Implementing Eccentric Resistance Training-Part 1: A Brief Review of Existing Methods

Timothy J Suchomel, John P Wagle, Jamie Douglas, Christopher B Taber, Mellissa Harden, G Gregory Haff, Michael H Stone, Timothy J Suchomel, John P Wagle, Jamie Douglas, Christopher B Taber, Mellissa Harden, G Gregory Haff, Michael H Stone

Abstract

The purpose of this review was to provide a physiological rationale for the use of eccentric resistance training and to provide an overview of the most commonly prescribed eccentric training methods. Based on the existing literature, there is a strong physiological rationale for the incorporation of eccentric training into a training program for an individual seeking to maximize muscle size, strength, and power. Specific adaptations may include an increase in muscle cross-sectional area, force output, and fiber shortening velocities, all of which have the potential to benefit power production characteristics. Tempo eccentric training, flywheel inertial training, accentuated eccentric loading, and plyometric training are commonly implemented in applied contexts. These methods tend to involve different force absorption characteristics and thus, overload the muscle or musculotendinous unit in different ways during lengthening actions. For this reason, they may produce different magnitudes of improvement in hypertrophy, strength, and power. The constraints to which they are implemented can have a marked effect on the characteristics of force absorption and therefore, could affect the nature of the adaptive response. However, the versatility of the constraints when prescribing these methods mean that they can be effectively implemented to induce these adaptations within a variety of populations.

Keywords: accentuated eccentric loading; flywheel overload training; plyometric training; tempo training.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Force-time curves of a four-second tempo (A), two-second tempo (B), and traditional (C) back squat performed with 70 kg by a healthy, 31 year old male.
Figure 2
Figure 2
Force–time curves of flywheel squats performed by a healthy, 31 year old male using a 0.050 kg·m2 inertial load with a slow (A) (~ 3 s) and fast (B) (< 1 s) concentric action.
Figure 3
Figure 3
Force–time curve of flywheel squats performed by a healthy, 31 year old male using a 0.050 kg·m2 inertial load with a fast concentric action (<1 s) and a slow eccentric action (~2 s).
Figure 4
Figure 4
Force–time curves of an accentuated eccentric loaded (A) (65 kg + 20 kg on weight releasers) and traditional (B) (65 kg) back squat performed by a healthy, 29 year old female.
Figure 5
Figure 5
Plyometric training phasic goals and associated exercises.

References

    1. Lindstedt S.L., LaStayo P.C., Reich T.E. When active muscles lengthen: Properties and consequences of eccentric contractions. News Physiol. Sci. 2001;16:256–261. doi: 10.1152/physiologyonline.2001.16.6.256.
    1. Prilutsky B.I. Eccentric muscle action in sport and exercise. In: Zatsiorsky V.M., editor. Biomechanics in Sport: Volume IX Encyclopaedia of Sports Medicine. Blackwell Science Ltd.; Oxford, UK: 2000. pp. 56–86.
    1. Douglas J., Pearson S., Ross A., McGuigan M.R. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017;47:917–941. doi: 10.1007/s40279-016-0628-4.
    1. Douglas J., Pearson S., Ross A., McGuigan M.R. Eccentric exercise: Physiological characteristics and acute responses. Sports Med. 2017;47:663–675. doi: 10.1007/s40279-016-0624-8.
    1. Vogt M., Hoppeler H.H. Eccentric exercise: Mechanisms and effects when used as training regime or training adjunct. J. Appl. Physiol. 2014;116:1446–1454. doi: 10.1152/japplphysiol.00146.2013.
    1. English K.L., Loehr J.A., Lee S.M.C., Smith S.M. Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training. Eur. J. Appl. Physiol. 2014;114:2263–2280. doi: 10.1007/s00421-014-2951-5.
    1. Walker S., Blazevich A.J., Haff G.G., Tufano J.J., Newton R.U., Häkkinen K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front. Physiol. 2016;7:149. doi: 10.3389/fphys.2016.00149.
    1. Gross M., Lüthy F., Kroell J., Müller E., Hoppeler H., Vogt M. Effects of eccentric cycle ergometry in alpine skiers. Int. J. Sports Med. 2010;31:572–576. doi: 10.1055/s-0030-1254082.
    1. Elmer S., Hahn S., McAllister P., Leong C., Martin J. Improvements in multi-joint leg function following chronic eccentric exercise. Scand. J. Med. Sci. Sports. 2012;22:653–661. doi: 10.1111/j.1600-0838.2011.01291.x.
    1. Huxley A.F., Niedergerke R. Structural changes in muscle during contraction: Interference microscopy of living muscle fibres. Nature. 1954;173:971–973. doi: 10.1038/173971a0.
    1. Huxley H.E., Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954;173:971–973. doi: 10.1038/173971a0.
    1. Linari M., Lucii L., Reconditi M., Casoni M.E., Amenitsch H., Bernstorff S., Piazzesi G., Lombardi V. A combined mechanical and x-ray diffraction study of stretch potentiation in single frog muscle fibers. J. Physiol. 2000;526:589–596. doi: 10.1111/j.1469-7793.2000.00589.x.
    1. Curtin N.A., Davies R.E. Very high tension with very little atp breakdown by active skeletal muscle. J. Mechanochem. Cell Motil. 1975;3:147–154.
    1. Edman K.A.P., Elzinga G., Noble M.I.M. Residual force enhancement after stretch of contracting frog single muscle fibers. J. Gen. Physiol. 1982;80:769–784. doi: 10.1085/jgp.80.5.769.
    1. Herzog W., Powers K., Johnston K., Duvall M. A new paradigm for muscle contraction. Front. Physiol. 2015;6:1–11. doi: 10.3389/fphys.2015.00174.
    1. Herzog W. The role of titin in eccentric muscle contraction. J. Exp. Biol. 2014;217:2825–2833. doi: 10.1242/jeb.099127.
    1. Duchateau J., Baudry S. Insights into the neural control of eccentric contractions. J. Appl. Physiol. (1985) 2014;116:1418–1425. doi: 10.1152/japplphysiol.00002.2013.
    1. Aagaard P., Simonsen E.B., Andersen J.L., Magnusson S.P., Halkjaer-Kristensen J., Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: Effects of resistance training. J. Appl. Physiol. (1985) 2000;89:2249–2257. doi: 10.1152/jappl.2000.89.6.2249.
    1. Del Valle A., Thomas C.K. Firing rates during strong dynamic contractions. Muscle Nerve. 2005;32:316–325. doi: 10.1002/mus.20371.
    1. Fang Y., Siemionow V., Sahgal V., Xiong F., Yue G.E. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions. Brain Res. 2004;1023:200–212. doi: 10.1016/j.brainres.2004.07.035.
    1. Fang Y., Siemionow V., Sahgal V., Xiong F., Yue G.H. Greater movement-related cortical potential during human eccentric versus concentric muscle contractions. J. Neurophysiol. 2001;86:1764–1772. doi: 10.1152/jn.2001.86.4.1764.
    1. Nardone A., Romano C., Schieppati M. Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J. Physiol. 1989;409:451–471. doi: 10.1113/jphysiol.1989.sp017507.
    1. Amiridis I.G., Martin A., Morlon B., Martin L., Cometti G., Pousson M., van Hoecke J. Co-activation and tension-regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur. J. Appl. Physiol. 1996;73:149–156. doi: 10.1007/BF00262824.
    1. Hollander D.B., Kraemer R.R., Kilpatrick M.W., Ramadan Z.G., Reeves G.V., Francois M., Hebert E.P., Tryniecki J.L. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J. Strength Cond. Res. 2007;21:34–40. doi: 10.1519/00124278-200702000-00007.
    1. Hortobagyi T., Katch F. Eccentric and concentric torque velocity relationships during arm flexion and extension: Influence of strength level. Eur. J. Appl. Physiol. 1990;60:395–401. doi: 10.1007/BF00713506.
    1. Dufour S.P., Lampert E., Doutreleau S., Lonsdorfer-Wolf E., Billat V.L., Piquard F., Richard R. Eccentric cycle exercise: Training application of specific circulatory adjustments. Med. Sci. Sports Exerc. 2004;36:1900–1906. doi: 10.1249/01.MSS.0000145441.80209.66.
    1. Baroni B.M., Stocchero C.M.A., do Espírito Santo R.C., Ritzel C.H., Vaz M.A. The effect of contraction type on muscle strength, work and fatigue in maximal isokinetic exercise. Isokinet Exerc. Sci. 2011;19:215–220. doi: 10.3233/IES-2011-0421.
    1. Hyldahl R.D., Olson T., Welling T., Groscost L., Parcell A.C. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front. Physiol. 2014;5:1–11. doi: 10.3389/fphys.2014.00485.
    1. Moore D.R., Phillips S.M., Babraj J.A., Smith K., Rennie M.J. Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am. J. Physiol. Endocrinol. Metab. 2005;288:E1153–E1159. doi: 10.1152/ajpendo.00387.2004.
    1. Eliasson J., Elfegoun T., Nilsson J., Kohnke R., Ekblom B., Blomstrand E. Maximal lengthening contractions increase p70 s6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am. J. Physiol. Endocrinol. Metab. 2006;291:E1197–E1205. doi: 10.1152/ajpendo.00141.2006.
    1. Proske U., Morgan D.L. Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical adaptations. J. Physiol. 2001;537:333–345. doi: 10.1111/j.1469-7793.2001.00333.x.
    1. Chapman D., Newton M., Sacco P., Nosaka K. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int. J. Sports Med. 2006;27:591–598. doi: 10.1055/s-2005-865920.
    1. Schoenfeld B.J. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J. Strength Cond. Res. 2012;26:1441–1453. doi: 10.1519/JSC.0b013e31824f207e.
    1. Cheung K., Hume P.A., Maxwell L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003;33:145–164. doi: 10.2165/00007256-200333020-00005.
    1. Elmer S.J., Martin J.C. Joint-specific power loss after eccentric exercise. Med. Sci. Sports Exerc. 2010;42:1723–1730. doi: 10.1249/MSS.0b013e3181d60ead.
    1. Paschalis V., Giakas G., Baltzopoulos V., Jamurtas A.Z., Theoharis V., Kotzamanidis C., Koutedakis Y. The effects of muscle damage following eccentric exercise on gait biomechanics. Gait Posture. 2007;25:236–242. doi: 10.1016/j.gaitpost.2006.04.002.
    1. McHugh M.P. Recent advances in the understanding of the repeated bout effect: The protective effect against muscle damage from a single bout of eccentric exercise. Scand J. Med. Sci. Sports. 2003;13:88–97. doi: 10.1034/j.1600-0838.2003.02477.x.
    1. Chen T.C., Yang T.J., Huang M.J., Wang H.S., Tseng K.W., Chen H.L., Nosaka K. Damage and the repeated bout effect of arm, leg, and trunk muscles induced by eccentric resistance exercises. Scand. J. Med. Sci. Sports. 2019;29:725–735. doi: 10.1111/sms.13388.
    1. Cermak N.M., Snijders T., McKay B.R., Parise G., Verdijk L.B., Tarnopolsky M.A., Gibala M.J., Van Loon L.J.C. Eccentric exercise increases satellite cell content in type ii muscle fibers. Med. Sci. Sports Exerc. 2013;45:230–237. doi: 10.1249/MSS.0b013e318272cf47.
    1. Tannerstedt J., Apró W., Blomstrand E. Maximal lengthening contractions induce different signalling responses in the type i and type ii fibers of human skeletal muscle. J. Appl. Physiol. (1985) 2009;106:1412–1418. doi: 10.1152/japplphysiol.91243.2008.
    1. Vijayan K., Thompson J.L., Norenberg K.M., Fitts R.H., Riley D.A. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat al muscles. J. Physiol. 2001;90:770–776. doi: 10.1152/jappl.2001.90.3.770.
    1. Roig M., O’Brien K., Kirk G., Murray R., McKinnon P., Shadgan B., Reid W.D. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. Br. J. Sports Med. 2009;43:556–568. doi: 10.1136/bjsm.2008.051417.
    1. Higbie E.J., Cureton K.J., Warren G.L., Prior B.M. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J. Appl. Physiol. (1985) 1996;81:2173–2181. doi: 10.1152/jappl.1996.81.5.2173.
    1. Aagaard P. Training-induced changes in neural function. Exerc. Sport Sci. Rev. 2003;31:61–67. doi: 10.1097/00003677-200304000-00002.
    1. Farthing J.P., Chilibeck P.D. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur. J. Appl. Physiol. 2003;89:578–586. doi: 10.1007/s00421-003-0842-2.
    1. Paddon-Jones D., Leveritt M., Lonergan A., Abernethy P. Adaptation to chronic eccentric exercise in humans: The influence of contraction velocity. Eur. J. Appl. Physiol. 2001;85:466–471. doi: 10.1007/s004210100467.
    1. Douglas J., Pearson S., Ross A., McGuigan M. Effects of accentuated eccentric loading on muscle properties, strength, power and speed in resistance-trained rugby players. J. Strength Cond. Res. 2018;32:2750–2761. doi: 10.1519/JSC.0000000000002772.
    1. Leong C.H., McDermott W.J., Elmer S.J., Martin J.C. Chronic eccentric cycling improves quadriceps muscle structure and maximum cycling power. Int. J. Sports Med. 2014;35:559–565. doi: 10.1055/s-0033-1358471.
    1. Cormie P., McGuigan M.R., Newton R.U. Developing maximal neuromuscular power: Part 1—Biological basis of maximal power production. Sports Med. 2011;41:17–38. doi: 10.2165/11537690-000000000-00000.
    1. Maffiuletti N.A., Aagaard P., Blazevich A.J., Folland J.P., Tillin N., Duchateau J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016;116:1091–1116. doi: 10.1007/s00421-016-3346-6.
    1. Franchi M.V., Atherton P.J., Reeves N.D., Fluck M., Williams J., Mitchell W.K., Selby A., Beltran Valls R.M., Narici M.V. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 2014;210:642–654. doi: 10.1111/apha.12225.
    1. Timmins R.G., Ruddy J.D., Presland J., Maniar N., Shield A.J., Williams M.D., Opar D.A. Architectural changes of the biceps femoris long head after concentric or eccentric training. Med. Sci. Sports Exerc. 2016;48:499–508. doi: 10.1249/MSS.0000000000000795.
    1. Seynnes O.R., de Boer M., Narici M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. (1985) 2007;102:368–373. doi: 10.1152/japplphysiol.00789.2006.
    1. Sacks R.D., Roy R.R. Architecture of the hind limb muscles of cats: Functional significance. J. Morphol. 1982;173:185–195. doi: 10.1002/jmor.1051730206.
    1. Friedmann-Bette B., Bauer T., Kinscherf R., Vorwald S., Klute K., Bischoff D., Müller H., Weber M.A., Metz J., Kauczor H.U., et al. Effects of strength training with eccentric overload on muscle adaptation in male athletes. Eur. J. Appl. Physiol. 2010;108:821–836. doi: 10.1007/s00421-009-1292-2.
    1. Vikne H., Refsnes P.E., Ekmark M., Medbø J.I., Gundersen V., Gundersen K. Muscular performance after concentric and eccentric exercise in trained men. Med. Sci. Sports Exerc. 2006;38:1770–1781. doi: 10.1249/01.mss.0000229568.17284.ab.
    1. Schiaffino S., Reggiani C. Fibre types in mammalian skeletal muscle. Physiol. Rev. 2010;91:1447–1531. doi: 10.1152/physrev.00031.2010.
    1. Ruegg J.C. Excitation-contraction coupling in fast- and slow-twitch muscle fibers. Int. J. Sports Med. 1987;8:360–364. doi: 10.1055/s-2008-1025686.
    1. Farup J., Rahbek S.K., Vendelbo M.H., Matzon A., Hindhede J., Bejder A., Ringaard S., Vissing K. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode. Scand. J. Med. Sci. Sports. 2014;24:788–798. doi: 10.1111/sms.12083.
    1. Malliaras P., Kamal B., Nowell A., Farley T., Dhamu H., Simpson V., Morrissey D., Langberg H., Maffulli N., Reeves N.D. Patellar tendon adaptation in relation to load-intensity and contraction type. J. Biomech. 2013;46:1893–1899. doi: 10.1016/j.jbiomech.2013.04.022.
    1. Coratella G., Schena F. Eccentric resistance training increases and retains maximal strength, muscle endurance, and hypertrophy in trained men. Appl. Physiol. Nutr. Metab. 2016;41:1184–1189. doi: 10.1139/apnm-2016-0321.
    1. Moolyk A.N., Carey J.P., Chiu L.Z.F. Characteristics of lower extremity work during the impact phase of jumping and weightlifting. J. Strength Cond. Res. 2013;27:3225–3232. doi: 10.1519/JSC.0b013e31828ddf19.
    1. Suchomel T.J., Lake J.P., Comfort P. Load absorption force-time characteristics following the second pull of weightlifting derivatives. J. Strength Cond. Res. 2017;31:1644–1652. doi: 10.1519/JSC.0000000000001634.
    1. Comfort P., Williams R., Suchomel T.J., Lake J.P. A comparison of catch phase force-time characteristics during clean derivatives from the knee. J. Strength Cond. Res. 2017;31:1911–1918. doi: 10.1519/JSC.0000000000001660.
    1. Suchomel T.J., Taber C.B., Wright G.A. Jump shrug height and landing forces across various loads. Int. J. Sports Physiol. Perform. 2016;11:61–65. doi: 10.1123/ijspp.2015-0028.
    1. Lake J.P., Mundy P.D., Comfort P., McMahon J.J., Suchomel T.J., Carden P. The effect of barbell load on vertical jump landing force-time characteristics. J. Strength Cond. Res. 2018 doi: 10.1519/JSC.0000000000002554.
    1. Peñailillo L., Blazevich A., Numazawa H., Nosaka K. Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Med. Sci. Sports Exerc. 2013;45:1773–1781. doi: 10.1249/MSS.0b013e31828f8a73.
    1. Clos P., Laroche D., Stapley P.J., Lepers R. Neuromuscular and perceptual responses to sub-maximal eccentric cycling: A mini-review. Front. Physiol. 2019;10:1–10. doi: 10.3389/fphys.2019.00354.
    1. Spiteri T., Nimphius S., Hart N.H., Specos C., Sheppard J.M., Newton R.U. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2014;28:2415–2423. doi: 10.1519/JSC.0000000000000547.
    1. Bird S.P., Tarpenning K.M., Marino F.E. Designing resistance training programmes to enhance muscular fitness. Sports Med. 2005;35:841–851. doi: 10.2165/00007256-200535100-00002.
    1. Medicine A.C.O.S. American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009;41:687.
    1. Headley S.A., Henry K., Nindl B.C., Thompson B.A., Kraemer W.J., Jones M.T. Effects of lifting tempo on one repetition maximum and hormonal responses to a bench press protocol. J. Strength Cond. Res. 2011;25:406–413. doi: 10.1519/JSC.0b013e3181bf053b.
    1. Shibata K., Takizawa K., Nosaka K., Mizuno M. Effects of prolonging eccentric phase duration in parallel back-squat training to momentary failure on muscle cross-sectional area, squat one repetition maximum, and performance tests in university soccer players. J. Strength Cond. Res. 2018 doi: 10.1519/JSC.0000000000002838.
    1. Schoenfeld B.J., Ogborn D.I., Krieger J.W. Effect of repetition duration during resistance training on muscle hypertrophy: A systematic review and meta-analysis. Sports Med. 2015;45:577–585. doi: 10.1007/s40279-015-0304-0.
    1. Van den Tillaar R. Effect of descent velocity upon muscle activation and performance in two-legged free weight back squats. Sports. 2019;7:15. doi: 10.3390/sports7010015.
    1. Burd N.A., Andrews R.J., West D.W., Little J.P., Cochran A.J., Hector A.J., Cashaback J.G., Gibala M.J., Potvin J.R., Baker S.K. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. 2012;590:351–362. doi: 10.1113/jphysiol.2011.221200.
    1. Pereira P.E.A., Motoyama Y.L., Esteves G.J., Quinelato W.C., Botter L., Tanaka K.H., Azevedo P. Resistance training with slow speed of movement is better for hypertrophy and muscle strength gains than fast speed of movement. Int. J. Appl. Exerc. Physiol. 2016;5:37–43.
    1. Martins-Costa H.C., Diniz R.C.R., Lima F.V., Machado S.C., Almeida R.S.V.d., Andrade A.G.P.d., Chagas M.H. Longer repetition duration increases muscle activation and blood lactate response in matched resistance training protocols. Motriz: Revista de Educação Física. 2016;22:35–41. doi: 10.1590/S1980-65742016000100005.
    1. Lacerda L.T., Martins-Costa H.C., Diniz R.C., Lima F.V., Andrade A.G., Tourino F.D., Bemben M.G., Chagas M.H. Variations in repetition duration and repetition numbers influence muscular activation and blood lactate response in protocols equalized by time under tension. J. Strength Cond. Res. 2016;30:251–258. doi: 10.1519/JSC.0000000000001044.
    1. Munn J., Herbert R.D., Hancock M.J., Gandevia S.C. Resistance training for strength: Effect of number of sets and contraction speed. Med. Sci. Sports Exerc. 2005;37:1622–1626. doi: 10.1249/01.mss.0000177583.41245.f8.
    1. Keeler L.K., Finkelstein L.H., Miller W., Fernhall B. Early-phase adaptations of traditional-speed vs. Superslow resistance training on strength and aerobic capacity in sedentary individuals. J. Strength Cond. Res. 2001;15:309–314.
    1. Pryor R.R., Sforzo G.A., King D.L. Optimizing power output by varying repetition tempo. J. Strength Cond. Res. 2011;25:3029–3034. doi: 10.1519/JSC.0b013e31820f50cb.
    1. Nóbrega S.R., Barroso R., Ugrinowitsch C., da Costa J.L.F., Alvarez I.F., Barcelos C., Libardi C.A. Self-selected vs. Fixed repetition duration: Effects on number of repetitions and muscle activation in resistance-trained men. J. Strength Cond. Res. 2018;32:2419–2424. doi: 10.1519/JSC.0000000000002493.
    1. Martino F., Perestrelo A.R., Vinarský V., Pagliari S., Forte G. Cellular mechanotransduction: From tension to function. Front. Physiol. 2018;9:1–21. doi: 10.3389/fphys.2018.00824.
    1. Franchi M.V., Longo S., Mallinson J., Quinlan J.I., Taylor T., Greenhaff P.L., Narici M.V. Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scand. J. Med. Sci. Sports. 2018;28:846–853. doi: 10.1111/sms.12961.
    1. Stasinaki A.-N., Zaras N., Methenitis S., Bogdanis G., Terzis G. Rate of force development and muscle architecture after fast and slow velocity eccentric training. Sports. 2019;7:41. doi: 10.3390/sports7020041.
    1. Wilk M., Golas A., Stastny P., Nawrocka M., Krzysztofik M., Zajac A. Does tempo of resistance exercise impact training volume? J. Hum. Kinet. 2018;62:241–250. doi: 10.2478/hukin-2018-0034.
    1. Diniz R.C., Martins-Costa H.C., Machado S.C., Lima F.V., Chagas M.H. Repetition duration influences ratings of perceived exertion. Percept. Motor Skills. 2014;118:261E–273E. doi: 10.2466/03.06.PMS.118k11w6.
    1. Tran Q.T., Docherty D., Behm D. The effects of varying time under tension and volume load on acute neuromuscular responses. Eur. J. Appl. Physiol. 2006;98:402–410. doi: 10.1007/s00421-006-0297-3.
    1. Libardi C.A., Nogueira F.R.D., Vechin F.C., Conceição M.S., Bonganha V., Chacon-Mikahil M.P.T. Acute hormonal responses following different velocities of eccentric exercise. Clin. Physiol. Funct. Imaging. 2013;33:450–454. doi: 10.1111/cpf.12051.
    1. Berg H.E., Tesch A. A gravity-independent ergometer to be used for resistance training in space. Aviat. Space Environ. Med. 1994;65:752–756.
    1. Tesch P.A., Ekberg A., Lindquist D.M., Trieschmann J.T. Muscle hypertrophy following 5-week resistance training using a non-gravity-dependent exercise system. Acta Physiol. Scand. 2004;180:89–98. doi: 10.1046/j.0001-6772.2003.01225.x.
    1. Norrbrand L., Fluckey J.D., Pozzo M., Tesch P.A. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur. J. Appl. Physiol. 2008;102:271–281. doi: 10.1007/s00421-007-0583-8.
    1. Fernandez-Gonzalo R., Lundberg T.R., Alvarez-Alvarez L., de Paz J.A. Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women. Eur. J. Appl. Physiol. 2014;114:1075–1084. doi: 10.1007/s00421-014-2836-7.
    1. Maroto-Izquierdo S., García-López D., de Paz J.A. Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players. J. Hum. Kinet. 2017;60:133–143. doi: 10.1515/hukin-2017-0096.
    1. Romero-Rodriguez D., Gual G., Tesch P.A. Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: A case-series study. Phys. Ther. Sport. 2011;12:43–48. doi: 10.1016/j.ptsp.2010.10.003.
    1. Naczk M., Naczk A., Brzenczek-Owczarzak W., Arlet J., Adach Z. Impact of inertial training on strength and power performance in young active men. J. Strength Cond. Res. 2016;30:2107–2113. doi: 10.1519/JSC.0000000000000217.
    1. De Hoyo M., Pozzo M., Sañudo B., Carrasco L., Gonzalo-Skok O., Domínguez-Cobo S., Morán-Camacho E. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int. J. Sports Physiol. Perform. 2015;10:46–52. doi: 10.1123/ijspp.2013-0547.
    1. Askling C., Karlsson J., Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand. J. Med. Sci. Sports. 2003;13:244–250. doi: 10.1034/j.1600-0838.2003.00312.x.
    1. Norrbrand L., Tous-Fajardo J., Vargas R., Tesch P.A. Quadriceps muscle use in the flywheel and barbell squat. Aviat. Space Environ. Med. 2011;82:13–19. doi: 10.3357/ASEM.2867.2011.
    1. Pozzo M., Alkner B., Norrbrand L., Farina D., Tesch P.A. Muscle-fiber conduction velocity during concentric and eccentric actions on a flywheel exercise device. Muscle Nerve. 2006;34:169–177. doi: 10.1002/mus.20574.
    1. Gonzalo-Skok O., Tous-Fajardo J., Valero-Campo C., Berzosa C., Bataller A.V., Arjol-Serrano J.L., Moras G., Mendez-Villanueva A. Eccentric overload training in team-sports functional performance: Constant bilateral vertical vs. Variable unilateral multidirectional movements. Int. J. Sports Physiol. Perform. 2017;12:951–958. doi: 10.1123/ijspp.2016-0251.
    1. Maroto-Izquierdo S., García-López D., Fernandez-Gonzalo R., Moreira O.C., González-Gallego J., de Paz J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport. 2017;20:943–951. doi: 10.1016/j.jsams.2017.03.004.
    1. Sanchez F.J.N., de Villarreal E.S.S. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J. Strength Cond. Res. 2017;31:3177–3186. doi: 10.1519/JSC.0000000000002095.
    1. Vicens-Bordas J., Esteve E., Fort-Vanmeerhaeghe A., Bandholm T., Thorborg K. Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? A systematic review with meta-analyses. J. Sci. Med. Sport. 2018;21:75–83. doi: 10.1016/j.jsams.2017.10.006.
    1. Vicens-Bordas J., Esteve E., Fort-Vanmeerhaeghe A., Bandholm T., Thorborg K. Letter to the editor: Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport. 2018;21:2–3. doi: 10.1016/j.jsams.2017.09.001.
    1. Carroll K.M., Wagle J.P., Sato K., Taber C.B., Yoshida N., Bingham G.E., Stone M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomech. 2018;18:390–401. doi: 10.1080/14763141.2018.1433715.
    1. Berg H.E., Tesch P.A. Force and power characteristics of a resistive exercise device for use in space. Acta Astronautica. 1998;42:219–230. doi: 10.1016/S0094-5765(98)00119-2.
    1. Martinez-Aranda L.M., Fernandez-Gonzalo R. Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J. Strength Cond. Res. 2017;31:1653–1661. doi: 10.1519/JSC.0000000000001635.
    1. Lundberg T.R., García-Gutiérrez M.T., Mandic M., Lilja M., Fernandez-Gonzalo R. Regional and muscle-specific adaptations in knee extensor hypertrophy using flywheel vs. Conventional weight-stack resistance exercise. Appl. Physiol. Nutr. Metab. 2019 doi: 10.1139/apnm-2018-0774.
    1. Tøien T., Haglo H.P., Unhjem R.J., Hoff J., Wang E. Maximal strength training: The impact of eccentric overload. J. Neurophysiol. 2018;120:2868–2876. doi: 10.1152/jn.00609.2018.
    1. Sabido R., Hernández-Davó J.L., Pereyra-Gerber G.T. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int. J. Sports Physiol. Perform. 2017;13:482–489. doi: 10.1123/ijspp.2017-0282.
    1. Norrbrand L., Pozzo M., Tesch P.A. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur. J. Appl. Physiol. 2010;110:997–1005. doi: 10.1007/s00421-010-1575-7.
    1. De Hoyo M., Sañudo B., Carrasco L., Domínguez-Cobo S., Mateo-Cortes J., Cadenas-Sánchez M.M., Nimphius S. Effects of traditional versus horizontal inertial flywheel power training on common sport-related tasks. J. Hum. Kinet. 2015;47:155–167. doi: 10.1515/hukin-2015-0071.
    1. Piqueras-Sanchiz F., Martin-Rodriguez S., Martinez-Aranda L.M., Lopes T.R., Raya-Gonzalez J., Garcia-Garcia O., Nakamura N.Y. Effects of moderate vs. High iso-inertial loads on power, velocity, work and hamstring contractile function after flywheel resistance exercise. PLoS ONE. 2019;14:e0211700.
    1. Wagle J.P., Taber C.B., Cunanan A.J., Bingham G.E., Carroll K.M., DeWeese B.H., Sato K., Stone M.H. Accentuated eccentric loading for training and performance: A review. Sports Med. 2017;47:2473–2495. doi: 10.1007/s40279-017-0755-6.
    1. Aboodarda S.J., Byrne J.M., Samson M., Wilson B.D., Mokhtar A.H., Behm D.G. Does performing drop jumps with additional eccentric loading improve jump performance? J. Strength Cond. Res. 2014;28:2314–2323. doi: 10.1519/JSC.0000000000000498.
    1. Aboodarda S.J., Yusof A., Osman N.A.A., Thompson M.W., Mokhtar A.H. Enhanced performance with elastic resistance during the eccentric phase of a countermovement jump. Int. J. Sports Physiol. Perform. 2013;8:181–187. doi: 10.1123/ijspp.8.2.181.
    1. Bridgeman L.A., Gill N.D., Dulson D.K., McGuigan M.R. The effect of exercise induced muscle damage after a bout of accentuated eccentric load drop jumps and the repeated bout effect. J. Strength Cond. Res. 2016;31:386–394. doi: 10.1519/JSC.0000000000001725.
    1. Bridgeman L.A., McGuigan M.R., Gill N.D., Dulson D. The effects of accentuated eccentric loading on the drop jump exercise and the subsequent postactivation potentiation response. J. Strength Cond. Res. 2016;31:1620–1626. doi: 10.1519/JSC.0000000000001630.
    1. Hughes J.D., Massiah R.G., Clarke R.D. The potentiating effect of an accentuated eccentric load on countermovement jump performance. J. Strength Cond. Res. 2016;30:3450–3455. doi: 10.1519/JSC.0000000000001455.
    1. Sheppard J., Hobson S., Barker M., Taylor K., Chapman D., McGuigan M., Newton R. The effect of training with accentuated eccentric load counter-movement jumps on strength and power characteristics of high-performance volleyball players. Int. J. Sports Sci. Coach. 2008;3:355–363. doi: 10.1260/174795408786238498.
    1. Sheppard J., Newton R., McGuigan M. The effect of accentuated eccentric load on jump kinetics in high-performance volleyball players. Int. J. Sports Sci. Coach. 2007;2:267–273. doi: 10.1260/174795407782233209.
    1. Sheppard J.M., Young K. Using additional eccentric loads to increase concentric performance in the bench throw. J. Strength Cond. Res. 2010;24:2853–2856. doi: 10.1519/JSC.0b013e3181e2731b.
    1. Gehlert S., Suhr F., Gutsche K., Willkomm L., Kern J., Jacko D., Knicker A., Schiffer T., Wackerhage H., Bloch W. High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflügers Archiv Eur. J. Physiol. 2015;467:1343–1356. doi: 10.1007/s00424-014-1579-y.
    1. Wagle J., Taber C., Carroll K., Cunanan A., Sams M., Wetmore A., Bingham G., DeWeese B., Sato K., Stuart C. Repetition-to-repetition differences using cluster and accentuated eccentric loading in the back squat. Sports. 2018;6:59. doi: 10.3390/sports6030059.
    1. Wagle J.P., Cunanan A.J., Carroll K.M., Sams M.L., Wetmore A., Bingham G.E., Taber C.B., DeWeese B.H., Sato K., Stuart C.A. Accentuated eccentric loading and cluster set configurations in the back squat: A kinetic and kinematic analysis. J. Strength Cond. Res. 2018 doi: 10.1519/JSC.0000000000002677.
    1. Brandenburg J.P., Docherty D. The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. J. Strength Cond. Res. 2002;16:25.
    1. Friedmann B., Kinscherf R., Vorwald S., Muller H., Kucera K., Borisch S., Richter G., Bartsch P., Billeter R. Muscular adaptations to computer-guided strength training with eccentric overload. Acta Physiol. Scand. J. 2004;182:77–88. doi: 10.1111/j.1365-201X.2004.01337.x.
    1. Yarrow J.F., Borsa P.A., Borst S.E., Sitren H.S., Stevens B.R., White L.J. Early-phase neuroendocrine responses and strength adaptations following eccentric-enhanced resistance training. J. Strength Cond. Res. 2008;22:1205–1214. doi: 10.1519/JSC.0b013e31816eb4a0.
    1. Komi P.V. Physiological and biomechanical correlates of muscle function: Effects of muscle structure and stretch-shortening cycle on force and speed. Exerc. Sport Sci. Rev. 1984;12:81–122. doi: 10.1249/00003677-198401000-00006.
    1. Sweeney H., Bowman B.F., Stull J.T. Myosin light chain phosphorylation in vertebrate striated muscle: Regulation and function. Am. J. Physiol. Cell Physiol. 1993;264:C1085–C1095. doi: 10.1152/ajpcell.1993.264.5.C1085.
    1. Rassier D., Macintosh B. Coexistence of potentiation and fatigue in skeletal muscle. Braz. J. Med. Biol. Res. 2000;33:499–508. doi: 10.1590/S0100-879X2000000500003.
    1. Sale D. Postactivation potentiation: Role in performance. Br. J. Sports Med. 2004;38:386–387. doi: 10.1136/bjsm.2002.003392.
    1. Sale D.G. Postactivation potentiation: Role in human performance. Exerc. Sport Sci. Rev. 2002;30:138–143. doi: 10.1097/00003677-200207000-00008.
    1. Doan B.K., Newton R.U., Marsit J.L., Triplett-McBride N.T., Koziris L.P., Fry A.C., Kraemer W.J. Effects of increased eccentric loading on bench press 1rm. J. Strength Cond. Res. 2002;16:9–13.
    1. Ojasto T., Häkkinen K. Effects of different accentuated eccentric load levels in eccentric-concentric actions on acute neuromuscular, maximal force, and power responses. J. Strength Cond. Res. 2009;23:996–1004. doi: 10.1519/JSC.0b013e3181a2b28e.
    1. Cormie P., McGUIGAN M.R., Newton R.U. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med. Sci. Sports Exerc. 2010;42:1731–1744. doi: 10.1249/MSS.0b013e3181d392e8.
    1. Griffiths R. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: The role of tendon compliance. J. Physiol. 1991;436:219. doi: 10.1113/jphysiol.1991.sp018547.
    1. Moore C.A., Weiss L.W., Schilling B.K., Fry A.C., Li Y. Acute effects of augmented eccentric loading on jump squat performance. J. Strength Cond. Res. 2007;21:372–377.
    1. Thys H., Faraggiana T., Margaria R. Utilization of muscle elasticity in exercise. J. Appl. Physiol. 1972;32:491–494. doi: 10.1152/jappl.1972.32.4.491.
    1. Wilt F. Plyometrics: What it is and how it works. Modern athlete and coach. Mod. Athl. Coach. 1978;16:9–12.
    1. Asmussen E., Bonde-Petersen F. Storage of elastic energy in skeletal muscles in man. Acta Physiol. Scand. 1974;91:385–392. doi: 10.1111/j.1748-1716.1974.tb05693.x.
    1. Cavagna G.A., Saibene F.P., Margaria R. Effect of negative work on the amount of positive work performed by an isolated muscle. J. Appl. Physiol. 1965;20:157–158. doi: 10.1152/jappl.1965.20.1.157.
    1. Myer G.D., Ford K.R., Brent J.L., Hewett T.E. The effects of plyometric vs. Dynamic stabilization and balance training on power, balance, and landing force in female athletes. J. Strength Cond. Res. 2006;20:345–353. doi: 10.1519/R-17955.1.
    1. Singh J., Appleby B., Lavender A. Effect of plyometric training on speed and change of direction ability in elite field hockey players. Sports. 2018;6:144. doi: 10.3390/sports6040144.
    1. Verkhoshansky Y. Speed-strength preparation and development of strength endurance of athletes in various specializations. Soviet Sports Rev. 1986;22:120–124.
    1. Ebben W.P., Fauth M.L., Kaufmann C.E., Petushek E.J. Magnitude and rate of mechanical loading of a variety of exercise modes. J. Strength Cond. Res. 2010;24:213–217. doi: 10.1519/JSC.0b013e3181c27da3.
    1. De Villarreal E.S.S., Kellis E., Kraemer W.J., Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009;23:495–506. doi: 10.1519/JSC.0b013e318196b7c6.
    1. Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sports Med. 2007;41:349–355. doi: 10.1136/bjsm.2007.035113.
    1. Stojanović E., Ristić V., McMaster D.T., Milanović Z. Effect of plyometric training on vertical jump performance in female athletes: A systematic review and meta-analysis. Sports Med. 2017;47:975–986. doi: 10.1007/s40279-016-0634-6.
    1. Moran J., Clark C.C.T., Ramirez-Campillo R., Davies M.J., Drury B. A meta-analysis of plyometric training in female youth: Its efficacy and shortcomings in the literature. J. Strength Cond. Res. 2018 doi: 10.1519/JSC.0000000000002768.
    1. Johnson B.A., Salzberg C.L., Stevenson D.A. A systematic review: Plyometric training programs for young children. J. Strength Cond. Res. 2011;25:2623–2633. doi: 10.1519/JSC.0b013e318204caa0.
    1. De Villarreal E.S.S., Requena B., Cronin J.B. The effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012;26:575–584. doi: 10.1519/JSC.0b013e318220fd03.
    1. Asadi A., Arazi H., Young W.B., de Villarreal E.S.S. The effects of plyometric training on change-of-direction ability: A meta-analysis. Int. J. Sports Physiol. Perform. 2016;11:563–573. doi: 10.1123/ijspp.2015-0694.
    1. Asadi A., Arazi H., Ramirez-Campillo R., Moran J., Izquierdo M. Influence of maturation stage on agility performance gains after plyometric training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017;31:2609–2617. doi: 10.1519/JSC.0000000000001994.
    1. De Villarreal E.S.S., Requena B., Newton R.U. Does plyometric training improve strength performance? A meta-analysis. J. Sci. Med. Sport. 2010;13:513–522. doi: 10.1016/j.jsams.2009.08.005.
    1. Rössler R., Donath L., Verhagen E., Junge A., Schweizer T., Faude O. Exercise-based injury prevention in child and adolescent sport: A systematic review and meta-analysis. Sports Med. 2014;44:1733–1748. doi: 10.1007/s40279-014-0234-2.
    1. Carter A.B., Kaminski T.W., Douex A.T., Jr., Knight C.A., Richards J.G. Effects of high volume upper extremity plyometric training on throwing velocity and functional strength ratios of the shoulder rotators in collegiate baseball players. J. Strength Cond. Res. 2007;21:208–215. doi: 10.1519/00124278-200702000-00038.
    1. Gelen E., Dede M., Bergun Meric Bingul C.B., Aydin M. Acute effects of static stretching, dynamic exercises, and high volume upper extremity plyometric activity on tennis serve performance. J. Sports Sci. Med. 2012;11:600–605.
    1. Vossen J.F., Kramer J.E., Burke D.G., Vossen D.P. Comparison of dynamic push-up training and plyometric push-up training on upper-body power and strength. J. Strength Cond. Res. 2000;14:248–253.
    1. Ebben W.P., Fauth M.L., Garceau L.R., Petushek E.J. Kinetic quantification of plyometric exercise intensity. J. Strength Cond. Res. 2011;25:3288–3298. doi: 10.1519/JSC.0b013e31821656a3.
    1. Ebben W.P., Vanderzanden T., Wurm B.J., Petushek E.J. Evaluating plyometric exercises using time to stabilization. J. Strength Cond. Res. 2010;24:300–306. doi: 10.1519/JSC.0b013e3181cbaadd.
    1. Ebben W.P., Simenz C., Jensen R.L. Evaluation of plyometric intensity using electromyography. J. Strength Cond. Res. 2008;22:861–868. doi: 10.1519/JSC.0b013e31816a834b.
    1. Jensen R.L., Ebben W.P. Quantifying plyometric intensity via rate of force development, knee joint, and ground reaction forces. J. Strength Cond. Res. 2007;21:763–767.
    1. Andrade D.C., Manzo O., Beltrán A.R., Alvares C., Del Rio R., Toledo C., Moran J., Ramirez-Campillo R. Kinematic and neuromuscular measures of intensity during plyometric jumps. J. Strength Cond. Res. 2017 doi: 10.1519/JSC.0000000000002143.
    1. Van Lieshout K.G., Anderson J.G., Shelburne K.B., Davidson B.S. Intensity rankings of plyometric exercises using joint power absorption. Clin. Biomech. 2014;29:918–922. doi: 10.1016/j.clinbiomech.2014.06.015.
    1. Jarvis M.M., Graham-Smith P., Comfort P. A methodological approach to quantifying plyometric intensity. J. Strength Cond. Res. 2016;30:2522–2532. doi: 10.1519/JSC.0000000000000518.
    1. Ebben W.P., Suchomel T.J., Garceau L.R. The effect of plyometric training volume on jumping performance. In: Sato K., Sands W.A., Mizuguchi S., editors. Proceedings of the XXXIInd International Conference of Biomechanics in Sports; Johnson City, TN, USA. 12–16 July 2014; pp. 566–569.
    1. Ebben W.P., Feldmann C.R., Vanderzanden T.L., Fauth M.L., Petushek E.J. Periodized plyometric training is effective for women, and performance is not influenced by the length of post-training recovery. J. Strength Cond. Res. 2010;24:1–7. doi: 10.1519/JSC.0b013e3181c49086.
    1. James L.P., Haff G.G., Kelly V.G., Connick M., Hoffman B., Beckman E.M. The impact of strength level on adaptations to combined weightlifting, plyometric and ballistic training. Scand. J. Med. Sci. Sports. 2018;28:1494–1505. doi: 10.1111/sms.13045.
    1. Cormie P., McGuigan M.R., Newton R.U. Influence of strength on magnitude and mechanisms of adaptation to power training. Med. Sci. Sports Exerc. 2010;42:1566–1581. doi: 10.1249/MSS.0b013e3181cf818d.
    1. Hackett D., Davies T., Soomro N., Halaki M. Olympic weightlifting training improves vertical jump height in sportspeople: A systematic review with meta-analysis. Br. J. Sports Med. 2016;50:865–872. doi: 10.1136/bjsports-2015-094951.
    1. Tricoli V., Lamas L., Carnevale R., Ugrinowitsch C. Short-term effects on lower-body functional power development: Weightlifting vs. Vertical jump training programs. J. Strength Cond. Res. 2005;19:433–437. doi: 10.1519/R-14083.1.
    1. Teo S.Y., Newton M.J., Newton R.U., Dempsey A.R., Fairchild T.J. Comparing the effectiveness of a short-term vertical jump versus weightlifting program on athletic power development. J. Strength Cond. Res. 2016;30:2741–2748. doi: 10.1519/JSC.0000000000001379.
    1. Fatouros I.G., Jamurtas A.Z., Leontsini D., Taxildaris K., Aggelousis N., Kostopoulos N., Buckenmeyer P. Evaluation of plyometric exercise training, weight training, and their combination on vertical jumping performance and leg strength. J. Strength Cond. Res. 2000;14:470–476.
    1. Lyttle A.D., Wilson G.J., Ostrowski K.J. Enhancing performance, maximal power versus combined weights and plyometrics training. J. Strength Cond. Res. 1996;10:173–179. doi: 10.1519/1533-4287(1996)010<0173:EPMPVC>;2.
    1. Adams K., O’Shea J.P., O’Shea K.L., Climstein M. The effect of six weeks of squat, plyometric and squat-plyometric training on power production. J. Appl. Sport Sci. Res. 1992;6:36–41.
    1. Arabatzi F., Kellis E., De Villarreal E.S.S. Vertical jump biomechanics after plyometric, weight lifting, and combined (weight lifting+ plyometric) training. J. Strength Cond. Res. 2010;24:2440–2448. doi: 10.1519/JSC.0b013e3181e274ab.
    1. De Villarreal E.S.S., Requena B., Izquierdo M., Gonzalez-Badillo J.J. Enhancing sprint and strength performance: Combined versus maximal power, traditional heavy-resistance and plyometric training. J. Sci. Med. Sport. 2013;16:146–150. doi: 10.1016/j.jsams.2012.05.007.
    1. De Villarreal E.S.S., Izquierdo M., Gonzalez-Badillo J.J. Enhancing jump performance after combined vs. Maximal power, heavy-resistance, and plyometric training alone. J. Strength Cond. Res. 2011;25:3274–3281. doi: 10.1519/JSC.0b013e3182163085.

Source: PubMed

3
購読する