Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football

Pascal Edouard, Johan Lahti, Ryu Nagahara, Pierre Samozino, Laurent Navarro, Kenny Guex, Jérémy Rossi, Matt Brughelli, Jurdan Mendiguchia, Jean-Benoît Morin, Pascal Edouard, Johan Lahti, Ryu Nagahara, Pierre Samozino, Laurent Navarro, Kenny Guex, Jérémy Rossi, Matt Brughelli, Jurdan Mendiguchia, Jean-Benoît Morin

Abstract

Clear decreases in horizontal force production capacity during sprint acceleration have been reported after hamstring injuries (HI) in football players. We hypothesized that lower FH0 is associated with a higher HI occurrence in football players. We aimed to analyze the association between sprint running horizontal force production capacities at low (FH0) and high (V0) velocities, and HI occurrence in football. This prospective cohort study included 284 football players over one season. All players performed 30 m field sprints at the beginning and different times during the season. Sprint velocity data were used to compute sprint mechanical properties. Players' injury data were prospectively collected during the entire season. Cox regression analyses were performed using new HI as the outcome, and horizontal force production capacity (FH0 and V0) was used at the start of the season (model 1) and at each measurement time point within the season (model 2) as explanatory variables, adjusted for individual players' (model 2) age, geographical group of players, height, body mass, and previous HI, with cumulative hours of football practice as the time scale. A total of 47 new HI (20% of all injuries) were observed in 38 out of 284 players (13%). There were no associations between FH0 and/or V0 values at the start of the season and new HI occurrence during the season (model 1). During the season, a total of 801 measurements were performed, from one to six per player. Lower measured FH0 values were significantly associated with a higher risk of sustaining HI within the weeks following sprint measurement (HR = 2.67 (95% CI: 1.51 to 4.73), p < 0.001) (model 2). In conclusion, low horizontal force production capacities at low velocity during early sprint acceleration (FH0) may be considered as a potential additional factor associated with HI risk in a comprehensive, multifactorial, and individualized approach.

Keywords: hamstring strain; injury surveillance; prospective studies; risk factors; soccer; sports injury prevention; sprinting.

Conflict of interest statement

The authors declare having no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart showing the recruitment, number of included players and number of sprint acceleration.
Figure 2
Figure 2
The timing of the sprint acceleration mechanical output measurements during the season. The x-axis represents the time (in days) from the start of the season (t = 0), the y-axis represents the groups (Finland = green, Japan = red, France = blue), the color of the circle represents the groups (Finland = green, Japan = red, France = blue), the size of the circle represents the number of measurements at the measurement session. The first vertical line represents the end of the pre-season and the second vertical line the end of the season, with color according to the group.

References

    1. Ekstrand J., Waldén M., Hägglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016;50:731–737. doi: 10.1136/bjsports-2015-095359.
    1. Ekstrand J., Healy J.C., Waldén M., Lee J.C., English B., Hägglund M. Hamstring muscle injuries in professional football: The correlation of MRI findings with return to play. Br. J. Sports Med. 2011;46:112–117. doi: 10.1136/bjsports-2011-090155.
    1. Morin J.-B., Bourdin M., Edouard P., Peyrot N., Samozino P., Lacour J.-R. Mechanical determinants of 100-m sprint running performance. Graefes Arch. Clin. Exp. Ophthalmol. 2012;112:3921–3930. doi: 10.1007/s00421-012-2379-8.
    1. Samozino P., Rabita G., Dorel S., Slawinski J., Peyrot N., De Villarreal E.S., Morin J.-B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sports. 2016;26:648–658. doi: 10.1111/sms.12490.
    1. Morin J.-B., Samozino P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016;11:267–272. doi: 10.1123/ijspp.2015-0638.
    1. Cross M., Lahti J., Brown S.R., Chedati M., Jimenez-Reyes P., Samozino P., Eriksrud O., Morin J.-B. Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes. PLoS ONE. 2018;13:e0195477. doi: 10.1371/journal.pone.0195477.
    1. Schache A.G., Dorn T.W., Blanch P.D., Brown N., Pandy M. Mechanics of the Human Hamstring Muscles during Sprinting. Med. Sci. Sports Exerc. 2012;44:647–658. doi: 10.1249/MSS.0b013e318236a3d2.
    1. Dorn T.W., Schache A., Pandy M. Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance. J. Exp. Biol. 2012;215:2347. doi: 10.1242/jeb.075051.
    1. Morin J.B., Gimenez P., Edouard P., Arnal P., Jiménez-Reyes P., Samozino P., Brughelli M., Mendiguchia J. Sprint acceleration mechanics: The major role of hamstrings in horizontal force production. Front. Physiol. 2015;6:404. doi: 10.3389/fphys.2015.00404.
    1. Van Dyk N., Bahr R., Burnett A.F., Whiteley R., Bakken A., Mosler A., Farooq A., Witvrouw E. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: A prospective cohort study of 413 professional football players. Br. J. Sports Med. 2017;51:1695–1702. doi: 10.1136/bjsports-2017-097754.
    1. Ruddy J.D., Shield A., Maniar N., Williams M.D., Duhig S., Timmins R.G., Hickey J., Bourne M., Opar D. Predictive Modeling of Hamstring Strain Injuries in Elite Australian Footballers. Med. Sci. Sports Exerc. 2018;50:906–914. doi: 10.1249/MSS.0000000000001527.
    1. Van Dyk N., Behan F.P., Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: A systematic review and meta-analysis of 8459 athletes. Br. J. Sports Med. 2019;53:1362–1370. doi: 10.1136/bjsports-2018-100045.
    1. Opar D.A., Timmins R.G., Behan F.P., Hickey J.T., van Dyk N., Price K., Maniar N. Is Pre-season Eccentric Strength Testing During the Nordic Hamstring Exercise Associated with Future Hamstring Strain Injury? A Systematic Review and Meta-analysis. Sports Med. 2021:1–11. doi: 10.1007/s40279-021-01474-1.
    1. Chapman A., Caldwell G. Factors determining changes in lower limb energy during swing in treadmill running. J. Biomech. 1983;16:69–77. doi: 10.1016/0021-9290(83)90047-7.
    1. Jacobs R., Bobbert M.F., Schenau G.J.V.I. Mechanical output from individual muscles during explosive leg extensions: The role of biarticular muscles. J. Biomech. 1996;29:513–523. doi: 10.1016/0021-9290(95)00067-4.
    1. Quatman C.E., Hewett T.E. Prediction and prevention of musculoskeletal injury: A paradigm shift in methodology. Br. J. Sports Med. 2009;43:1100–1107. doi: 10.1136/bjsm.2009.065482.
    1. Mendiguchia J., Alentorn-Geli E., Brughelli M. Hamstring strain injuries: Are we heading in the right direction? Br. J. Sports Med. 2011;46:81–85. doi: 10.1136/bjsm.2010.081695.
    1. Mendiguchia J., Martinez-Ruiz E., Edouard P., Morin J.-B., Martinez-Martinez F., Idoate F., Mendez-Villanueva A. A Multifactorial, Criteria-based Progressive Algorithm for Hamstring Injury Treatment. Med. Sci. Sports Exerc. 2017;49:1482–1492. doi: 10.1249/MSS.0000000000001241.
    1. Cormie P., Mcguigan M.R., Newton R.U. Developing Maximal Neuromuscular Power Part 1—Biological Basis of Maximal Power Production. Sports Med. 2011;41:17–38. doi: 10.2165/11537690-000000000-00000.
    1. Mendiguchia J., Samozino P., Martinez-Ruiz E., Brughelli M., Schmikli S., Morin J.-B., Mendez-Villanueva A. Progression of Mechanical Properties during On-field Sprint Running after Returning to Sports from a Hamstring Muscle Injury in Soccer Players. Int. J. Sports Med. 2014;35:690–695. doi: 10.1055/s-0033-1363192.
    1. Mendiguchia J., Edouard P., Samozino P., Brughelli M., Cross M., Ross A., Gill N., Morin J.-B. Field monitoring of sprinting power–force–velocity profile before, during and after hamstring injury: Two case reports. J. Sports Sci. 2015;34:535–541. doi: 10.1080/02640414.2015.1122207.
    1. Tol J.L., Hamilton B., Eirale C., Muxart P., Jacobsen P., Whiteley R. At return to play following hamstring injury the majority of professional football players have residual isokinetic deficits. Br. J. Sports Med. 2014;48:1364–1369. doi: 10.1136/bjsports-2013-093016.
    1. Maniar N., Shield A., Williams M.D., Timmins R.G., Opar D. Hamstring strength and flexibility after hamstring strain injury: A systematic review and meta-analysis. Br. J. Sports Med. 2016;50:909–920. doi: 10.1136/bjsports-2015-095311.
    1. Green B., Bourne M.N., Van Dyk N., Pizzari T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br. J. Sports Med. 2020;54:1081–1088. doi: 10.1136/bjsports-2019-100983.
    1. Morin J.-B., Samozino P., Murata M., Cross M., Nagahara R. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design. J. Biomech. 2019;94:82–87. doi: 10.1016/j.jbiomech.2019.07.020.
    1. Timpka T., Alonso J.-M., Jacobsson J., Junge A., Branco P., Clarsen B., Kowalski J., Mountjoy M., Nilsson S., Pluim B., et al. Injury and illness definitions and data collection procedures for use in epidemiological studies in Athletics (track and field): Consensus statement. Br. J. Sports Med. 2014;48:483–490. doi: 10.1136/bjsports-2013-093241.
    1. Bujang M.A., Sa’At N., Sidik T.M.I.T.A.B., Joo L.C. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays. J. Med. Sci. 2018;25:122–130. doi: 10.21315/mjms2018.25.4.12.
    1. Nielsen R.O., Bertelsen M.L., Ramskov D., Møller M., Hulme A., Theisen D., Finch C.F., Fortington L.V., Mansournia M.A., Parner E.T. Time-to-event analysis for sports injury research part 2: Time-varying outcomes. Br. J. Sports Med. 2019;53:70–78. doi: 10.1136/bjsports-2018-100000.
    1. Bahr R. Risk factors for sports injuries—A methodological approach. Br. J. Sports Med. 2003;37:384–392. doi: 10.1136/bjsm.37.5.384.
    1. Jiménez-Reyes P., García-Ramos A., Párraga-Montilla J.A., Morcillo-Losa J.A., Cuadrado-Peñafiel V., Castaño-Zambudio A., Samozino P., Morin J.-B. Seasonal Changes in the Sprint Acceleration Force-Velocity Profile of Elite Male Soccer Players. J. Strength Cond. Res. 2020 doi: 10.1519/JSC.0000000000003513.
    1. Opar D.A., Williams M.D., Shield A. Hamstring Strain Injuries. Sports Med. 2012;42:209–226. doi: 10.2165/11594800-000000000-00000.
    1. Freckleton G., Pizzari T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2012;47:351–358. doi: 10.1136/bjsports-2011-090664.
    1. Van Dyk N., Bahr R., Whiteley R., Tol J.L., Kumar B.D., Hamilton B., Farooq A., Witvrouw E. Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries. Am. J. Sports Med. 2016;44:1789–1795. doi: 10.1177/0363546516632526.
    1. Croisier J.-L., Ganteaume S., Binet J., Genty M., Ferret J.-M. Strength Imbalances and Prevention of Hamstring Injury in Professional Soccer Players. Am. J. Sports Med. 2008;36:1469–1475. doi: 10.1177/0363546508316764.
    1. Timmins R.G., Bourne M., Shield A., Williams M.D., Lorenzen C., Opar D. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2015;50:1524–1535. doi: 10.1136/bjsports-2015-095362.
    1. Hamner S.R., Delp S.L. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 2013;46:780–787. doi: 10.1016/j.jbiomech.2012.11.024.
    1. Wild J.J., Bezodis I.N., North J.S., Bezodis N.E. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration. Eur. J. Sport Sci. 2018;18:1–11. doi: 10.1080/17461391.2018.1490459.
    1. Schuermans J., Van Tiggelen D., Palmans T., Danneels L., Witvrouw E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: Cause or consequence? Gait Posture. 2017;57:270–277. doi: 10.1016/j.gaitpost.2017.06.268.
    1. Julia M., Bonnin A., Croisier J.-L., Pereira B., Morand D., Peyrin J.-C., Dusfour B., Dupeyron A., Coudeyre E. Isokinetic thigh muscle strength testing in professional French Rugby Union players: A database as a reference in pre-season strength rehabilitation rather than the controlateral limb. Ann. Phys. Rehabil. Med. 2020;2020:101370. doi: 10.1016/j.rehab.2020.01.007.
    1. Schache A.G., Lai A.K.M., Brown N., Crossley K.M., Pandy M.G. Lower-limb joint mechanics during maximum acceleration sprinting. J. Exp. Biol. 2019;222:jeb209460. doi: 10.1242/jeb.209460.
    1. Meeuwisse W.H., Tyreman H., Hagel B., Emery C. A Dynamic Model of Etiology in Sport Injury: The Recursive Nature of Risk and Causation. Clin. J. Sport Med. 2007;17:215–219. doi: 10.1097/JSM.0b013e3180592a48.
    1. Bittencourt N., Meeuwisse W.H., Mendonça L., Nettel-Aguirre A., Ocarino J., Fonseca S. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition—Narrative review and new concept. Br. J. Sports Med. 2016;50:1309–1314. doi: 10.1136/bjsports-2015-095850.
    1. Buckthorpe M., Wright S., Bruce-Low S., Nanni G., Sturdy T., Gross A.S., Bowen L., Styles B., Della Villa S., Davison M., et al. Recommendations for hamstring injury prevention in elite football: Translating research into practice. Br. J. Sports Med. 2018;53:449–456. doi: 10.1136/bjsports-2018-099616.
    1. Lahti J., Mendiguchia J., Ahtiainen J., Anula L., Kononen T., Kujala M., Matinlauri A., Peltonen V., Thibault M., Toivonen R.-M., et al. Multifactorial individualised programme for hamstring muscle injury risk reduction in professional football: Protocol for a prospective cohort study. BMJ Open Sport Exerc. Med. 2020;6:000758. doi: 10.1136/bmjsem-2020-000758.
    1. Hickey J.T., Opar D.A., Weiss L.J., Heiderscheit B.C. Current clinical concepts: Hamstring strain injury rehabilitation. J. Athl. Train. 2021 doi: 10.4085/1062-6050-0707.20.
    1. Engel G.L. The need for a new medical model: A challenge for biomedicine. Science. 1977;196:129–196. doi: 10.1126/science.847460.
    1. Bolling C., Van Mechelen W., Pasman H.R., Verhagen E. Context Matters: Revisiting the First Step of the ‘Sequence of Prevention’ of Sports Injuries. Sports Med. 2018;48:2227–2234. doi: 10.1007/s40279-018-0953-x.
    1. Hill D., Shaw G. A qualitative examination of choking under pressure in team sport. Psychol. Sport Exerc. 2013;14:103–110. doi: 10.1016/j.psychsport.2012.07.008.
    1. Van Der Horst N., Backx F., A Goedhart E., Huisstede B.M. Return to play after hamstring injuries in football (soccer): A worldwide Delphi procedure regarding definition, medical criteria and decision-making. Br. J. Sports Med. 2017;51:1583–1591. doi: 10.1136/bjsports-2016-097206.
    1. McCall A., The EFP-Group. Pruna R., Van Der Horst N., Dupont G., Buchheit M., Coutts A.J., Impellizzeri F.M., Fanchini M. Exercise-Based Strategies to Prevent Muscle Injury in Male Elite Footballers: An Expert-Led Delphi Survey of 21 Practitioners Belonging to 18 Teams from the Big-5 European Leagues. Sports Med. 2020;50:1667–1681. doi: 10.1007/s40279-020-01315-7.
    1. Edouard P., Hollander K., Navarro L., Lacourpaille L., Morales-Artacho A.J., Hanon C., Morin J.-B., Le Garrec S., Branco P., Junge A., et al. Lower limb muscle injury location shift from posterior lower leg to hamstring muscles with increasing discipline-related running velocity in international athletics championships. J. Sci. Med. Sport. 2021;24:653–659. doi: 10.1016/j.jsams.2021.02.006.
    1. Morin J.-B., Le Mat Y., Osgnach C., Barnabò A., Pilati A., Samozino P., di Prampero P.E. Individual acceleration-speed profile in-situ: A proof of concept in professional football players. J. Biomech. 2021;123:110524. doi: 10.1016/j.jbiomech.2021.110524.
    1. Edouard P., Mendiguchia J., Guex K., Lahti J., Samozino P., Morin J.-B. Sprinting: A potential vaccine for hamstring injury? Sport Perf. Sci. Rep. 2019;48:718. doi: 10.16603/ijspt20170718.

Source: PubMed

3
購読する