Evaluation of Methylation Biomarkers for Detection of Circulating Tumor DNA and Application to Colorectal Cancer

Susan M Mitchell, Thu Ho, Glenn S Brown, Rohan T Baker, Melissa L Thomas, Aidan McEvoy, Zheng-Zhou Xu, Jason P Ross, Trevor J Lockett, Graeme P Young, Lawrence C LaPointe, Susanne K Pedersen, Peter L Molloy, Susan M Mitchell, Thu Ho, Glenn S Brown, Rohan T Baker, Melissa L Thomas, Aidan McEvoy, Zheng-Zhou Xu, Jason P Ross, Trevor J Lockett, Graeme P Young, Lawrence C LaPointe, Susanne K Pedersen, Peter L Molloy

Abstract

Solid tumors shed DNA into circulation, and there is growing evidence that the detection of circulating tumor DNA (ctDNA) has broad clinical utility, including monitoring of disease, prognosis, response to chemotherapy and tracking tumor heterogeneity. The appearance of ctDNA in the circulating cell-free DNA (ccfDNA) isolated from plasma or serum is commonly detected by identifying tumor-specific features such as insertions, deletions, mutations and/or aberrant methylation. Methylation is a normal cell regulatory event, and since the majority of ccfDNA is derived from white blood cells (WBC), it is important that tumour-specific DNA methylation markers show rare to no methylation events in WBC DNA. We have used a novel approach for assessment of low levels of DNA methylation in WBC DNA. DNA methylation in 29 previously identified regions (residing in 17 genes) was analyzed in WBC DNA and eight differentially-methylated regions (DMRs) were taken through to testing in clinical samples using methylation specific PCR assays. DMRs residing in four genes, BCAT1, GRASP, IKZF1 and IRF4, exhibited low positivity, 3.5% to 7%, in the plasma of colonoscopy-confirmed healthy subjects, with the sensitivity for detection of ctDNA in colonoscopy-confirmed patients with colorectal cancer being 65%, 54.5%, 67.6% and 59% respectively.

Keywords: BCAT1; GRASP; IKZF1; IRF4 SDC2; SEPT9; biomarkers; circulating tumor DNA; colorectal cancer; epigenetics; hypermethylation; liquid biopsy; plasma.

Conflict of interest statement

R.T.B., M.L.T., A.M., L.C.P. and S.K.P. are current or past employees of and G.P.Y. is a consultant for Clinical Genomics Pty Ltd. The work described was planned and conducted jointly by employees of Clinical Genomics Pty Ltd. and of CSIRO.

Figures

Figure 1
Figure 1
Flowchart for evaluation of methylation in white blood cell (WBC) DNA. DNA was sheared and the methylated fraction was isolated using methylated DNA binding domain-capture (MBD-Cap). The captured DNA and the unbound fraction were separately bisulphite converted. Separate conversion-specific PCRs for each gene were performed to amplify both methylated and unmethylated sequences from each of the bound and unbound fractions.
Figure 2
Figure 2
Amplicon melt curve analysis. For each amplicon, melt curves of triplicate amplifications of pooled male and female DNA (six samples in all) from the DNA fraction captured by MBD-Cap (red traces) and DNA not captured (green traces) are shown. Arrows indicated the melt peak positions for control unmethylated (U) and fully methylated (M) DNAs.

References

    1. Bordi P., Del Re M., Danesi R., Tiseo M. Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer. Transl. Lung Cancer Res. 2015;4:584–597.
    1. El Messaoudi S., Mouliere F., Du Manoir S., Bascoul-Mollevi C., Gillet B., Nouaille M., Fiess C., Crapez E., Bibeau F., Theillet C., et al. Circulating DNA as a strong multimarker prognostic tool for metastatic colorectal cancer patient management care. Clin. Cancer Res. 2016;22:3067–3077. doi: 10.1158/1078-0432.CCR-15-0297.
    1. Li Y., Fu X.-H., Yuan J.-Q., Yang Z.-Y., Mao C., Dong X.-M., Tang J.-L., Wang S.-Y. Colorectal cancer: Using blood samples and tumor tissue to detect K-ras mutations. Expert Rev. Anticancer Ther. 2015;15:715–725. doi: 10.1586/14737140.2015.1037836.
    1. Marcinkowska-Swojak M., Handschuh L., Wojciechowski P., Goralski M., Tomaszewski K., Kazmierczak M., Lewandowski K., Komarnicki M., Blazewicz J., Figlerowicz M., et al. Simultaneous detection of mutations and copy number variation of NPM1 in the acute myeloid leukemia using multiplex ligation-dependent probe amplification. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2016;786:14–26. doi: 10.1016/j.mrfmmm.2016.02.001.
    1. Thierry A.R., Mouliere F., El Messaoudi S., Mollevi C., Lopez-Crapez E., Rolet F., Gillet B., Gongora C., Dechelotte P., Robert B., et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 2014;20:430–435. doi: 10.1038/nm.3511.
    1. Tie J., Wang Y., Tomasetti C., Li L., Springer S., Kinde I., Silliman N., Tacey M., Wong H.-L., Christie M., et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 2016;8:346ra392. doi: 10.1126/scitranslmed.aaf6219.
    1. Weisenberger D.J. Characterizing DNA methylation alterations from The Cancer Genome Atlas. J. Clin. Investig. 2014;124:17–23. doi: 10.1172/JCI69740.
    1. Stirzaker C., Zotenko E., Song J.Z., Qu W., Nair S.S., Locke W.J., Stone A., Armstong N.J., Robinson M.D., Dobrovic A., et al. Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat. Commun. 2015;6:5899. doi: 10.1038/ncomms6899.
    1. Lee W.H., Morton R.A., Epstein J.I., Brooks J.D., Campbell P.A., Bova G.S., Hsieh W.S., Isaacs W.B., Nelson W.G. Cytidine methylation of regulatory sequences near the π-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl. Acad. Sci. USA. 1994;91:11733–11737. doi: 10.1073/pnas.91.24.11733.
    1. Millar D.S., Ow K.K., Paul C.L., Russell P.J., Molloy P.L., Clark S.J. Detailed methylation analysis of the glutathione S-transferase π (GSTP1) gene in prostate cancer. Oncogene. 1999;18:1313–1324. doi: 10.1038/sj.onc.1202415.
    1. Schmidt B., Liebenberg V., Dietrich D., Schlegel T., Kneip C., Seegebarth A., Flemming N., Seemann S., Distler J., Lewin J., et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer. 2010;10:600. doi: 10.1186/1471-2407-10-600.
    1. DeVos T., Tetzner R., Model F., Weiss G., Schuster M., Distler J., Gruetzmann R., Pilarsky C., Habermann J.K., Fleshner P., et al. Circulating methylated septin 9 DNA in plasma is a biomarker for colorectal cancer. Gastroenterology. 2009;136:A623. doi: 10.1016/S0016-5085(09)62872-9.
    1. Lange C.P.E., Campan M., Hinoue T., Schmitz R.F., van der Meulen-de Jong A.E., Slingerland H., Kok P.J.M.J., van Dijk C.M., Weisenberger D.J., Shen H., et al. Genome-scale discovery of DNA-methylation biomarkers for blood-based detection of colorectal cancer. PLoS ONE. 2012;7:e50266. doi: 10.1371/journal.pone.0050266.
    1. Melotte V., Lentjes M.H.F.M., van den Bosch S.M., Hellebrekers D.M.E.I., de hoon J.P.J., Wouters K.A.D., Daenen K.L.J., Partouns-Hendriks I.E.J.M., Stessels F., Louwagie J., et al. N-Myc downstream-regulated gene 4 (NDRG4): A candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl. Cancer Inst. 2009;101:916–927. doi: 10.1093/jnci/djp131.
    1. Mitchell S.M., Ross J.P., Drew H.R., Ho T., Brown G.S., Saunders N.F.W., Duesing K.R., Buckley M.J., Dunne R., Beetson I., et al. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer. 2014;14:54. doi: 10.1186/1471-2407-14-54.
    1. Wagner K.J., Cooper W.N., Grundy R.G., Caldwell G., Jones C., Wadey R.B., Morton D., Schofield P.N., Reik W., Latif F., et al. Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms’ tumour and colorectal cancer. Oncogene. 2002;21:7277–7282. doi: 10.1038/sj.onc.1205922.
    1. Avraham A., Uhlmann R., Shperber A., Birnbaum M., Sandbank J., Sella A., Sukumar S., Evron E. Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. Int. J. Cancer. 2012;131:E1166–E1172. doi: 10.1002/ijc.27526.
    1. Brait M., Sidransky D. Cancer epigenetics: Above and beyond. Toxicol. Mech. Methods. 2011;21:275–288. doi: 10.3109/15376516.2011.562671.
    1. Mahon K.L., Qu W., Devaney J., Paul C., Castillo L., Wykes R.J., Chatfield M.D., Boyer M.J., Stockler M.R., Marx G., et al. Methylated glutathione S-transferase 1 (MGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. Br. J. Cancer. 2014;111:1802–1809. doi: 10.1038/bjc.2014.463.
    1. Dietrich D., Kneip C., Raji O., Lloglou T., Seegebarth A., Schlegel T., Flemming N., Rausch S., Distler J., Fleischhacker M., et al. Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int. J. Oncol. 2012;40:825–832. doi: 10.3892/ijo.2011.1264.
    1. Fantony J.J., Abern M.R., Gopalakrishna A., Owusu R., Jack Tay K., Lance R.S., Inman B.A. Multi-institutional external validation of urinary TWIST1 and NID2 methylation as a diagnostic test for bladder cancer. Urol. Oncol. 2015;33:387.e1–387.e6. doi: 10.1016/j.urolonc.2015.04.014.
    1. Chang Y.S., Lin C.Y., Yang S.F., Ho C.M., Chang J.G. Analysing the mutational status of adenomatous polyposis coli (APC) gene in breast cancer. Cancer Cell Int. 2016;16:23. doi: 10.1186/s12935-016-0297-2.
    1. Sun K., Jiang P., Chan K.C., Wong J., Cheng Y.K., Liang R.H., Chan W.K., Ma E.S., Chan S.L., Cheng S.H., et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc. Natl. Acad. Sci. USA. 2015;112:E5503–E5512. doi: 10.1073/pnas.1508736112.
    1. Lehmann-Werman R., Neiman D., Zemmour H., Moss J., Magenheim J., Vaknin-Dembinsky A., Rubertsson S., Nellgård B., Blennow K., Zetterberg H., et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl. Acad. Sci. USA. 2016;113:E1826–E1834. doi: 10.1073/pnas.1519286113.
    1. Snyder M.W., Kircher M., Hill A.J., Daza R.M., Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68. doi: 10.1016/j.cell.2015.11.050.
    1. Lange C.P.E., Laird P.W. Clinical applications of DNA methylation biomarkers in colorectal cancer. Epigenomics. 2013;5:105–108. doi: 10.2217/epi.13.4.
    1. Kristensen L.S., Raynor M.P., Candiloro I., Dobrovic A. Methylation profiling of normal individuals reveals mosaic promoter methylation of cancer-associated genes. Oncotarget. 2012;3:450–461. doi: 10.18632/oncotarget.480.
    1. Pedersen S.K., Baker R.T., McEvoy A., Murray D.H., Thomas M., Molloy P.L., Mitchell S., Lockett T., Young G.P., LaPointe L.C. A two-gene blood test for methylated DNA sensitive for colorectal cancer. PLoS ONE. 2015;10:e0125041. doi: 10.1371/journal.pone.0125041.
    1. Symonds E.L., Pedersen S.K., Baker R.T., Murray D.H., Gaur S., Cole S.R., Gopalsamy G., Mangira D., LaPointe L.C., Young G.P. A blood test for methylated BCAT1 and IKZF1 vs. a fecal immunochemical test for detection of colorectal neoplasia. Clin. Transl. Gastroenterol. 2016;7:e137. doi: 10.1038/ctg.2015.67.
    1. Pedersen S.K., Symonds E.L., Baker R.T., Murray D.H., McEvoy A., Van Doorn S.C., Mundt M.W., Cole S.R., Gopalsamy G., Mangira D., et al. Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia. BMC Cancer. 2015;15:654. doi: 10.1186/s12885-015-1674-2.
    1. Edge S.B., Byrd D.R., Compton C.C., Fritz A.G., Greene F.L., Trotti A. AJCC Cancer Staging Manual. 7th ed. Springer; New York, NY, USA: 2010.
    1. Kulis M., Merkel A., Heath S., Queirós A.C., Schuyler R.P., Castellano G., Beekman R., Raineri E., Esteve A., Clot G., et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet. 2015;47:746–756. doi: 10.1038/ng.3291.
    1. Oakes C.C., Seifert M., Assenov Y., Gu L., Przekopowitz M., Ruppert A., Wang Q., Imbusch C.D., Serva A., Koser S.D., et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 2016;48:253–264. doi: 10.1038/ng.3488.
    1. Schultz M.D., He Y., Whitaker J.W., Hariharan M., Mukamel E.A., Leung D., Rajagopal N., Nery J.N., Urich M.A., Chen H., et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015;523:212–216. doi: 10.1038/nature14465.
    1. Kristensen L.S., Hansen J.W., Kristensen S.S., Tholstrup D., Harsløf L.B., Pedersen O.B., De Nully Brown P., Grønbæk K. Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma. Clin. Epigenet. 2016;8:95. doi: 10.1186/s13148-016-0261-y.
    1. Oh T., Kim N., Moon Y., Kim M.S., Hoehn B.D., Park C.H., Kim T.S., Kim N.K., Chung H.C., An S. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J. Mol. Diagn. 2013;15:498–507. doi: 10.1016/j.jmoldx.2013.03.004.
    1. Xue M., Lai S.C., Xu Z.P., Wang L.J. Noninvasive DNA methylation biomarkers in colorectal cancer: A systematic review. J. Dig. Dis. 2015;16:699–712. doi: 10.1111/1751-2980.12299.

Source: PubMed

3
購読する