Dietary Fiber, Gut Microbiota, and Metabolic Regulation-Current Status in Human Randomized Trials

Mari C W Myhrstad, Hege Tunsjø, Colin Charnock, Vibeke H Telle-Hansen, Mari C W Myhrstad, Hege Tunsjø, Colin Charnock, Vibeke H Telle-Hansen

Abstract

New knowledge about the gut microbiota and its interaction with the host's metabolic regulation has emerged during the last few decades. Several factors may affect the composition of the gut microbiota, including dietary fiber. Dietary fiber is not hydrolyzed by human digestive enzymes, but it is acted upon by gut microbes, and metabolites like short-chain fatty acids are produced. The short-chain fatty acids may be absorbed into the circulation and affect metabolic regulation in the host or be a substrate for other microbes. Some studies have shown improved insulin sensitivity, weight regulation, and reduced inflammation with increases in gut-derived short-chain fatty acids, all of which may reduce the risk of developing metabolic diseases. To what extent a dietary intervention with fiber may affect the human gut microbiota and hence metabolic regulation, is however, currently not well described. The aim of the present review is to summarize recent research on human randomized, controlled intervention studies investigating the effect of dietary fiber on gut microbiota and metabolic regulation. Metabolic regulation is discussed with respect to markers relating to glycemic regulation and lipid metabolism. Taken together, the papers on which the current review is based, suggest that dietary fiber has the potential to change the gut microbiota and alter metabolic regulation. However, due to the heterogeneity of the studies, a firm conclusion describing the causal relationship between gut microbiota and metabolic regulation remains elusive.

Keywords: dietary intervention; fiber; glycemic regulation; gut microbiota; lipid metabolism; metabolic regulation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Classification of dietary fiber. NSP: Non-starch polysaccharides, MU: Monomeric units, RO: Resistant oligosaccharides, RS: Resistant starch.
Figure 2
Figure 2
Flow chart showing the steps in the study selection.

References

    1. World Helth Organization . The Top 10 Causes of Death. WHO; Geneva, Switzerland: 2018.
    1. Collaborators GBDD Health effects of dietary risks in 195 countries, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393:1958–1972. doi: 10.1016/S0140-6736(19)30041-8.
    1. Forouzanfar M.H., Afshin A., Alexander L.T., Anderson H.R., Bhutta Z.A., Biryukov S., Brauer M., Burnett R., Cercy K., Charlson F., et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659–1724. doi: 10.1016/S0140-6736(16)31679-8.
    1. De Munter J.S.L., Hu F.B., Spiegelman N., Franz M., Van Dam R.M. Whole Grain, Bran, and Germ Intake and Risk of Type 2 Diabetes: A Prospective Cohort Study and Systematic Review. PLoS Med. 2007;4:e261. doi: 10.1371/journal.pmed.0040261.
    1. Schulz M., Heidemann C., Schulze M.B., Schienkiewitz A., Hoffmann K., Boeing H. Fiber and Magnesium Intake and Incidence of Type 2 Diabetes. Arch. Intern. Med. 2007;167:956–965. doi: 10.1001/archinte.167.9.956.
    1. Anderson J.W., Baird P., Davis R.H., Jr., Ferreri S., Knudtson M., Koraym A., Waters V., Williams C.L. Health benefits of dietary fiber. Nutr. Rev. 2009;67:188–205. doi: 10.1111/j.1753-4887.2009.00189.x.
    1. Makki K., Deehan E.C., Walter J., Bäckhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018;23:705–715. doi: 10.1016/j.chom.2018.05.012.
    1. Cornejo-Pareja I., Muñoz-Garach A., Clemente-Postigo M., Tinahones F.J. Importance of gut microbiota in obesity. Eur. J. Clin. Nutr. 2018;72:26–37. doi: 10.1038/s41430-018-0306-8.
    1. Blander J.M., Longman R.S., Iliev I.D., Sonnenberg G.F., Artis D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 2017;18:851–860. doi: 10.1038/ni.3780.
    1. Jie Z., Xia H., Zhong S.-L., Feng Q., Li S., Liang S., Zhong H., Liu Z., Gao Y., Zhao H., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8:845. doi: 10.1038/s41467-017-00900-1.
    1. Tilg H., Moschen A. Microbiota and diabetes: An evolving relationship. Gut. 2014;63:1513–1521. doi: 10.1136/gutjnl-2014-306928.
    1. Barko P., McMichael M., Swanson K., Williams D. The Gastrointestinal Microbiome: A Review. J. Vet. Intern. Med. 2017;32:9–25. doi: 10.1111/jvim.14875.
    1. Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009.
    1. Guarner F., Malagelada J.-R. Gut flora in health and disease. Lancet. 2003;361:512–519. doi: 10.1016/S0140-6736(03)12489-0.
    1. Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014.
    1. Underwood M.A. Intestinal dysbiosis: Novel mechanisms by which gut microbes trigger and prevent disease. Prev. Med. 2014;65:133–137. doi: 10.1016/j.ypmed.2014.05.010.
    1. Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18:2. doi: 10.1186/s12865-016-0187-3.
    1. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041.
    1. Dhingra D., Michael M., Rajput H., Patil R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2011;49:255–266. doi: 10.1007/s13197-011-0365-5.
    1. Stephen A.M., Champ M.M.-J., Cloran S.J., Fleith M., Van Lieshout L., Mejborn H., Burley V. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017;30:149–190. doi: 10.1017/S095442241700004X.
    1. Jones J.M. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr. J. 2014;13:34. doi: 10.1186/1475-2891-13-34.
    1. Le Poul E., Loison C., Lannoy V., Brézillon S., Dupriez V., Vassart G., Parmentier M., Detheux M., Struyf S., Springael J.-Y., et al. Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation. J. Boil. Chem. 2003;278:25481–25489. doi: 10.1074/jbc.M301403200.
    1. Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015;11:577–591. doi: 10.1038/nrendo.2015.128.
    1. Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082.
    1. Hong Y.-H., Nishimura Y., Hishikawa D., Tsuzuki H., Miyahara H., Gotoh C., Choi K.-C., Feng D.D., Chen C., Lee H.-G., et al. Acetate and Propionate Short Chain Fatty Acids Stimulate Adipogenesis via GPCR43. Endocrinology. 2005;146:5092–5099. doi: 10.1210/en.2005-0545.
    1. Liu H., Wang J., He T., Becker S., Zhang G., Li D., Ma X. Butyrate: A Double-Edged Sword for Health? Adv. Nutr. 2018;9:21–29. doi: 10.1093/advances/nmx009.
    1. Knudsen K.E., Lærke H.N., Hedemann M.S., Nielsen T.S., Ingerslev A.K., Nielsen D.S.G., Theil P.K., Purup S., Hald S., Schioldan A.G., et al. Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients. 2018;10:1499. doi: 10.3390/nu10101499.
    1. Tuomainen M., Lindstrom J., Lehtonen M., Auriola S., Pihlajamäki J., Peltonen M., Tuomilehto J., Uusitupa M., De Mello V.D., Hanhineva K. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr. Diabetes. 2018;8:35. doi: 10.1038/s41387-018-0046-9.
    1. Sun Q., Wedick N.M., Pan A., Townsend M.K., Cassidy A., Franke A.A., Rimm E.B., Hu F.B., van Dam R.M. Gut Microbiota Metabolites of Dietary Lignans and Risk of Type 2 Diabetes: A Prospective Investigation in Two Cohorts of U.S. Women. Diabetes Care. 2014;37:1287–1295. doi: 10.2337/dc13-2513.
    1. Sandberg J.C., Kovatcheva-Datchary P., Björck I., Bäckhed F., Nilsson A.C. Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. Eur. J. Nutr. 2018;58:2365–2376. doi: 10.1007/s00394-018-1788-9.
    1. Kovatcheva-Datchary P., Nilsson A.C., Akrami R., Lee Y.S., De Vadder F., Arora T., Hallén A., Martens E., Björck I., Bäckhed F. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015;22:971–982. doi: 10.1016/j.cmet.2015.10.001.
    1. Vanegas S.M., Meydani M., Barnett J.B., Goldin B., Kane A., Rasmussen H., Brown C., Vangay P., Knights D., Jonnalagadda S., et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr. 2017;105:635–650. doi: 10.3945/ajcn.116.146928.
    1. Costabile A., Klinder A., Fava F., Napolitano A., Fogliano V., Leonard C., Gibson G.R., Tuohy K. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br. J. Nutr. 2007;99:110–120. doi: 10.1017/S0007114507793923.
    1. Costabile A., Bergillos-Meca T., Rasinkangas P., Korpela K., de Vos W.M., Gibson G.R. Effects of Soluble Corn Fiber Alone or in Synbiotic Combination with Lactobacillus rhamnosus GG and the Pilus-Deficient Derivative GG-PB12 on Fecal Microbiota, Metabolism, and Markers of Immune Function: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Elderly (Saimes Study) Front. Immunol. 2017;8:1443.
    1. Kjølbæk L., Benítez-Páez A., del Pulgar E.M.G., Brahe L.K., Liebisch G., Matysik S., Rampelli S., Vermeiren J., Brigidi P., Larsen L.H., et al. Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight individuals with signs of metabolic syndrome: A randomized cross-over trial. Clin. Nutr. 2019;39:67–79. doi: 10.1016/j.clnu.2019.01.012.
    1. Canfora E.E., Van Der Beek C.M., Hermes G.D., Goossens G.H., Jocken J.W., Holst J.J., Van Eijk H.M., Venema K., Smidt H., Zoetendal E.G., et al. Supplementation of Diet With Galacto-oligosaccharides Increases Bifidobacteria, but Not Insulin Sensitivity, in Obese Prediabetic Individuals. Gastroenterology. 2017;153:87–97. doi: 10.1053/j.gastro.2017.03.051.
    1. Chambers E., Byrne C.S., Morrison D.J., Murphy K.G., Preston T., Tedford M., Garcia-Perez I., Fountana S., Serrano-Contreras J.I., Holmes E., et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut. 2019;68:1430–1438.
    1. Schutte S., Esser D., Hoevenaars F.P.M., Hooiveld G.J., Priebe M.G., Vonk R.J., Wopereis S., Afman L.A. A 12-wk whole-grain wheat intervention protects against hepatic fat: The Graandioos study, a randomized trial in overweight subjects. Am. J. Clin. Nutr. 2018;108:1264–1274. doi: 10.1093/ajcn/nqy204.
    1. Weickert M.O., Arafat A., Blaut M., Alpert C., Becker N., Leupelt V., Rudovich N.N., Möhlig M., Pfeiffer A.F.H. Changes in dominant groups of the gut microbiota do not explain cereal-fiber induced improvement of whole-body insulin sensitivity. Nutr. Metab. 2011;8:90. doi: 10.1186/1743-7075-8-90.
    1. Lambert J.E., Parnell J.A., Tunnicliffe J.M., Han J., Sturzenegger T., Reimer R.A. Consuming yellow pea fiber reduces voluntary energy intake and body fat in overweight/obese adults in a 12-week randomized controlled trial. Clin. Nutr. 2017;36:126–133. doi: 10.1016/j.clnu.2015.12.016.
    1. Ghetti F., De Oliveira D.G., De Oliveira J.M., Ferreira L.E.V.V.D.C., Cesar D.E., Moreira A.P. Effects of Dietary Intervention on Gut Microbiota and Metabolic-Nutritional Profile of Outpatients with Non-Alcoholic Steatohepatitis: A Randomized Clinical Trial. J. Gastrointest. Liver Dis. 2019;28:279–287. doi: 10.15403/jgld-197.
    1. Velikonja A., Lipoglavšek L., Zorec M., Orel R., Avguštin G. Alterations in gut microbiota composition and metabolic parameters after dietary intervention with barley beta glucans in patients with high risk for metabolic syndrome development. Anaerobe. 2019;55:67–77. doi: 10.1016/j.anaerobe.2018.11.002.
    1. Zhao L., Zhang F., Ding X., Wu G., Lam Y.Y., Wang X., Fu H., Xue X., Lu C., Ma J., et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–1156. doi: 10.1126/science.aao5774.
    1. Connolly M.L., Tzounis X., Tuohy K., Lovegrove J. Hypocholesterolemic and Prebiotic Effects of a Whole-Grain Oat-Based Granola Breakfast Cereal in a Cardio-Metabolic “At Risk” Population. Front. Microbiol. 2016;7:1755. doi: 10.3389/fmicb.2016.01675.
    1. Pedersen C., Gallagher E., Horton F., Ellis R.J., Ijaz U.Z., Wu H., Jaiyeola E., Diribe O., Duparc T., Cani P.D., et al. Host–microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. Br. J. Nutr. 2016;116:1869–1877. doi: 10.1017/S0007114516004086.
    1. Wang Y., Ames N., Tun H., Tosh S.M., Jones P.J., Khafipour E. High Molecular Weight Barley β-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk. Front. Microbiol. 2016;7:129. doi: 10.3389/fmicb.2016.00129.
    1. Reimer R.A., Willis H.J., Park H., Soto-Vaca A., Tunnicliffe J.M., Madsen K.L. Inulin-type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Mol. Nutr. Food Res. 2017;61:1700484. doi: 10.1002/mnfr.201700484.
    1. Carlson J.L., Erickson J.M., Hess J.M., Gould T.J., Slavin J. Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide. Nutr. 2017;9:1361. doi: 10.3390/nu9121361.
    1. So D., Whelan K., Rossi M., Morrison M., Holtmann G.J., Kelly J.T., Shanahan E.R., Staudacher H., Campbell K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018;107:965–983. doi: 10.1093/ajcn/nqy041.
    1. Baxter N.T., Schmidt A.W., Venkataraman A., Kim K.S., Waldron C., Schmidt T.M., Britton R., Walter J. Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers. mBio. 2019;10:e02566-18. doi: 10.1128/mBio.02566-18.
    1. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550.
    1. Christensen L., Roager H.M., Astrup A., Hjorth M.F. Microbial enterotypes in personalized nutrition and obesity management. Am. J. Clin. Nutr. 2018;108:645–651. doi: 10.1093/ajcn/nqy175.
    1. Hjorth M.F., Roager H.M., Larsen T.M., Poulsen S.K., Licht T.R., Bahl M.I., Zohar Y., Astrup A. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int. J. Obes. 2017;42:580–583. doi: 10.1038/ijo.2017.220.
    1. Simpson H.L., Campbell B.J. Review article: Dietary fibre-microbiota interactions. Aliment. Pharmacol. Ther. 2015;42:158–179. doi: 10.1111/apt.13248.
    1. Sinha R., Chen J., Amir A., Vogtmann E., Shi J., Inman K.S., Flores R., Sampson J., Knight R., Chia N. Collecting Fecal Samples for Microbiome Analyses in Epidemiology Studies. Cancer Epidemiol. Biomark. Prev. 2015;25:407–416. doi: 10.1158/1055-9965.EPI-15-0951.
    1. Sinha R., Abu-Ali G., Vogtmann E., Fodor A.A., Ren B., Amir A., Schwager E., Crabtree J., Ma B., The Microbiome Quality Control Project Consortium et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 2017;35:1077–1086. doi: 10.1038/nbt.3981.
    1. Brooks J.P., Edwards D.J., Harwich M.D., Rivera M.C., Fettweis J.M., Serrano M.G., Reris R.A., Sheth N.U., Huang B., Girerd P. The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 2015;15:66. doi: 10.1186/s12866-015-0351-6.
    1. Laudadio I., Fulci V., Palone F., Stronati L., Cucchiara S., Carissimi C. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. OMICS J. Integr. Boil. 2018;22:248–254. doi: 10.1089/omi.2018.0013.
    1. Hartley L., May M.D., Loveman E., Colquitt J.L., Rees K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD011472.pub2.
    1. Tosh S.M. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products. Eur. J. Clin. Nutr. 2013;67:310–317. doi: 10.1038/ejcn.2013.25.
    1. Wang Z., Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9:416–431. doi: 10.1007/s13238-018-0549-0.
    1. Zhang J., Wei Z., Chen J. A distance-based approach for testing the mediation effect of the human microbiome. Bioinformatics. 2018;34:1875–1883. doi: 10.1093/bioinformatics/bty014.

Source: PubMed

3
購読する