Si-ni-tang (a Chinese herbal formula) for improving immunofunction in sepsis: study protocol for a pilot randomized controlled trial

Ruifeng Zeng, Yi Zheng, Rongrong Fan, Gengbiao Zhou, Yan Zhang, Shutao Mai, Dongping Xie, Yanna Weng, Jiongdong Du, Yun Han, Fang Lai, Ruifeng Zeng, Yi Zheng, Rongrong Fan, Gengbiao Zhou, Yan Zhang, Shutao Mai, Dongping Xie, Yanna Weng, Jiongdong Du, Yun Han, Fang Lai

Abstract

Background: Immunologic derangement may be the critical pathophysiologic mechanism in sepsis, and immunotherapy might be a potential new treatment. Si-ni-tang (SNT), an ancient Chinese herbal formula documented in Shanghan Lun, has been used for treating severe sepsis for thousands of years. Research shows that it may have a therapeutic benefit for sepsis. This study will evaluate the feasibility of testing the effects of SNT on immune function in sepsis patients.

Methods/design: This is a pilot randomized controlled study. Eligible sepsis patients admitted to our medical intensive care unit will be randomly allocated to the control group or the SNT group. Both groups will receive standard therapy according to the recommendations of the Surviving Sepsis Campaign. In addition, the SNT group will receive SNT (150 mL per day for 3 days) orally or by gastric tube, while the control group will receive 150 mL of normal saline. The primary outcome is to assess the feasibility of this treatment. The secondary outcomes include: (1) immune function measured by monocyte human leukocyte antigen-DR (mHLA-DR) expression, procalcitonin, and the ratio of CD4+ to CD8+ T lymphocytes and (2) other clinical data, such as the 28-day all-cause mortality, Sequential Organ Failure Assessment (SOFA) scores, Acute Physiology and Chronic Health Evaluation (APACHE) II scores, both of the latter on days 0 and 3.

Discussion: This study aims to evaluate the feasibility of testing the efficacy of SNT for treating sepsis when used as an adjunctive treatment with the standard therapy recommended by the Surviving Sepsis Campaign.

Trial registration: ClinicalTrials.gov, NCT02777606 . Registered on 22 June 2016. Retrospectively registered. https://clinicaltrials.gov/.

Keywords: Chinese herbal medicine; Protocol; Sepsis; Si-ni-tang (SNT); immune function.

Conflict of interest statement

The authors declare that they have no competing interests. None of the authors have received funding or research grants from the manufacturers of the drug used in this research.

Figures

Fig. 1
Fig. 1
Study flow chart. mHLA-DR monocyte human leukocyte antigen-DR, SOFA Sequential Organ Failure Assessment, APACHE Acute Physiology and Chronic Health Evaluation, PCT procalcitonin, SSC Surviving Sepsis Campaign
Fig. 2
Fig. 2
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) timeline of measurements. Laboratory examination includes the immune function data (mHLA-DR expression, ratio of CD4+ to CD8+ T lymphocytes), inflammation data (C-reactive protein, interleukin-6, interleukin-10, PCT and TNF-α), complete blood count (CBC), general urine analysis, liver function tests (ALT, AST, ALP, TBIL, and GGT), renal function test (BUN and Scr). ALT alanine transaminase, ALP alkaline phosphatase, AST aspartate transaminase, BUN blood urea nitrogen, CBC complete blood count, GGT gamma-glutamyltransferase, mHLA-DR monocyte human leukocyte antigen-DR, PCT procalcitonin, TBIL total bilirubin, TNF-α Tumor necrosis factor α, Scr serum creatinine,SNT Si-Ni-Tang,SPIRIT Standard Protocol Items: Recommendations for Interventional Trials

References

    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552. doi: 10.1097/CCM.0000000000002255.
    1. Freeman BD, Natanson C. Anti-inflammatory therapy in sepsis and septic shock. Expert Opin Investig Drugs. 2000;9(7):1651–1663. doi: 10.1517/13543784.9.7.1651.
    1. Abraham E, Laterre PF, Garbino J, Pingleton S, Butler T, Dugernier T, et al. Lenercept (p55 tumor necrosisi factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1342 patients. Crit Care Med. 2001;29(3):503–510. doi: 10.1097/00003246-200103000-00006.
    1. Munford RS, Pugin J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med. 2001;163(2):316–321. doi: 10.1164/ajrccm.163.2.2007102.
    1. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997;390(6658):350–351. doi: 10.1038/37022.
    1. Boomer JS, To K. Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594–2605. doi: 10.1001/jama.2011.1829.
    1. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Hui JJ, Chang KC, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166(11):6952–6963. doi: 10.4049/jimmunol.166.11.6952.
    1. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–874. doi: 10.1038/nri3552.
    1. National Pharmacopoeia Council . Pharmacopoeia of the People’s Republic of China. 2015.
    1. Chinese Society of Critical Care Medicine Chinese guidelines for management of severe sepsis and septic shock (2014) Chin J Intern Med. 2015;54(6):557–569.
    1. Xu MJ, Huang RL, Chang X, Qiao QJ, Zhang Z, Wang L. The effect of Sini Decoction on inflammatory cytokines in Sepsis Shock. Tradit Chinese Med J. 2013;12(2):43–45. doi: 10.12677/TCM.2013.24011.
    1. Lai F, Zhou G, Mai S, Qin X, Liu W, Zhang Y, et al. Sini Decoction improves adrenal function and the short-term outcome of septic rats through downregulation of adrenal toll-like receptor 4 expression. Evid Based Complement Alternat Med. 2018;2018:5186158. doi: 10.1155/2018/5186158.
    1. Zhang H, Sugiura Y, Wakiya Y, Goto Y. Sinitang (Shigyaku-to), a traditional Chinese medicine improves microcirculatory disturbances induced by endotoxin in rats. J Ethnopharmacol. 1999;68(1–3):243–249. doi: 10.1016/S0378-8741(99)00114-2.
    1. Huang RL, Zhang Z, Xu MJ, Chang X, Qiao Q, Wang L, et al. Effect of Sini decoction on function of hypothalamic-pituitary-adrenal axis in patients with sepsis. Chinese Crit Care Med. 2014;26(3):184–187.
    1. Dellinger RP, Levy MM, Rhodes A, Gerlach H, Opal SM, Sevransky JE, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Crit Care Med. 2013;41(2):580–637. doi: 10.1097/CCM.0b013e31827e83af.
    1. Critical Care Medicine Experts Commission of Emergency Medical branch of the Chinese Medical Association and Experts Commission of Emergency Branch of the Integrated Traditional Chinese and Western Medicine. Definition, diagnostic criteria and Chinese syndrome differentiation of sepsis. Chin J Emerg Med. 2007;16(8):797–8.
    1. Lancaster GA, Dodd S, Williamson PR. Design and analysis of pilot studies: recommendations for good practice. J Eval Clin Pract. 2004;10(2):307–312. doi: 10.1111/j..2002.384.doc.x.
    1. Kadri SS, Rhee C, Strich JR, Morales MK, Hohmann S, Menchaca J, et al. Estimating Ten-Year Trends in Septic Shock Incidence and Mortality in United States Academic Medical Centers Using Clinical Data. Chest. 2016;151(2):278–285. doi: 10.1016/j.chest.2016.07.010.
    1. Ogura H, Gando S, Saitoh D, Takeyama N, Kushimoto S, Fujishima S, et al. Epidemiology of severe sepsis in Japanese intensive care units: a prospective multicenter study. J Infect Chemother. 2014;20(3):157–162. doi: 10.1016/j.jiac.2013.07.006.
    1. Rodriguez F, Barrera L, De La Rosa G, Dennis R, Duenas C, Granados M, et al. The epidemiology of sepsis in Colombia: a prospective multicenter cohort study in ten university hospitals. Crit Care Med. 2011;39(7):1675–1682. doi: 10.1097/CCM.0b013e318218a35e.
    1. Zhou J, Qian C, Zhao M, Yu X, Kang Y, Ma X, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China. PLoS One. 2014;9(9):e107181. doi: 10.1371/journal.pone.0107181.
    1. Quenot J, Binquet C, Kara F, Martinet O, Ganster F, Navellou J, et al. The epidemiology of septic shock in French intensive care units: the prospective multicenter cohort EPISS study. Crit Care. 2013;17(2):R65. doi: 10.1186/cc12598.
    1. Venet F, Lukaszewicz A, Payen D, Hotchkiss R, Monneret G. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr Opin Immunol. 2013;25(4):477–483. doi: 10.1016/j.coi.2013.05.006.
    1. Venet F, Tissot S, Debard A, Faudot C, Crampe C, Pachot A, et al. Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: Correlation with severity and secondary septic shock. Crit Care Med. 2007;35(8):1910–1917. doi: 10.1097/01.CCM.0000275271.77350.B6.
    1. Manzoli TF, Troster EJ, Ferranti JF, Sales M. Prolonged suppression of monocytic human leukocyte antigen–DR expression correlates with mortality in pediatric septic patients in a pediatric tertiary Intensive Care Unit. J Crit Care. 2016;6(33):84–89. doi: 10.1016/j.jcrc.2016.01.027.
    1. Wu J, Ma J, Chen J, Ou-Yang B, Chen M, Li L, et al. Changes of monocyte human leukocyte antigen-DR expression as a reliable predictor of mortality in severe sepsis. Crit Care. 2011;15(5):R220. doi: 10.1186/cc10457.

Source: PubMed

3
購読する