Machine learning-based model for prediction of clinical deterioration in hospitalized patients by COVID 19

Susana Garcia-Gutiérrez, Cristobal Esteban-Aizpiri, Iratxe Lafuente, Irantzu Barrio, Raul Quiros, Jose Maria Quintana, Ane Uranga, COVID-REDISSEC Working Group, Susana García-Gutiérrez, Iratxe Lafuente, Jose María Quintana, Miren Orive, Nerea Gonzalez, Ane Anton, Ane Villanueva, Cristina Muñoz, Maria Jose Legarreta, Raul Quirós, Pedro Pablo España Yandiola, Mikel Egurrola, Amaia Aramburu, Amaia Artaraz, Leire Chasco, Olaia Bronte, Patricia García, Ana Jodar, Virginia Fernandez, Cristobal Esteban, Naia Mas, Esther Pulido, Itxaso Bengoetxea, Antonio Escobar Martínez, Amaia Bilbao, Iñigo Gorostiza, Iñaki Arriaga, José Joaquín Portu Zapiarain, Naiara Parraza, Milagros Iriberri, Rafael Zalacain, Luis Alberto Ruiz, Leyre Serrano, Adriana Couto, Oier Ateka, Arantza Cano, Maria Olatz Ibarra, Eduardo Millan, Mayte Bacigalupe, Jon Letona, Andoni Arcelay, Iñaki Berraondo, Xavier Castells, Margarita Posso, Lilisbeth Perestelo, Guillermo Perez Acosta, Candelaria Martín Gonzñalez, Maximino Redondo, Maria Padilla, Adolfo Muñoz, Ricardo Saenz de Madariaga, Susana Garcia-Gutiérrez, Cristobal Esteban-Aizpiri, Iratxe Lafuente, Irantzu Barrio, Raul Quiros, Jose Maria Quintana, Ane Uranga, COVID-REDISSEC Working Group, Susana García-Gutiérrez, Iratxe Lafuente, Jose María Quintana, Miren Orive, Nerea Gonzalez, Ane Anton, Ane Villanueva, Cristina Muñoz, Maria Jose Legarreta, Raul Quirós, Pedro Pablo España Yandiola, Mikel Egurrola, Amaia Aramburu, Amaia Artaraz, Leire Chasco, Olaia Bronte, Patricia García, Ana Jodar, Virginia Fernandez, Cristobal Esteban, Naia Mas, Esther Pulido, Itxaso Bengoetxea, Antonio Escobar Martínez, Amaia Bilbao, Iñigo Gorostiza, Iñaki Arriaga, José Joaquín Portu Zapiarain, Naiara Parraza, Milagros Iriberri, Rafael Zalacain, Luis Alberto Ruiz, Leyre Serrano, Adriana Couto, Oier Ateka, Arantza Cano, Maria Olatz Ibarra, Eduardo Millan, Mayte Bacigalupe, Jon Letona, Andoni Arcelay, Iñaki Berraondo, Xavier Castells, Margarita Posso, Lilisbeth Perestelo, Guillermo Perez Acosta, Candelaria Martín Gonzñalez, Maximino Redondo, Maria Padilla, Adolfo Muñoz, Ricardo Saenz de Madariaga

Abstract

Despite the publication of great number of tools to aid decisions in COVID-19 patients, there is a lack of good instruments to predict clinical deterioration. COVID19-Osakidetza is a prospective cohort study recruiting COVID-19 patients. We collected information from baseline to discharge on: sociodemographic characteristics, comorbidities and associated medications, vital signs, treatment received and lab test results. Outcome was need for intensive ventilatory support (with at least standard high-flow oxygen face mask with a reservoir bag for at least 6 h and need for more intensive therapy afterwards or Optiflow high-flow nasal cannula or noninvasive or invasive mechanical ventilation) and/or admission to a critical care unit and/or death during hospitalization. We developed a Catboost model summarizing the findings using Shapley Additive Explanations. Performance of the model was assessed using area under the receiver operating characteristic and prediction recall curves (AUROC and AUPRC respectively) and calibrated using the Hosmer-Lemeshow test. Overall, 1568 patients were included in the derivation cohort and 956 in the (external) validation cohort. The percentages of patients who reached the composite endpoint were 23.3% vs 20% respectively. The strongest predictors of clinical deterioration were arterial blood oxygen pressure, followed by age, levels of several markers of inflammation (procalcitonin, LDH, CRP) and alterations in blood count and coagulation. Some medications, namely, ATC AO2 (antiacids) and N05 (neuroleptics) were also among the group of main predictors, together with C03 (diuretics). In the validation set, the CatBoost AUROC was 0.79, AUPRC 0.21 and Hosmer-Lemeshow test statistic 0.36. We present a machine learning-based prediction model with excellent performance properties to implement in EHRs. Our main goal was to predict progression to a score of 5 or higher on the WHO Clinical Progression Scale before patients required mechanical ventilation. Future steps are to externally validate the model in other settings and in a cohort from a different period and to apply the algorithm in clinical practice.Registration: ClinicalTrials.gov Identifier: NCT04463706.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Flow chart.
Figure 2
Figure 2
Main predictors in catboost model in (a) derivation-internal validation and (b) external validation datasets. PO2-A partial arterial oxygen concentration, PCR C-reactive proteine, PCT procalcitonine, Edad age, LDH lactate dehydrogenase, PLT platelets, ADE RED blood cell distribution width, CREA creatinine, Mon%A Total count of monocytes, CK creatine kinase, Dimer D dimer, EOS%A Percentage of eoshinophils, AO2_12 Antacids in the last 12 months, N05_12 neuroleptics in the last 12 months, MON#A total count of monocytes, GLU glucose, EOS#A TOTAL count of eosynophils, lin#A total count of lynphocites, Neu%A percentage of neutrophils, CO3_12 diuretics in the last 12 months.
Figure 3
Figure 3
Predictive performance of the catboost model in (a) derivation and (b) validation sets.
Figure 4
Figure 4
Calibration performance in (a) derivation and (b) validation sets.
Figure 5
Figure 5
Differences between traditional development and machine-learning based prediction models.

References

    1. Spanish Ministry of Health . Current Pandemic Situation. Spanish Ministry of Health; 2020.
    1. Omer, S. B., Yildirim, I. & Forman, H. P. Herd Immunity and Implications for SARS-CoV-2 Control (2020).
    1. Domingo P, Pomar V, Mur I, Castellví I, Corominas H, de Benito N. Not all COVID-19 pandemic waves are alike. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021;27:1040.
    1. Li X, Ma X. Acute respiratory failure in COVID-19: Is it “typical” ARDS? Crit. Care. 2020;24(1):1–5. doi: 10.1186/s13054-019-2683-3.
    1. Chidambaram V, Tun NL, Haque WZ, Majella MG, Sivakumar RK, Kumar A, et al. Factors associated with disease severity and mortality among patients with COVID-19: A systematic review and meta-analysis. PLoS ONE. 2020;15(11):e0241541. doi: 10.1371/journal.pone.0241541.
    1. Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, et al. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: An International Multicentre Study. Eur. Respir. J. 2020;56:2001104. doi: 10.1183/13993003.01104-2020.
    1. Cheng F-Y, Joshi H, Tandon P, Freeman R, Reich DL, Mazumdar M, et al. Clinical medicine using machine learning to predict ICU transfer in hospitalized COVID-19 patients. J. Clin. Med. 1668;2020:1668.
    1. Izquierdo JL, Ancochea J, Soriano JB, Soriano JB. Clinical characteristics and prognostic factors for intensive care unit admission of patients with COVID-19: Retrospective study using machine learning and natural language processing. J. Med. Internet Res. 2020;22(10):e21801. doi: 10.2196/21801.
    1. Gupta RK, Harrison EM, Ho A, Docherty AB, Knight SR, van Smeden M, et al. Development and validation of the ISARIC 4C deterioration model for adults hospitalised with COVID-19: A prospective cohort study. Lancet Respir. Med. 2021;3:349. doi: 10.1016/S2213-2600(20)30559-2.
    1. Barmaki, R. Multimodal assessment of teaching behavior in immersive rehearsal environment—TeachLivETM. In ICMI 2015—Proc. 2015 ACM Int. Conf. Multimodal Interact, Vol. 139, 651–655 (2015).
    1. Rodríguez-Pérez R, Bajorath J. Interpretation of machine learning models using shapley values: Application to compound potency and multi-target activity predictions. J. Comput. Aided Mol. Des. 2020;34:1013–1026. doi: 10.1007/s10822-020-00314-0.
    1. Hosmer DW, Lemeshow S. Applied Logistic Regression. 2. Springer; 2000. pp. 1–375.
    1. Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. N. Engl. J. Med. 2020;383:2451–2460. doi: 10.1056/NEJMcp2009575.
    1. Marshall JC, Murthy S, Diaz J, Adhikari N, Angus DC, Arabi YM, et al. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis. 2020;20(8):e192–e197. doi: 10.1016/S1473-3099(20)30483-7.
    1. Izcovich A, Ragusa MA, Tortosa F, Lavena Marzio MA, Agnoletti C, Bengolea A, et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS ONE. 2020;15(11):e0241955. doi: 10.1371/journal.pone.0241955.
    1. Foy BH, Carlson JCT, Reinertsen E, et al. Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection + supplemental content conclusions and relevance elevated RDW at the time of hospital admission and an increase in RDW during hospitaliza. JAMA Netw. Open. 2020;3(9):2022058. doi: 10.1001/jamanetworkopen.2020.22058.
    1. Ouyang SM, Zhu HQ, Xie YN, Zou ZS, Zuo HM, Rao YW, et al. Temporal changes in laboratory markers of survivors and non-survivors of adult inpatients with COVID-19. BMC Infect. Dis. 2020;20(1):1–10. doi: 10.1186/s12879-020-05678-0.
    1. Fan X, Liu Z, Miyata T, Dasarathy S, Rotroff DM, Wu X, et al. Effect of acid suppressants on the risk of COVID-19: A propensity score-matched study using UK biobank. Gastroenterology. 2021;160(1):455–458.e5. doi: 10.1053/j.gastro.2020.09.028.
    1. Plaze M, Attali D, Petit AC, Blatzer M, Simon-Loriere E, Vinckier F, et al. Repurposing chlorpromazine to treat COVID-19: The reCoVery study. Encephale. 2020;46(3):169–172. doi: 10.1016/j.encep.2020.05.006.
    1. Oddy, C. et al. Pharmacological Predictors of Morbidity and Mortality in COVID-19. 61(10), 1286–1300 . (Accessed 1 Aug 2021).
    1. Alberto J, Roman S, Cabezón Villalba G, Amat-Santos IJ, Dueñas C, Otero DL, et al. Impact of the presence of heart disease, cardiovascular medications and cardiac events on outcome in COVID-19. Cardiol. J. 2021;28(3):360–368. doi: 10.5603/CJ.a2021.0034.
    1. Satici C, Demirkol MA, Sargin Altunok E, Gursoy B, Alkan M, Kamat S, et al. Performance of pneumonia severity index and CURB-65 in predicting 30-day mortality in patients with COVID-19. Int. J. Infect. Dis. Off. Publ. Int. Soc. Infect. Dis. 2020;98:84–89. doi: 10.1016/j.ijid.2020.06.038.
    1. Bradley P, Frost F, Tharmaratnam K, Wootton DG. Utility of established prognostic scores in COVID-19 hospital admissions: Multicentre prospective evaluation of CURB-65, NEWS2 and qSOFA. BMJ Open Respir. Res. 2020;7(1):e000729. doi: 10.1136/bmjresp-2020-000729.

Source: PubMed

3
購読する