Deficient butyrate-producing capacity in the gut microbiome is associated with bacterial network disturbances and fatigue symptoms in ME/CFS

Cheng Guo, Xiaoyu Che, Thomas Briese, Amit Ranjan, Orchid Allicock, Rachel A Yates, Aaron Cheng, Dana March, Mady Hornig, Anthony L Komaroff, Susan Levine, Lucinda Bateman, Suzanne D Vernon, Nancy G Klimas, Jose G Montoya, Daniel L Peterson, W Ian Lipkin, Brent L Williams, Cheng Guo, Xiaoyu Che, Thomas Briese, Amit Ranjan, Orchid Allicock, Rachel A Yates, Aaron Cheng, Dana March, Mady Hornig, Anthony L Komaroff, Susan Levine, Lucinda Bateman, Suzanne D Vernon, Nancy G Klimas, Jose G Montoya, Daniel L Peterson, W Ian Lipkin, Brent L Williams

Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained debilitating fatigue, cognitive dysfunction, gastrointestinal disturbances, and orthostatic intolerance. Here, we report a multi-omic analysis of a geographically diverse cohort of 106 cases and 91 healthy controls that revealed differences in gut microbiome diversity, abundances, functional pathways, and interactions. Faecalibacterium prausnitzii and Eubacterium rectale, which are both recognized as abundant, health-promoting butyrate producers in the human gut, were reduced in ME/CFS. Functional metagenomics, qPCR, and metabolomics of fecal short-chain fatty acids confirmed a deficient microbial capacity for butyrate synthesis. Microbiome-based machine learning classifier models were robust to geographic variation and generalizable in a validation cohort. The abundance of Faecalibacterium prausnitzii was inversely associated with fatigue severity. These findings demonstrate the functional nature of gut dysbiosis and the underlying microbial network disturbance in ME/CFS, providing possible targets for disease classification and therapeutic trials.

Keywords: Faecalibacterium; biomarkers; butyrate; co-abundance network; irritable bowel syndrome; metabolomics; microbiome; myalgic encephalomyelitis/chronic fatigue syndrome; short-chain fatty acids; shotgun metagenomics.

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1.. Gut microbiome diversity
Figure 1.. Gut microbiome diversity
(A) Genus-level distribution of bacteria in the fecal microbiota of ME/CFS cases (n = 106) and healthy control subjects (n = 91). (B and C) Distribution of microbiota alpha diversity (Pielou’s e index) comparing ME/CFS and healthy controls (B) and groups stratified by sr-IBS status (C). Box-and-whiskers plots represent the interquartile ranges (25th through 75th percentiles, boxes), medians (50th percentiles, bars within the boxes), the 5th and 95th percentiles (whiskers below and above the boxes), and outliers beyond the whiskers (closed circles). See also Figures S1A–S1D. (D and E) PCoA plots of microbiota beta diversity (Bray-Curtis dissimilarity metric) comparing ME/CFS and healthy controls (D) and groups stratified by sr-IBS status (E). Statistical significance: Mann-Whitney U test (B); Kruskal-Wallis test (K.W.), and Mann-Whitney U test with Bonferroni correction (padj value, C); PERMANOVA and PERMANOVA-FL (D); PERMANOVA with Bonferroni correction (padj value, E). *p or padj < 0.05; **p or padj < 0.01.
Figure 2.. Differential abundance, machine-learning classifiers, and…
Figure 2.. Differential abundance, machine-learning classifiers, and quantitation of fecal bacteria
(A and B) Differential abundance. (A) Heatmap showing differentially abundant species identified from models 1–3 (MaAsLin2 analyses). Strength and direction of association are indicated by the color scale of the regression coefficient. FDR adjusted p value (q value) F. prausnitzii, R. lactatiformans, Lachnoclostridium sp. YL32, and E. ramosum). AUC values are shown for the primary dataset in this study (model), by geographic sites (CA, NY, NV, and UT), and for the external validation dataset (CFI). See also Figure S2. (D–I) Bacterial quantitation (qPCR). Distribution of Roseburia-Eubacterium (D and F) and F. prausnitzii (E and G) and total bacterial (H and I) 16S rRNA genes per gram of feces (also normalized for ACN in (H) and (I) between ME/CFS and healthy controls (D, E, and H) and among stratified groups (F, G, and I). Box-and-whiskers plots represent the interquartile ranges (25th through 75th percentiles, boxes), medians (50th percentiles, bars within the boxes), the 5th and 95th percentiles (whiskers below and above the boxes), and outliers beyond the whiskers (closed circles). Statistical significance: Mann-Whitney U test (D, E, and H); Kruskal-Wallis test (K.W.) and Mann-Whitney U test with Bonferroni correction (padj value, F, G, and I). *p or padj < 0.05; **p or padj < 0.01; ***p or padj < 0.001; ****p or padj < 0.0001; T, trend (p or padj < 0.1).
Figure 3.. Functional metagenomic and metabolomic analyses
Figure 3.. Functional metagenomic and metabolomic analyses
(A and B) GoMixer metabolic processes (A) and modules (B) that are deficient (red in A, downward facing white arrow in B) or enriched (blue in A, upward facing white arrow in B) in ME/CFS compared with healthy controls. (B) Color scale indicates the mean difference in modules (Δ) between ME/CFS and controls. An FDR adjusted p value (q value) but gene copies per gram of feces (qPCR) between ME/CFS and healthy controls (F) and among stratified groups (G). See also Table S1B. (H and I) Distribution of fecal SCFAs (ng SCFA/ng feces) measured by GC-MS between ME/CFS and healthy controls (H) and among stratified groups (I). See also Table S4. Box-and-whiskers plots (D-I) represent the interquartile ranges (25th through 75th percentiles, boxes), medians (50th percentiles, bars within the boxes), the 5th and 95th percentiles (whiskers below and above the boxes), and outliers beyond the whiskers (closed circles). Statistical significance: Mann-Whitney U test (D, F, and H); Kruskal-Wallis test (K.W.) followed by Mann-Whitney U test with Bonferroni correction (padj value, E, G, and I), where K.W. was significant (p < 0.05). n.s., not significant; *p or padj < 0.05; **p or padj < 0.01; ***p or padj < 0.001; ****p or padj < 0.0001; T, trend (p or padj < 0.1).
Figure 4.. Association of species abundances with…
Figure 4.. Association of species abundances with SCFAs and fatigue symptoms and co-abundance network analysis strategy
(A–D) Heatmaps showing associations between the relative abundance of species and molar proportions of individual SCFAs (A and B) and between species and individual dimension and total fatigue scores (MFI: C and D) among healthy controls (A and C: n = 91) and among ME/CFS cases (B and D: n = 106) (MaAsLin2 analyses). Strength and direction of the associations are indicated by the color scale of the regression coefficient. FDR was controlled with a p value cutoff

Figure 5.. Species co-abundance network comparisons between…

Figure 5.. Species co-abundance network comparisons between groups

(A and B) Species co-abundance networks derived…

Figure 5.. Species co-abundance network comparisons between groups
(A and B) Species co-abundance networks derived from the AggCN (A) and AggMN (B). Nodes are sized by betweenness centrality and colored according to their community module membership. Blue edges indicate positive and red edges negative correlations; thicker edges highlight unique edges within each group. (C) Alluvial plot showing the shuffling of species between community modules identified in the AggCN (controls, left) and the AggMN (ME/CFS, right). Jaccard index between group modules is shown below the plot. Asterisks indicate connector species identified in (D) and (E). The associated heatmap shows top ranked species based on difference in centrality metrics (delta centrality). Only top ranked changes are shown (≥95th percentile = higher centrality in ME/CFS [blue scale] or ≤5th percentile = higher centrality in controls [red scale]). ASPL, average shortest path length; MCC, maximal clique centrality; MNC, maximum neighborhood component; NESH, neighbor shift score. (D and E) Zi-Pi plot showing within-module and between-module connectivity for each of the 100 species (each point represents a species) in the AggCN (D) and the AggMN (E). Cutoff zones defining species as network hubs, module hubs, connectors, and peripherals are indicated (dotted red lines and zone labels). Blue diamonds, module hubs; green triangles, connector species; black circles, peripherals. (F and G) Subgraphs derived from the first-order neighbors of F. prausnitzii and their edges in the AggCN (F) and AggMN (G). Nodes are sized by their degree and their colors reflect their module membership. Blue edges indicate positive and red negative correlations; thicker edges highlight unique interactions within each group.
Figure 5.. Species co-abundance network comparisons between…
Figure 5.. Species co-abundance network comparisons between groups
(A and B) Species co-abundance networks derived from the AggCN (A) and AggMN (B). Nodes are sized by betweenness centrality and colored according to their community module membership. Blue edges indicate positive and red edges negative correlations; thicker edges highlight unique edges within each group. (C) Alluvial plot showing the shuffling of species between community modules identified in the AggCN (controls, left) and the AggMN (ME/CFS, right). Jaccard index between group modules is shown below the plot. Asterisks indicate connector species identified in (D) and (E). The associated heatmap shows top ranked species based on difference in centrality metrics (delta centrality). Only top ranked changes are shown (≥95th percentile = higher centrality in ME/CFS [blue scale] or ≤5th percentile = higher centrality in controls [red scale]). ASPL, average shortest path length; MCC, maximal clique centrality; MNC, maximum neighborhood component; NESH, neighbor shift score. (D and E) Zi-Pi plot showing within-module and between-module connectivity for each of the 100 species (each point represents a species) in the AggCN (D) and the AggMN (E). Cutoff zones defining species as network hubs, module hubs, connectors, and peripherals are indicated (dotted red lines and zone labels). Blue diamonds, module hubs; green triangles, connector species; black circles, peripherals. (F and G) Subgraphs derived from the first-order neighbors of F. prausnitzii and their edges in the AggCN (F) and AggMN (G). Nodes are sized by their degree and their colors reflect their module membership. Blue edges indicate positive and red negative correlations; thicker edges highlight unique interactions within each group.

References

    1. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, and Komaroff A. (). The chronic fatigue syndrome: a comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Ann. Intern. Med. 121, 953–959. 10.7326/0003-4819-121-12-199412150-00009.
    1. Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles AC, Speight N, Vallings R, et al. (). Myalgic encephalomyelitis: international Consensus Criteria. J. Intern. Med. 270, 327–338. 10.1111/j.1365-2796.2011.02428.x.
    1. Institute of Medicine (). Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. In The National Academies Collection: Reports (National Institutes of Health; ). 10.17226/19012.
    1. Słomko J, Newton JL, Kujawski S, Tafil-Klawe M, Klawe J, Staines D, Marshall-Gradisnik S, and Zalewski P. (). Prevalence and characteristics of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) in Poland: a cross-sectional study. BMJ Open 9, e023955. 10.1136/bmjopen-2018-023955.
    1. Johnston S, Brenu EW, Staines D, and Marshall-Gradisnik S. (). The prevalence of chronic fatigue syndrome/myalgic encephalomyelitis: a meta-analysis. Clin. Epidemiol. 5, 105–110. 10.2147/CLEP.S39876.
    1. Lorusso L, Mikhaylova SV, Capelli E, Ferrari D, Ngonga GK, and Ricevuti G. (). Immunological aspects of chronic fatigue syndrome. Autoimmun. Rev. 8, 287–291. 10.1016/j.autrev.2008.08.003.
    1. Lim EJ, Ahn YC, Jang ES, Lee SW, Lee SH, and Son CG (). Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Transl. Med. 18, 100. 10.1186/s12967-020-02269-0.
    1. Carruthers BM, Jain AK, De Meirleir KL, Peterson DL, Klimas NG, Lerner AM, Bested AC, Flor-Henry P, Joshi P, Powles ACP, et al. (). Myalgic encephalomyelitis/chronic fatigue syndrome: clinical working case definition, diagnostic and treatment protocols. J. Chronic Fatigue Syndr. 11, 7–115.
    1. Clayton E. (). Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness (The National Academies Collection; ).
    1. Komaroff AL, and Lipkin WI (). Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol. Med. 27, 895–906. 10.1016/j.molmed.2021.06.002.
    1. Paul BD, Lemle MD, Komaroff AL, and Snyder SH (). Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 118. e2024358118. 10.1073/pnas.2024358118.
    1. Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, Vernon SD, Reeves WC, and Lloyd A; Dubbo Infection Outcomes Study Group (). Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ 333, 575. 10.1136/.
    1. Underhill RA (). Myalgic encephalomyelitis, chronic fatigue syndrome: an infectious disease. Med. Hypo. 85, 765–773. 10.1016/j.mehy.2015.10.011.
    1. Komaroff AL, and Bateman L. (). Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome? Front. Med. (Lausanne) 7, 606824. 10.3389/fmed.2020.606824.
    1. O’Sullivan O. (). Long-term sequelae following previous coronavirus epidemics. Clin. Med. (Lond.) 21, e68–e70. 10.7861/clinmed.2020-0204.
    1. Wostyn P. (). COVID-19 and chronic fatigue syndrome: is the worst yet to come? Med. Hypo. 146, 110469. 10.1016/j.mehy.2020.110469.
    1. Stefano GB (). Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med. Sci. Monit. 27, e931447. 10.12659/MSM.931447.
    1. Writing Committee for the COMEBAC Study Group, Morin L, Savale L, Pham T, Colle R, Figueiredo S, Harrois A, Gasnier M, Lecoq AL, Meyrignac O, et al. (). Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19. JAMA 325, 1525–1534. 10.1001/jama.2021.3331.
    1. Sekirov I, Russell SL, Antunes LC, and Finlay BB (). Gut microbiota in health and disease. Physiol. Rev. 90, 859–904. 10.1152/physrev.00045.2009.
    1. Galland L. (). The gut microbiome and the brain. J. Med. Food 17, 1261–1272. 10.1089/jmf.2014.7000.
    1. Zheng D, Liwinski T, and Elinav E. (). Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506. 10.1038/s41422-020-0332-7.
    1. Antonini M, Lo Conte M, Sorini C, and Falcone M. (). How the interplay between the commensal microbiota, gut barrier integrity, and mucosal immunity regulates brain autoimmunity. Front. Immunol. 10, 1937. 10.3389/fimmu.2019.01937.
    1. Du Preez S, Corbitt M, Cabanas H, Eaton N, Staines D, and Marshall-Gradisnik S. (). A systematic review of enteric dysbiosis in chronic fatigue syndrome/myalgic encephalomyelitis. Syst. Rev. 7, 241. 10.1186/s13643-018-0909-0.
    1. Nagy-Szakal D, Williams BL, Mishra N, Che X, Lee B, Bateman L, Klimas NG, Komaroff AL, Levine S, Montoya JG, et al. (). Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome 5, 44. 10.1186/s40168-017-0261-y.
    1. Fré mont M, Coomans D, Massart S, and De Meirleir K. (). Highthroughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe 22, 50–56. 10.1016/j.anaerobe.2013.06.002.
    1. Giloteaux L, Hanson MR, and Keller BA (). A pair of identical twins discordant for myalgic encephalomyelitis/chronic fatigue syndrome differ in physiological parameters and gut microbiome composition. Am. J. Case Rep. 17, 720–729. 10.12659/ajcr.900314.
    1. Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE, and Hanson MR (). Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome 4, 30. 10.1186/s40168-016-0171-4.
    1. Kitami T, Fukuda S, Kato T, Yamaguti K, Nakatomi Y, Yamano E, Kataoka Y, Mizuno K, Tsuboi Y, Kogo Y, et al. (). Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in Japanese population. Sci. Rep. 10, 19933. 10.1038/s41598-020-77105-y.
    1. Lupo GFD, Rocchetti G, Lucini L, Lorusso L, Manara E, Bertelli M, Puglisi E, and Capelli E. (). Potential role of microbiome in chronic fatigue syndrome/myalgic Encephalomyelits (CFS/ME). Sci. Rep. 11, 7043. 10.1038/s41598-021-86425-6.
    1. Aaron LA, Herrell R, Ashton S, Belcourt M, Schmaling K, Goldberg J, and Buchwald D. (). Comorbid clinical conditions in chronic fatigue: a co-twin control study. J. Gen. Intern. Med. 16, 24–31.
    1. Hausteiner-Wiehle C, and Henningsen P. (). Irritable bowel syndrome: relations with functional, mental, and somatoform disorders. World J. Gastroenterol. 20, 6024–6030. 10.3748/wjg.v20.i20.6024.
    1. Kim SE, and Chang L. (). Overlap between functional GI disorders and other functional syndromes: what are the underlying mechanisms? Neurogastroenterol. Motil. 24, 895–913. 10.1111/j.1365-2982.2012.01993.x.
    1. Gupta VK, Paul S, and Dutta C. (). Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8, 1162. 10.3389/fmicb.2017.01162.
    1. Chong PP, Chin VK, Looi CY, Wong WF, Madhavan P, and Yong VC (). The microbiome and irritable bowel syndrome - a review on the pathophysiology, current research and future therapy. Front. Microbiol. 10, 1136. 10.3389/fmicb.2019.01136.
    1. Zhuang X, Tian Z, Li L, Zeng Z, Chen M, and Xiong L. (). Fecal microbiota alterations associated with diarrhea-predominant irritable bowel syndrome. Front. Microbiol. 9, 1600. 10.3389/fmicb.2018.01600.
    1. Rangel I, Sundin J, Fuentes S, Repsilber D, de Vos WM, and Brummer RJ (). The relationship between faecal-associated and mucosal-associated microbiota in irritable bowel syndrome patients and healthy subjects. Aliment. Pharmacol. Ther. 42, 1211–1221. 10.1111/apt.13399.
    1. Jeffery IB, Das A, O’Herlihy E, Coughlan S, Cisek K, Moore M, Bradley F, Carty T, Pradhan M, Dwibedi C, et al. (). Differences in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome and bile acid malabsorption. Gastroenterology 158, 1016–1028.e8. 10.1053/j.gastro.2019.11.301.
    1. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, Tickle TL, Weingart G, Ren B, Schwager EH, et al. (). Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442. 10.1371/journal.pcbi.1009442.
    1. Pereira-Flores E, Glö ckner FO, and Fernandez-Guerra A. (). Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinformatics 20, 453. 10.1186/s12859-019-3031-y.
    1. Darzi Y, Falony G, Vieira-Silva S, and Raes J. (). Towards biome-specific analysis of meta-omics data. ISME J. 10, 1025–1028. 10.1038/ismej.2015.188.
    1. Vital M, Karch A, and Pieper DH (). Colonic butyrate-producing communities in humans: an overview using omics data. mSystems 2. e00130–e00117. 10.1128/mSystems.00130-17.
    1. Louis P, and Flint HJ (). Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-co-enzyme A (CoA) CoA transferase genes in complex bacterial samples. Appl. Environ. Microbiol. 73, 2009–2012. 10.1128/AEM.02561-06.
    1. Tackmann J, Matias Rodrigues JF, and von Mering C. (). Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data. Cell Syst. 9, 286–296.e8. 10.1016/j.cels.2019.08.002.
    1. Kuntal BK, Chandrakar P, Sadhu S, and Mande SS (). ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J. 13, 442–454. 10.1038/s41396-018-0291-x.
    1. Shkoporov AN, Chaplin AV, Khokhlova EV, Shcherbakova VA, Motuzova OV, Bozhenko VK, Kafarskaia LI, and Efimov BA (). Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 65, 4580–4588. 10.1099/ijsem.0.000617.
    1. Shkoporov AN, Chaplin AV, Shcherbakova VA, Suzina NE, Kafarskaia LI, Bozhenko VK, and Efimov BA (). Ruthenibacterium lactatiformans gen. nov., sp. nov., an anaerobic, lactate-producing member of the family Ruminococcaceae isolated from human faeces. Int. J. Syst. Evol. Microbiol. 66, 3041–3049. 10.1099/ijsem.0.001143.
    1. Pequegnat B, Sagermann M, Valliani M, Toh M, Chow H, AllenVercoe E, and Monteiro MA (). A vaccine and diagnostic target for Clostridium bolteae, an autism-associated bacterium. Vaccine 31, 2787–2790. 10.1016/j.vaccine.2013.04.018.
    1. Plichta DR, Somani J, Pichaud M, Wallace ZS, Fernandes AD, Perugino CA, Lähdesmäki H, Stone JH, Vlamakis H, Chung DC, et al. (). Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis. Genome Med. 13, 35. 10.1186/s13073-021-00853-7.
    1. Pandit L, Cox LM, Malli C, D’Cunha A, Rooney T, Lokhande H, Willocq V, Saxena S, and Chitnis T. (). Clostridium bolteae is elevated in neuromyelitis optica spectrum disorder in India and shares sequence similarity with AQP4. Neurol. Neuroimmunol. Neuroinflamm. 8, e907. 10.1212/NXI.0000000000000907.
    1. Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasé n C, Tauhid S, Chu R, et al. (). Gut microbiome in progressive multiple sclerosis. Ann. Neurol. 89, 1195–1211. 10.1002/ana.26084.
    1. Thirion F, Guilly S, Fromentin S, Plaza Oñ ate F, Alvarez AS, Le Chatelier E, Pons N, Levenez F, Quinquis B, Ehrlich S, et al. (). Changes in gut microbiota of patients with atopic dermatitis during balneotherapy. Clin. Cosmet. Investig. Dermatol. 15, 163–176. 10.2147/CCID.S342104.
    1. Crost EH, Tailford LE, Monestier M, Swarbreck D, Henrissat B, Crossman LC, and Juge N. (). The mucin-degradation strategy of Ruminococcus gnavus: the importance of intramolecular trans-sialidases. Gut Microbes 7, 302–312. 10.1080/19490976.2016.1186334.
    1. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, and Clardy J. (). Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA 116, 12672–12677. 10.1073/pnas.1904099116.
    1. Manichanh C, Reeder J, Gibert P, Varela E, Llopis M, Antolin M, Guigo R, Knight R, and Guarner F. (). Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res. 20, 1411–1419. 10.1101/gr.107987.110.
    1. Panda S, El Khader I, Casellas F, López Vivancos J, García Cors M, Santiago A, Cuenca S, Guarner F, and Manichanh C. (). Short-term effect of antibiotics on human gut microbiota. PLoS One 9, e95476. 10.1371/journal.pone.0095476.
    1. Shah A, Talley NJ, Koloski N, Macdonald GA, Kendall BJ, Shanahan ER, Walker MM, Keely S, Jones MP, Morrison M, et al. (). Duodenal bacterial load as determined by quantitative polymerase chain reaction in asymptomatic controls, functional gastrointestinal disorders and inflammatory bowel disease. Aliment. Pharmacol. Ther. 52, 155–167. 10.1111/apt.15786.
    1. Sloan TJ, Jalanka J, Major GAD, Krishnasamy S, Pritchard S, Abdelrazig S, Korpela K, Singh G, Mulvenna C, Hoad CL, et al. (). A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS One 13, e0201410. 10.1371/journal.pone.0201410.
    1. Beisner J, Filipe Rosa L, Kaden-Volynets V, Stolzer I, Gu€nther C, and Bischoff SC (). Prebiotic inulin and sodium butyrate attenuate obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides. Front. Immunol. 12, 678360. 10.3389/fimmu.2021.678360.
    1. Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DGW, Pires E, et al. (). The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e7. 10.1016/j.immuni.2018.12.018.
    1. LeBlanc JG, Chain F, Martıń R, Bermúdez-Humarán LG, Courau S, and Langella P. (). Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 16, 79. 10.1186/s12934-017-0691-z.
    1. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, and Hermoso MA (). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277. 10.3389/fimmu.2019.00277.
    1. Louis P, Young P, Holtrop G, and Flint HJ (). Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314. 10.1111/j.1462-2920.2009.02066.x.
    1. Duncan SH, Barcenilla A, Stewart CS, Pryde SE, and Flint HJ (). Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl. Environ. Microbiol. 68, 5186–5190. 10.1128/AEM.68.10.5186-5190.2002.
    1. Rios-Covian D, Gueimonde M, Duncan SH, Flint HJ, and de los Reyes-Gavilan CG (). Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol. Lett. 362. 10.1093/femsle/fnv176.
    1. Sun Q, Jia Q, Song L, and Duan L. (). Alterations in fecal short-chain fatty acids in patients with irritable bowel syndrome: A systematic review and meta-analysis. Med. (Baltim.) 98, e14513. 10.1097/MD.0000000000014513.
    1. Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, Tang X, Sun Z, Kalari KR, Korem T, et al. (). Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 183, 1137–1140. 10.1016/j.cell.2020.10.040.
    1. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, and Gö ker M. (). Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front. Microbiol. 10, 2083. 10.3389/fmicb.2019.02083.
    1. Miquel S, Martıń R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol HM, Wells JM, and Langella P. (). Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255–261. 10.1016/j.mib.2013.06.003.
    1. Martín R, Bermúdez-Humarán LG, and Langella P. (). Searching for the bacterial effector: the example of the multi-skilled commensal bacterium Faecalibacterium prausnitzii. Front. Microbiol. 9, 346. 10.3389/fmicb.2018.00346.
    1. Leylabadlo HE, Ghotaslou R, Feizabadi MM, Farajnia S, Moaddab SY, Ganbarov K, Khodadadi E, Tanomand A, Sheykhsaran E, Yousefi B, et al. (). The critical role of Faecalibacterium prausnitzii in human health: an overview. Microb. Pathog. 149, 104344. 10.1016/j.micpath.2020.104344.
    1. Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, Miquel S, Carlier L, Bermú dez-Humará n LG, Pigneur B, et al. (). Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425. 10.1136/gutjnl-2014-307649.
    1. Tang L, Gu S, Gong Y, Li B, Lu H, Li Q, Zhang R, Gao X, Wu Z, Zhang J, et al. (). Clinical significance of the correlation between changes in the Major intestinal bacteria species and COVID-19 severity. Engineering (Beijing) 6, 1178–1184. 10.1016/j.eng.2020.05.013.
    1. Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, et al. (). Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70, 698–706. 10.1136/gutjnl-2020-323020.
    1. Zhou Y, Zhang J, Zhang D, Ma WL, and Wang X. (). Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J. Microbiol. 59, 941–948. 10.1007/s12275-021-1206-5.
    1. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, et al. (). The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632. 10.1038/s41564-018-0337-x.
    1. Borren NZ, Plichta D, Joshi AD, Bonilla G, Peng V, Colizzo FP, Luther J, Khalili H, Garber JJ, Janneke van der Woude C, et al. (). Alterations in fecal microbiomes and serum metabolomes of fatigued patients with quiescent inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 19, 519–527.e5. 10.1016/j.cgh.2020.03.013.
    1. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, and Martinez-Medina M. (). Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852. 10.1038/ismej.2016.176.
    1. Vercoulen JH, Bazelmans E, Swanink CM, Fennis JF, Galama JM, Jongen PJ, Hommes O, Van der Meer JW, and Bleijenberg G. (). Physical activity in chronic fatigue syndrome: assessment and its role in fatigue. J. Psychiatr. Res. 31, 661–673. 10.1016/s0022-3956(97)00039-3.
    1. van der Werf SP, Prins JB, Vercoulen JH, van der Meer JW, and Bleijenberg G. (). Identifying physical activity patterns in chronic fatigue syndrome using actigraphic assessment. J. Psychosom. Res. 49, 373–379. 10.1016/s0022-3999(00)00197-5.
    1. Black CD, O’Connor PJ, and McCully KK (). Increased daily physical activity and fatigue symptoms in chronic fatigue syndrome. Dyn. Med. 4, 3. 10.1186/1476-5918-4-3.
    1. Kop WJ, Lyden A, Berlin AA, Ambrose K, Olsen C, Gracely RH, Williams DA, and Clauw DJ (). Ambulatory monitoring of physical activity and symptoms in fibromyalgia and chronic fatigue syndrome. Arthritis Rheum. 52, 296–303. 10.1002/art.20779.
    1. Mailing LJ, Allen JM, Buford TW, Fields CJ, and Woods JA (). Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport Sci. Rev. 47, 75–85. 10.1249/JES.0000000000000183.
    1. Clauss M, Gé rard P, Mosca A, and Leclerc M. (). Interplay between exercise and gut microbiome in the context of human health and performance. Front. Nutr. 8, 637010. 10.3389/fnut.2021.637010.
    1. Layeghifard M, Li H, Wang PW, Donaldson SL, Coburn B, Clark ST, Caballero JD, Zhang Y, Tullis DE, Yau YCW, et al. (). Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. NPJ Biofilms Microbiomes 5, 4. 10.1038/s41522-018-0077-y.
    1. Huang M, Liu J, Liu K, Chen J, Wei Z, Feng Z, Wu Y, Fong M, Tian R, Wang B, et al. (). Microbiome-specific statistical modeling identifies interplay between gastrointestinal microbiome and neurobehavioral outcomes in patients with autism: A case control study. Front. Psychiatry 12, 682454. 10.3389/fpsyt.2021.682454.
    1. Chen L, Collij V, Jaeger M, van den Munckhof ICL, Vich Vila A, Kurilshikov A, Gacesa R, Sinha T, Oosting M, Joosten LAB, et al. (). Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat. Commun. 11, 4018. 10.1038/s41467-020-17840-y.
    1. Xiong R, Gunter C, Fleming E, Vernon SD, Bateman L, Unutmaz D, and Oh J. (). Multi-’omics of gut microbiome-host interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. Cell Host Microbe. 10.1101/2021.10.27.466150.
    1. Martin M. (). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12.
    1. Schmieder R, and Edwards R. (). Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864. 10.1093/bioinformatics/btr026.
    1. Langmead B, and Salzberg SL (). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. 10.1038/nmeth.1923.
    1. Lu J, and Salzberg SL (). Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome 8, 124. 10.1186/s40168-020-00900-2.
    1. Lu J, Breitwieser FP, Thielen P, and Salzberg SL (). Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, 104.
    1. Kaul A, Mandal S, Davidov O, and Peddada SD (). Analysis of microbiome data in the presence of excess zeros. Front. Microbiol. 8, 2114. 10.3389/fmicb.2017.02114.
    1. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, AlGhalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. (). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. 10.1038/s41587-019-0209-9.
    1. Kim J, Kim MS, Koh AY, Xie Y, and Zhan X. (). FMAP: functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies. BMC Bioinformatics 17, 420. 10.1186/s12859-016-1278-0.
    1. Smets EM, Garssen B, Bonke B, and De Haes JC (). The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 39, 315–325. 10.1016/0022-3999(94)00125-o.
    1. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, and Louis P. (). Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101, 541–550. 10.1017/S0007114508019880.
    1. Nadkarni MA, Martin FE, Jacques NA, and Hunter N. (). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology (Reading) 148, 257–266. 10.1099/00221287-148-1-257.
    1. Moreau NM, Goupry SM, Antignac JP, Monteau FJ, Le Bizec BJ, Champ MM, Martin LJ, and Dumon HJ (). Simultaneous measurement of plasma concentrations and 13C-enrichment of short-chain fatty acids, lactic acid and ketone bodies by gas chromatography coupled to mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 784, 395–403. 10.1016/s1570-0232(02)00827-9.
    1. Hu YJ, and Satten GA (). Testing hypotheses about the microbiome using the linear decomposition model (LDM). Bioinformatics 36, 4106–4115. 10.1093/bioinformatics/btaa260.
    1. Assenov Y, Ramıŕez F, Schelhorn SE, Lengauer T, and Albrecht M. (). Computing topological parameters of biological networks. Bioinformatics 24, 282–284. 10.1093/bioinformatics/btm554.
    1. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, and Lin CY (). cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8, S11. 10.1186/1752-0509-8-S4-S11.
    1. Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, Bader GD, and Ferrin TE (). clusterMaker: a multi-algorithm clustering plugin for cytoscape. BMC Bioinformatics 12, 436. 10.1186/1471-2105-12-436.
    1. Cao X, Zhao D, Xu H, Huang R, Zeng J, and Yu Z. (). Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: A network analysis. Sci. Rep. 8, 8890. 10.1038/s41598-018-27172-z.

Source: PubMed

3
購読する