essential amino acid supplement: A randomized controlled trial. J. Crit. Care. 2015;30:901–907. doi: 10.1016/j.jcrc.2015.05.002.
    1. Aquilani R., Zuccarelli Ginetto C., Rutili C., Pisano P., Pasini E., Baldissarro E., Verri M., Boschi F. Supplemented amino acids may enhance the walking recovery of elderly subjects after hip fracture surgery. Aging Clin. Exp. Res. 2019;31:157–160. doi: 10.1007/s40520-018-0941-x.
    1. Katsanos C.S., Aarsland A., Cree M.G., Wolfe R.R. Muscle protein synthesis and balance responsiveness to essential amino acids ingestion in the presence of elevated plasma free fatty acid concentrations. J. Clin. Endocrinol. Metab. 2009;94:2984–2990. doi: 10.1210/jc.2008-2686.
    1. Paddon-Jones D., Sheffield-Moore M., Urban R.J., Sanford A.P., Aarsland A., Wolfe R.R., Ferrando A.A. Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J. Clin. Endocrinol. Metab. 2004;89:4351–4358. doi: 10.1210/jc.2003-032159.
    1. Fitts R.H., Romatowski J.G., Peters J.R., Paddon-Jones D., Wolfe R.R., Ferrando A.A. The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am. J. Physiol. Cell Physiol. 2007;293:C313–C320. doi: 10.1152/ajpcell.00573.2006.
    1. Park S., Church D.D., Azhar G., Schutzler S.E., Ferrando A.A., Wolfe R.R. Anabolic response to essential amino acid plus whey protein composition is greater than whey protein alone in young healthy adults. J. Int. Soc. Sports Nutr. 2020;17:9. doi: 10.1186/s12970-020-0340-5.
    1. Soeters P.B., Shenkin A., Sobotka L., Soeters M.R., de Leeuw P.W., Wolfe R.R. The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease. Clin. Nutr. 2021 doi: 10.1016/j.clnu.2021.02.012.
    1. Kerksick C.M., Arent S., Schoenfeld B.J., Stout J.R., Campbell B., Wilborn C.D., Taylor L., Kalman D., Smith-Ryan A.E., Kreider R.B. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017;14:1–21. doi: 10.1186/s12970-017-0189-4.
    1. Wolfe R.R., Baum J.I., Starck C., Moughan P.J. Factors contributing to the selection of dietary protein food sources. Clin. Nutr. 2018;37:130–138. doi: 10.1016/j.clnu.2017.11.017.
    1. Church D.D., Hirsch K.R., Park S., Kim I.Y., Gwin J.A., Pasiakos S.M., Wolfe R.R., Ferrando A.A. Essential Amino Acids and Protein Synthesis: Insights into Maximizing the Muscle and Whole-Body Response to Feeding. Nutrients. 2020;12:3717. doi: 10.3390/nu12123717.
    1. Wall B.T., Morton J.P., van Loon L.J. Strategies to maintain skeletal muscle mass in the injured athlete: Nutritional considerations and exercise mimetics. Eur. J. Sport Sci. 2015;15:53–62. doi: 10.1080/17461391.2014.936326.
    1. van Vliet S., Burd N.A., van Loon L.J. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015;145:1981–1991. doi: 10.3945/jn.114.204305.
    1. Park S., Church D.D., Schutzler S.E., Azhar G., Kim I.Y., Ferrando A.A., Wolfe R.R. Metabolic evaluation of the Dietary Guideline’s ounce equivalents of protein food sources in young adults: A randomized controlled trial. J. Nutr. 2021 doi: 10.1093/jn/nxaa401. in press.
    1. Vliet S.V., Beals J.W., Martinez I.G., Skinner S.K., Burd N.A. Achieving Optimal Post-Exercise Muscle Protein Remodeling in Physically Active Adults through Whole Food Consumption. Nutrients. 2018;10:224. doi: 10.3390/nu10020224.
    1. Hevia-Larraín V., Gualano B., Longobardi I., Gil S., Fernandes A.L., Costa L.A., Pereira R.M., Artioli G.G., Phillips S.M., Roschel H. High-Protein Plant-Based Diet Versus a Protein-Matched Omnivorous Diet to Support Resistance Training Adaptations: A Comparison Between Habitual Vegans and Omnivores. Sports Med. 2021:1–14. doi: 10.1007/s40279-021-01434-9.
    1. Van Vliet S., Provenza F.D., Kronberg S.L. Health-Promoting Compounds are Higher in Grass-Fed Meat and Milk. Front. Sustain. Food Syst. 2020;4:299.
    1. Baur D.A., Saunders M.J. Carbohydrate supplementation: A critical review of recent innovations. Eur. J. Appl. Physiol. 2021;121:23–66. doi: 10.1007/s00421-020-04534-y.
    1. Volek J.S. SuperStarch: A Technological Breakthrough in Sports Nutrition Innovation. Generation UCAN; Woodbridge, CT, USA: 2019.
    1. Gorissen S.H.M., Crombag J.J.R., Senden J.M.G., Waterval W.A.H., Bierau J., Verdijk L.B., van Loon L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50:1685–1695. doi: 10.1007/s00726-018-2640-5.
    1. Trommelen J., Betz M.W., van Loon L.J. The muscle protein synthetic response to meal ingestion following resistance-type exercise. Sports Med. 2019;49:185–197. doi: 10.1007/s40279-019-01053-5.
    1. Res P.T., Groen B., Pennings B., Beelen M., Wallis G.A., Gijsen A.P., Senden J.M., LJ V.A.N.L. Protein ingestion before sleep improves postexercise overnight recovery. Med. Sci. Sports Exerc. 2012;44:1560–1569. doi: 10.1249/MSS.0b013e31824cc363.
    1. Yang Y., Churchward-Venne T.A., Burd N.A., Breen L., Tarnopolsky M.A., Phillips S.M. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr. Metab. 2012;9:57. doi: 10.1186/1743-7075-9-57.
    1. Brennan J.L., Keerati U.R.M., Yin H., Daoust J., Nonnotte E., Quinquis L., St-Denis T., Bolster D.R. Differential Responses of Blood Essential Amino Acid Levels Following Ingestion of High-Quality Plant-Based Protein Blends Compared to Whey Protein-A Double-Blind Randomized, Cross-Over, Clinical Trial. Nutrients. 2019;11:2987. doi: 10.3390/nu11122987.
    1. Ali Abdelhamid Y., Chapman M., Deane A. Peri-operative nutrition. Anaesthesia. 2016;71:9–18. doi: 10.1111/anae.13310.
    1. Plotkin D.L., Delcastillo K., Van Every D.W., Tipton K.D., Aragon A.A., Schoenfeld B.J. Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review. Int. J. Sport Nutr. Exerc. Metab. 2021:1–10. doi: 10.1123/ijsnem.2020-0356.
    1. Gualano A.B., Bozza T., Lopes De Campos P., Roschel H., Dos Santos Costa A., Luiz Marquezi M., Benatti F., Herbert Lancha Junior A. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. J. Sports Med. Phys. Fit. 2011;51:82–88.
    1. Paddon-Jones D., Sheffield-Moore M., Aarsland A., Wolfe R.R., Ferrando A.A. Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am. J. Physiol. Endocrinol. Metab. 2005;288:E761–E767. doi: 10.1152/ajpendo.00291.2004.
    1. Muyskens J.B., Foote D.M., Bigot N.J., Strycker L.A., Smolkowski K., Kirkpatrick T.K., Lantz B.A., Shah S.N., Mohler C.G., Jewett B.A., et al. Cellular and morphological changes with EAA supplementation before and after total knee arthroplasty. J. Appl. Physiol. 2019;127:531–545. doi: 10.1152/japplphysiol.00869.2018.
    1. Tipton K.D. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015;45(Suppl. 1):S93–S104. doi: 10.1007/s40279-015-0398-4.
    1. Hulmi J.J., Lockwood C.M., Stout J.R. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr. Metab. 2010;7:51. doi: 10.1186/1743-7075-7-51.
    1. Howard E.E., Pasiakos S.M., Fussell M.A., Rodriguez N.R. Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury. Adv. Nutr. 2020;11:989–1001. doi: 10.1093/advances/nmaa015.

Source: PubMed

3
購読する