Vitamins as regulators of calcium-containing kidney stones - new perspectives on the role of the gut microbiome

John A Chmiel, Gerrit A Stuivenberg, Kait F Al, Polycronis P Akouris, Hassan Razvi, Jeremy P Burton, Jennifer Bjazevic, John A Chmiel, Gerrit A Stuivenberg, Kait F Al, Polycronis P Akouris, Hassan Razvi, Jeremy P Burton, Jennifer Bjazevic

Abstract

Calcium-based kidney stone disease is a highly prevalent and morbid condition, with an often complicated and multifactorial aetiology. An abundance of research on the role of specific vitamins (B6, C and D) in stone formation exists, but no consensus has been reached on how these vitamins influence stone disease. As a consequence of emerging research on the role of the gut microbiota in urolithiasis, previous notions on the contribution of these vitamins to urolithiasis are being reconsidered in the field, and investigation into previously overlooked vitamins (A, E and K) was expanded. Understanding how the microbiota influences host vitamin regulation could help to determine the role of vitamins in stone disease.

Conflict of interest statement

The authors declare no competing interests.

© 2023. Springer Nature Limited.

Figures

Fig. 1. Possible roles of the microbiota…
Fig. 1. Possible roles of the microbiota in host vitamin acquisition and homeostasis.
Members of the gut microbiota can a, produce vitamin A precursors and can convert β-carotene to retinoic acid and b, facilitate the interconversion among vitamin A vitamers,,. c, Gut microbiota is also well known to be able to produce sufficient amounts of vitamin B6 (refs. ,,,). d, Lipopolysaccharide from Gram-negative microorganisms reduces SVCT-1 expression and, in turn, SVCT-1-mediated uptake of vitamin C,. e, Vitamin C is also metabolized by gut bacteria such as E. coli, and Lactobacillus species to yield xylulose and short-chain fatty acids, respectively; host cells can further process xylulose to yield oxalate. f, Through local immune activation, the microbiota can increase the conversion of vitamin D into the active form 1,25(OH)2D by reducing the expression of FGF23, which normally inhibits CYP27B1-mediated conversion of vitamin D into active vitamin D,. g, Additionally, multiple members of the microbiota might have the ability to convert vitamin D analogues–. h, Humans also rely on gut bacteria for the production of vitamin K2 (refs. ,,,,,,). SVCT, sodium-dependent vitamin C transporter 1; D2/3, vitamin D2 and vitamin D3; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)2D, 1,25-dihydroxyvitamin D.
Fig. 2. Structures of vitamins discussed in…
Fig. 2. Structures of vitamins discussed in this Perspective.
Vitamin A (all-trans retinol) contains a β-ionone ring with an isoprenoid side chain and a hydroxyl functional group. Vitamin B6 is the generic name for six vitamers defined based on the R group and phosphorylation status. Vitamin C (ascorbic acid) weakly resembles a cyclic sugar molecule. Vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol) structures are defined as secosteroids. Vitamin E contains four tocopherols and four tocotrienols that are assigned the Greek letters α, β, γ and δ based on the functional group in R1 and R2. Vitamin K structures have a characteristic 2-methyl-1,4-naphthoquinone structure and a unique side chain. Vitamin K1 (phylloquinone) has a phytyl side chain and vitamin K2 (menaquinone) has a polyisoprenyl side chain.
Fig. 3. Vitamin D metabolic pathway.
Fig. 3. Vitamin D metabolic pathway.
Vitamin D2 and D3 — synthesized by the skin or acquired from ingestion — are circulated to the liver, where the hydroxylation of these vitamins by CYP27A1, CYP2R1 or CYP2J3 occurs. Vitamin D2 and D3 are converted into ergocalciferol (25-hydroxyergocalciferol) and calcifediol (25-hydroxycholecalciferol), respectively. Together, these products are referred to as 25-hydroxyvitamin D (shortened to 25(OH)D). In the proximal convoluted tubules of the kidneys and in some immune cells (not shown), 25(OH)D is converted into the active form calcitriol (also known as 1,25 dihydroxyvitamin D (1,25(OH)2D)), through hydroxylation by CYP27B1. Both 25(OH)D and 1,25(OH)2D can be degraded by CYP24A1 to maintain the necessary titres of vitamin D. CYP, cytochrome P450.

References

    1. Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 2010;12:e86–e96.
    1. Wang W, et al. Prevalence of kidney stones in mainland China: a systematic review. Sci. Rep. 2017;7:41630. doi: 10.1038/srep41630.
    1. Turney BW, Reynard JM, Noble JG, Keoghane SR. Trends in urological stone disease. BJU Int. 2012;109:1082–1087. doi: 10.1111/j.1464-410X.2011.10495.x.
    1. Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006;367:333–344. doi: 10.1016/S0140-6736(06)68071-9.
    1. Scales CD, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 2012;62:160–165. doi: 10.1016/j.eururo.2012.03.052.
    1. Hill AJ, et al. Incidence of kidney stones in the United States: the continuous national health and nutrition examination survey. J. Urol. 2022;207:851–856. doi: 10.1097/JU.0000000000002331.
    1. Rule AD, et al. The ROKS nomogram for predicting a second symptomatic stone episode. J. Am. Soc. Nephrol. 2014;25:2878–2886. doi: 10.1681/ASN.2013091011.
    1. Rule AD, Lieske JC, Pais VM. Management of kidney stones in 2020. J. Am. Med. Assoc. 2020;323:1961–1962. doi: 10.1001/jama.2020.0662.
    1. Scales CD, et al. Urinary stone disease: advancing knowledge, patient care, and population health. Clin. J. Am. Soc. Nephrol. 2016;11:1305–1312. doi: 10.2215/CJN.13251215.
    1. Saigal CS, Joyce G, Timilsina AR, Urologic Diseases in America Project. Direct and indirect costs of nephrolithiasis in an employed population: opportunity for disease management? Kidney Int. 2005;68:1808–1814. doi: 10.1111/j.1523-1755.2005.00599.x.
    1. Hyams ES, Matlaga BR. Economic impact of urinary stones. Transl. Androl. Urol. 2014;3:278–283.
    1. Yasui T, Iguchi M, Suzuki S, Kohri K. Prevalence and epidemiological characteristics of urolithiasis in Japan: national trends between 1965 and 2005. Urology. 2008;71:209–213. doi: 10.1016/j.urology.2007.09.034.
    1. Edvardsson VO, Indridason OS, Haraldsson G, Kjartansson O, Palsson R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 2013;83:146–152. doi: 10.1038/ki.2012.320.
    1. Singh P, et al. Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin. Proc. 2015;90:1356–1365. doi: 10.1016/j.mayocp.2015.07.016.
    1. Lieske JC, et al. Stone composition as a function of age and sex. Clin. J. Am. Soc. Nephrol. 2014;9:2141–2146. doi: 10.2215/CJN.05660614.
    1. Ratkalkar VN, Kleinman JG. Mechanisms of stone formation. Clin. Rev. Bone Min. Metab. 2011;9:187–197. doi: 10.1007/s12018-011-9104-8.
    1. Chmiel JA, et al. High-throughput in vitro gel-based plate assay to screen for calcium oxalate stone inhibitors. Urol. Int. 2022;106:616–622. doi: 10.1159/000519842.
    1. Randall A. An hypothesis for the origin of renal calculus. N. Engl. J. Med. 1936;214:234–242. doi: 10.1056/NEJM193602062140603.
    1. Khan SR. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl. Androl. Urol. 2014;3:256–276.
    1. Ferraro PM, Bargagli M, Trinchieri A, Gambaro G. Risk of kidney stones: influence of dietary factors, dietary patterns, and vegetarian-vegan diets. Nutrients. 2020;12:E779. doi: 10.3390/nu12030779.
    1. D’Alessandro C, et al. Which diet for calcium stone patients: a real-world approach to preventive care. Nutrients. 2019;11:E1182. doi: 10.3390/nu11051182.
    1. Heilberg IP, Goldfarb DS. Optimum nutrition for kidney stone disease. Adv. Chronic Kidney Dis. 2013;20:165–174. doi: 10.1053/j.ackd.2012.12.001.
    1. Siener R, Hesse A. The effect of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects. Eur. Urol. 2002;42:289–296. doi: 10.1016/S0302-2838(02)00316-0.
    1. Statovci D, Aguilera M, MacSharry J, Melgar S. The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front. Immunol. 2017;8:838. doi: 10.3389/fimmu.2017.00838.
    1. Candeliere F, et al. Indole and p-cresol in feces of healthy subjects: concentration, kinetics, and correlation with microbiome. Front. Mol. Med. 2022;2:1–13. doi: 10.3389/fmmed.2022.959189.
    1. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142:1100–1101.e2. doi: 10.1053/j.gastro.2012.01.034.
    1. Zinöcker MK, Lindseth IA. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients. 2018;10:E365. doi: 10.3390/nu10030365.
    1. Cordain L, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 2005;81:341–354. doi: 10.1093/ajcn.81.2.341.
    1. Freedman P. Renal colic and persistent hypercalcuria following self-administration of vitamin D. Lancet. 1957;272:668–669. doi: 10.1016/S0140-6736(57)91125-X.
    1. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract — a role beyond infection. Nat. Rev. Urol. 2015;12:81–90. doi: 10.1038/nrurol.2014.361.
    1. Tasian GE, et al. Oral antibiotic exposure and kidney stone disease. J. Am. Soc. Nephrol. 2018;29:1731–1740. doi: 10.1681/ASN.2017111213.
    1. Dawson KA, Allison MJ, Hartman PA. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl. Environ. Microbiol. 1980;40:833–839. doi: 10.1128/aem.40.4.833-839.1980.
    1. Duncan SH, et al. Oxalobacter formigenes and its potential role in human health. Appl. Environ. Microbiol. 2002;68:3841–3847. doi: 10.1128/AEM.68.8.3841-3847.2002.
    1. Kachroo N, et al. Meta-analysis of clinical microbiome studies in urolithiasis reveal age, stone composition, and study location as the predominant factors in urolithiasis-associated microbiome composition. mBio. 2021;12:e0200721. doi: 10.1128/mBio.02007-21.
    1. Ticinesi A, et al. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut. 2018;67:2097–2106. doi: 10.1136/gutjnl-2017-315734.
    1. Magwira CA, et al. Diversity of faecal oxalate-degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group. J. Appl. Microbiol. 2012;113:418–428. doi: 10.1111/j.1365-2672.2012.05346.x.
    1. Tang R, et al. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis. 2018;46:503–514. doi: 10.1007/s00240-018-1037-y.
    1. Al, K. Characterizing the role of the microbiome in kidney stone disease (Western University, 2020).
    1. Ticinesi A, et al. Calcium oxalate nephrolithiasis and gut microbiota: not just a gut-kidney axis. A nutritional perspective. Nutrients. 2020;12:548. doi: 10.3390/nu12020548.
    1. Miller AW, Choy D, Penniston KL, Lange D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int. 2019;96:180–188. doi: 10.1016/j.kint.2019.02.012.
    1. Liu M, et al. Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease. Elife. 2021;10:e63642. doi: 10.7554/eLife.63642.
    1. Stern JM, et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis. 2016;44:399–407. doi: 10.1007/s00240-016-0882-9.
    1. Suryavanshi MV, et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci. Rep. 2016;6:34712. doi: 10.1038/srep34712.
    1. Suryavanshi MV, Bhute SS, Gune RP, Shouche YS. Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease. Sci. Rep. 2018;8:16598. doi: 10.1038/s41598-018-33773-5.
    1. Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol. 2020;21:215. doi: 10.1186/s12882-020-01805-w.
    1. Arumugam M, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. doi: 10.1038/nature09944.
    1. Daisley BA, et al. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep. 2021;37:110087. doi: 10.1016/j.celrep.2021.110087.
    1. Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 2015;6:148. doi: 10.3389/fgene.2015.00148.
    1. Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J. Lipid Res. 2013;54:1761–1775. doi: 10.1194/jlr.R030833.
    1. Tanumihardjo SA, et al. Biomarkers of nutrition for development (BOND) — vitamin A review. J. Nutr. 2016;146:1816S–1848SS. doi: 10.3945/jn.115.229708.
    1. Grases F, Garcia-Gonzalez R, Genestar C, Torres JJ, March JG. Vitamin A and urolithiasis. Clin. Chim. Acta. 1998;269:147–157. doi: 10.1016/S0009-8981(97)00198-8.
    1. Munday JS, et al. Cystitis, pyelonephritis, and urolithiasis in rats accidentally fed a diet deficient in vitamin A. J. Am. Assoc. Lab. Anim. Sci. 2009;48:790–794.
    1. Bardaoui M, Sakly R, Neffati F, Najjar MF, El Hani A. Effect of vitamin A supplemented diet on calcium oxalate renal stone formation in rats. Exp. Toxicol. Pathol. 2010;62:573–576. doi: 10.1016/j.etp.2009.08.005.
    1. Wong YF, et al. Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system. PLoS One. 2011;6:e16770. doi: 10.1371/journal.pone.0016770.
    1. Kancha RK, Anasuya A. Contribution of vitamin A deficiency to calculogenic risk factors of urine: studies in children. Biochem. Med. Metab. Biol. 1992;47:1–9. doi: 10.1016/0885-4505(92)90002-G.
    1. Kato J, et al. Lipid peroxidation and antioxidant vitamins in urolithiasis. Indian. J. Clin. Biochem. 2007;22:128–130. doi: 10.1007/BF02912895.
    1. Conaway HH, Henning P, Lerner UH. Vitamin a metabolism, action, and role in skeletal homeostasis. Endocr. Rev. 2013;34:766–797. doi: 10.1210/er.2012-1071.
    1. Chen P, et al. Association of vitamin A and zinc status with altered intestinal permeability: analyses of cohort data from northeastern Brazil. J. Health Popul. Nutr. 2003;21:309–315.
    1. Quadro L, et al. Retinol and retinol-binding protein: gut integrity and circulating immunoglobulins. J. Infect. Dis. 2000;182(Suppl. 1):S97–S102. doi: 10.1086/315920.
    1. Li Y, et al. Retinoic acid facilitates toll-like receptor 4 expression to improve intestinal barrier function through retinoic acid receptor beta. Cell Physiol. Biochem. 2017;42:1390–1406. doi: 10.1159/000479203.
    1. Yamada S, Kanda Y. Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers. J. Pharmacol. Sci. 2019;140:337–344. doi: 10.1016/j.jphs.2019.06.012.
    1. Wang JL, Swartz-Basile DA, Rubin DC, Levin MS. Retinoic acid stimulates early cellular proliferation in the adapting remnant rat small intestine after partial resection. J. Nutr. 1997;127:1297–1303. doi: 10.1093/jn/127.7.1297.
    1. Jijon HB, et al. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system. Mucosal Immunol. 2018;11:703–715. doi: 10.1038/mi.2017.91.
    1. Iyer N, Vaishnava S. Vitamin A at the interface of host–commensal–pathogen interactions. PLoS Pathog. 2019;15:e1007750. doi: 10.1371/journal.ppat.1007750.
    1. Mulay SR, et al. Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am. J. Physiol. Renal Physiol. 2016;310:F785–F795. doi: 10.1152/ajprenal.00488.2015.
    1. Knauf F, et al. Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J. Am. Soc. Nephrol. 2011;22:2247–2255. doi: 10.1681/ASN.2011040433.
    1. Bashir M, et al. Enhanced gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;316:G1–G14. doi: 10.1152/ajpgi.00266.2018.
    1. Yoo J-Y, et al. LPS-induced acute kidney injury is mediated by Nox4-SH3YL1. Cell Rep. 2020;33:108245. doi: 10.1016/j.celrep.2020.108245.
    1. McAleer IM, Kaplan GW, Bradley JS, Carroll SF, Griffith DP. Endotoxin content in renal calculi. J. Urol. 2003;169:1813–1814. doi: 10.1097/01.ju.0000061965.51478.79.
    1. Li J, Moturi KR, Wang L, Zhang K, Yu C. Gut derived-endotoxin contributes to inflammation in severe ischemic acute kidney injury. BMC Nephrol. 2019;20:16. doi: 10.1186/s12882-018-1199-4.
    1. Nupur LNU, et al. ProCarDB: a database of bacterial carotenoids. BMC Microbiol. 2016;16:96. doi: 10.1186/s12866-016-0715-6.
    1. Ram S, Mitra M, Shah F, Tirkey SR, Mishra S. Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges. J. Funct. Foods. 2020;67:103867. doi: 10.1016/j.jff.2020.103867.
    1. Olson JA, Hayaishi O. The enzymatic cleavage of beta-carotene into vitamin A by soluble enzymes of rat liver and intestine. Proc. Natl Acad. Sci. USA. 1965;54:1364–1370. doi: 10.1073/pnas.54.5.1364.
    1. Kim Y-S, Park C-S, Oh D-K. Retinal production from beta-carotene by beta-carotene 15,15′-dioxygenase from an unculturable marine bacterium. Biotechnol. Lett. 2010;32:957–961. doi: 10.1007/s10529-010-0239-3.
    1. Culligan EP, Sleator RD, Marchesi JR, Hill C. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15′-monooxygenase. PLoS One. 2014;9:e103318. doi: 10.1371/journal.pone.0103318.
    1. Culligan EP, Sleator RD, Marchesi JR, Hill C. Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME J. 2012;6:1916–1925. doi: 10.1038/ismej.2012.38.
    1. Hong S-H, et al. Alternative biotransformation of retinal to retinoic acid or retinol by an aldehyde dehydrogenase from Bacillus cereus. Appl. Environ. Microbiol. 2016;82:3940–3946. doi: 10.1128/AEM.00848-16.
    1. Grizotte-Lake M, et al. Gut commensals suppress epithelial cell retinoic acid synthesis to regulate intestinal interleukin-22 activity and prevent microbial dysbiosis. Immunity. 2018;49:1103–1115.e6. doi: 10.1016/j.immuni.2018.11.018.
    1. Hellmann H, Mooney S. Vitamin B6: a molecule for human health? Molecules. 2010;15:442–459. doi: 10.3390/molecules15010442.
    1. Amadasi A, et al. Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents. Curr. Med. Chem. 2007;14:1291–1324. doi: 10.2174/092986707780597899.
    1. Harris SA, Folkers K. Synthetic vitamin B6. Science. 1939;89:347. doi: 10.1126/science.89.2311.347.
    1. Rosenberg J, Ischebeck T, Commichau FM. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol. Adv. 2017;35:31–40. doi: 10.1016/j.biotechadv.2016.11.004.
    1. Percudani R, Peracchi A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinforma. 2009;10:273. doi: 10.1186/1471-2105-10-273.
    1. Pey AL, Albert A, Salido E. Protein homeostasis defects of alanine-glyoxylate aminotransferase: new therapeutic strategies in primary hyperoxaluria type I. Biomed. Res. Int. 2013;2013:687658. doi: 10.1155/2013/687658.
    1. Sun X-Y, Gan Q-Z, Ouyang J-M. Calcium oxalate toxicity in renal epithelial cells: the mediation of crystal size on cell death mode. Cell Death Discov. 2015;1:1–8. doi: 10.1038/cddiscovery.2015.55.
    1. Ferraro PM, Taylor EN, Gambaro G, Curhan GC. Vitamin B6 intake and the risk of incident kidney stones. Urolithiasis. 2018;46:265–270. doi: 10.1007/s00240-017-0999-5.
    1. Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of the intake of vitamins C and B6, and the risk of kidney stones in men. J. Urol. 1996;155:1847–1851. doi: 10.1016/S0022-5347(01)66027-0.
    1. Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Intake of vitamins B6 and C and the risk of kidney stones in women. J. Am. Soc. Nephrol. 1999;10:840–845. doi: 10.1681/ASN.V104840.
    1. Gershoff SN, Faragalla FF, Nelson DA, Andrus SB. Vitamin B6 deficiency and oxalate nephrocalcinosis in the cat. Am. J. Med. 1959;27:72–80. doi: 10.1016/0002-9343(59)90062-2.
    1. Di Tommaso L, et al. Renal calcium phosphate and oxalate deposition in prolonged vitamin B6 deficiency: studies on a rat model of urolithiasis. BJU Int. 2002;89:571–575. doi: 10.1046/j.1464-410X.2002.02670.x.
    1. Aihara K, Byer KJ, Khan SR. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int. 2003;64:1283–1291. doi: 10.1046/j.1523-1755.2003.00226.x.
    1. Colditz GA. The Nurses’ Health Study: a cohort of US women followed since 1976. J. Am. Med. Women’s Assoc. 1995;50:40–44.
    1. Mitwalli A, Ayiomamitis A, Grass L, Oreopoulos DG. Control of hyperoxaluria with large doses of pyridoxine in patients with kidney stones. Int. Urol. Nephrol. 1988;20:353–359. doi: 10.1007/BF02549567.
    1. Rattan V, Sidhu H, Vaidyanathan S, Thind SK, Nath R. Effect of combined supplementation of magnesium oxide and pyridoxine in calcium-oxalate stone formers. Urol. Res. 1994;22:161–165. doi: 10.1007/BF00571844.
    1. Ortiz-Alvarado O, et al. Pyridoxine and dietary counseling for the management of idiopathic hyperoxaluria in stone-forming patients. Urology. 2011;77:1054–1058. doi: 10.1016/j.urology.2010.08.002.
    1. Balcke P, Schmidt P, Zazgornik J, Kopsa H, Minar E. Pyridoxine therapy in patients with renal calcium oxalate calculi. Proc. Eur. Dial. Transpl. Assoc. 1983;20:417–421.
    1. Revúsová V, et al. The evaluation of some biochemical parameters in pyridoxine-treated calcium oxalate renal stone formers. Urol. Int. 1977;32:348–352. doi: 10.1159/000280150.
    1. Reddy SVK, Shaik AB, Bokkisam S. Effect of potassium magnesium citrate and vitamin B-6 prophylaxis for recurrent and multiple calcium oxalate and phosphate urolithiasis. Korean J. Urol. 2014;55:411–416. doi: 10.4111/kju.2014.55.6.411.
    1. Kaelin A, Casez J-P, Jaeger P. Vitamin B6 metabolites in idiopathic calcium stone formers: no evidence for a link to hyperoxaluria. Urol. Res. 2004;32:61–68. doi: 10.1007/s00240-003-0386-2.
    1. Hoyer-Kuhn H, et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin. J. Am. Soc. Nephrol. 2014;9:468–477. doi: 10.2215/CJN.06820613.
    1. Fargue S, Knight J, Holmes RP, Rumsby G, Danpure CJ. Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim. Biophys. Acta. 2016;1862:1055–1062. doi: 10.1016/j.bbadis.2016.02.004.
    1. Oppici E, et al. Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum. Mol. Genet. 2015;24:5500–5511. doi: 10.1093/hmg/ddv276.
    1. Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front. Nutr. 2019;6:48. doi: 10.3389/fnut.2019.00048.
    1. Nakano H, Gregory JF. Pyridoxine and pyridoxine-5′-β-D-glucoside exert different effects on tissue B-6 vitamers but similar effects on β-glucosidase activity in rats. J. Nutr. 1995;125:2751–2762.
    1. Li Y, et al. The gut microbiota regulates autism-like behavior by mediating vitamin B6 homeostasis in EphB6-deficient mice. Microbiome. 2020;8:120. doi: 10.1186/s40168-020-00884-z.
    1. Soto-Martin EC, et al. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio. 2020;11:e00886–20. doi: 10.1128/mBio.00886-20.
    1. Heinken A, et al. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J. Bacteriol. 2014;196:3289–3302. doi: 10.1128/JB.01780-14.
    1. Richts B, Commichau FM. Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis. Appl. Microbiol. Biotechnol. 2021;105:2297–2305. doi: 10.1007/s00253-021-11199-w.
    1. Nishikimi M, Yagi K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am. J. Clin. Nutr. 1991;54:1203S–1208S. doi: 10.1093/ajcn/54.6.1203s.
    1. Lykkesfeldt J, Tveden-Nyborg P. The pharmacokinetics of vitamin C. Nutrients. 2019;11:E2412. doi: 10.3390/nu11102412.
    1. Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr. J. 2003;2:7. doi: 10.1186/1475-2891-2-7.
    1. Hellman L, Burns JJ. Metabolism of L-ascorbic acid-1-C14 in man. J. Biol. Chem. 1958;230:923–930. doi: 10.1016/S0021-9258(18)70515-2.
    1. Emadi-Konjin P, Verjee Z, Levin AV, Adeli K. Measurement of intracellular vitamin C levels in human lymphocytes by reverse phase high performance liquid chromatography (HPLC) Clin. Biochem. 2005;38:450–456. doi: 10.1016/j.clinbiochem.2005.01.018.
    1. Rowe S, Carr AC. Global vitamin C status and prevalence of deficiency: a cause for concern? Nutrients. 2020;12:E2008. doi: 10.3390/nu12072008.
    1. Valdés F. Vitamin C. Actas Dermosifiliogr. 2006;97:557–568. doi: 10.1016/S0001-7310(06)73466-4.
    1. Hemilä H. Vitamin C and infections. Nutrients. 2017;9:E339. doi: 10.3390/nu9040339.
    1. Smirnoff N. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radic. Biol. Med. 2018;122:116–129. doi: 10.1016/j.freeradbiomed.2018.03.033.
    1. Johnston CS. Biomarkers for establishing a tolerable upper intake level for vitamin C. Nutr. Rev. 1999;57:71–77. doi: 10.1111/j.1753-4887.1999.tb06926.x.
    1. Bhojani N, et al. Update — 2022 Canadian Urological Association guideline: evaluation and medical management of the kidney stone patient. Can. Urol. Assoc. J. 2022;16:175–188. doi: 10.5489/cuaj.7872.
    1. Pearle MS, et al. Medical management of kidney stones: AUA guideline. J. Urol. 2014;192:316–324. doi: 10.1016/j.juro.2014.05.006.
    1. Skolarikos, A. et al. EAU guidelines on urolithiasis. in EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam (EAU Guidelines Office, 2022).
    1. Ferraro PM, Curhan GC, Gambaro G, Taylor EN. Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones. Am. J. Kidney Dis. 2016;67:400–407. doi: 10.1053/j.ajkd.2015.09.005.
    1. Taylor EN, Stampfer MJ, Curhan GC. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J. Am. Soc. Nephrol. 2004;15:3225–3232. doi: 10.1097/01.ASN.0000146012.44570.20.
    1. Institute of Medicine (US) Panel on dietary antioxidants and related compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (National Academies Press (US), 2000).
    1. Thomas LDK, Elinder C-G, Tiselius H-G, Wolk A, Akesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern. Med. 2013;173:386–388. doi: 10.1001/jamainternmed.2013.2296.
    1. Subar AF, et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: the OPEN study. Am. J. Epidemiol. 2003;158:1–13. doi: 10.1093/aje/kwg092.
    1. Travica N, et al. The contribution of plasma and brain vitamin C on age and gender-related cognitive differences: a mini-review of the literature. Front. Integr. Neurosci. 2020;14:47. doi: 10.3389/fnint.2020.00047.
    1. Wandzilak TR, D’Andre SD, Davis PA, Williams HE. Effect of high dose vitamin C on urinary oxalate levels. J. Urol. 1994;151:834–837. doi: 10.1016/S0022-5347(17)35100-5.
    1. Traxer O, Huet B, Poindexter J, Pak CYC, Pearle MS. Effect of ascorbic acid consumption on urinary stone risk factors. J. Urol. 2003;170:397–401. doi: 10.1097/01.ju.0000076001.21606.53.
    1. Chai W, Liebman M, Kynast-Gales S, Massey L. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers. Am. J. Kidney Dis. 2004;44:1060–1069. doi: 10.1053/j.ajkd.2004.08.028.
    1. Taylor EN, Curhan GC. Determinants of 24-hour urinary oxalate excretion. Clin. J. Am. Soc. Nephrol. 2008;3:1453–1460. doi: 10.2215/CJN.01410308.
    1. Baxmann AC, De O G Mendonça C, Heilberg IP. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 2003;63:1066–1071. doi: 10.1046/j.1523-1755.2003.00815.x.
    1. Hesse A, Schneeberger W, Engfeld S, Von Unruh GE, Sauerbruch T. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: application of a new test with [13C2]oxalate. J. Am. Soc. Nephrol. 1999;10(Suppl. 14):S329–S333.
    1. Sikora P, et al. [13C2]oxalate absorption in children with idiopathic calcium oxalate urolithiasis or primary hyperoxaluria. Kidney Int. 2008;73:1181–1186. doi: 10.1038/ki.2008.63.
    1. Chalmers AH, Cowley DM, McWhinney BC. Stability of ascorbate in urine: relevance to analyses for ascorbate and oxalate. Clin. Chem. 1985;31:1703–1705. doi: 10.1093/clinchem/31.10.1703.
    1. Moyad MA, et al. Vitamin C with metabolites reduce oxalate levels compared to ascorbic acid: a preliminary and novel clinical urologic finding. Urol. Nurs. 2009;29:95–102.
    1. Robitaille L, et al. Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism. 2009;58:263–269. doi: 10.1016/j.metabol.2008.09.023.
    1. Peña de la Vega L, Lieske JC, Milliner D, Gonyea J, Kelly DG. Urinary oxalate excretion increases in home parenteral nutrition patients on a higher intravenous ascorbic acid dose. JPEN J. Parenter. Enter. Nutr. 2004;28:435–438. doi: 10.1177/0148607104028006435.
    1. Cossey LN, Rahim F, Larsen CP. Oxalate nephropathy and intravenous vitamin C. Am. J. Kidney Dis. 2013;61:1032–1035. doi: 10.1053/j.ajkd.2013.01.025.
    1. Fontana F, et al. Oxalate nephropathy caused by excessive vitamin C administration in 2 patients with COVID-19. Kidney Int. Rep. 2020;5:1815–1822. doi: 10.1016/j.ekir.2020.07.008.
    1. Buehner M, et al. Oxalate nephropathy after continuous infusion of high-dose vitamin C as an adjunct to burn resuscitation. J. Burn. Care Res. 2016;37:e374–e379. doi: 10.1097/BCR.0000000000000233.
    1. Prier M, Carr AC, Baillie N. No reported renal stones with intravenous vitamin C administration: a prospective case series study. Antioxidants. 2018;7:E68. doi: 10.3390/antiox7050068.
    1. Yanase F, et al. Harm of IV high-dose vitamin C therapy in adult patients: a scoping review. Crit. Care Med. 2020;48:e620–e628.
    1. Thamilselvan V, Menon M, Thamilselvan S. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid. BJU Int. 2014;114:140–150. doi: 10.1111/bju.12642.
    1. Fishman AI, et al. Preventive effect of specific antioxidant on oxidative renal cell injury associated with renal crystal formation. Urology. 2013;82:489.e1–7. doi: 10.1016/j.urology.2013.03.065.
    1. Jaturakan O, et al. Combination of vitamin E and vitamin C alleviates renal function in hyperoxaluric rats via antioxidant activity. J. Vet. Med. Sci. 2017;79:896–903. doi: 10.1292/jvms.17-0083.
    1. Tzou DT, Taguchi K, Chi T, Stoller ML. Animal models of urinary stone disease. Int. J. Surg. 2016;36:596–606. doi: 10.1016/j.ijsu.2016.11.018.
    1. Tannehill-Gregg SH, et al. Strain-related differences in urine composition of male rats of potential relevance to urolithiasis. Toxicol. Pathol. 2009;37:293–305. doi: 10.1177/0192623309332990.
    1. Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 2021;95:35–53. doi: 10.1016/j.nutres.2021.09.001.
    1. Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian. J. Clin. Biochem. 2013;28:314–328. doi: 10.1007/s12291-013-0375-3.
    1. Chang Y-L, et al. A screen of Crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol. 2019;12:457–467. doi: 10.1038/s41385-018-0022-7.
    1. Yang Q, et al. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. 2020;12:381. doi: 10.3390/nu12020381.
    1. Otten AT, et al. Vitamin C supplementation in healthy individuals leads to shifts of bacterial populations in the gut — a pilot study. Antioxidants. 2021;10:1278. doi: 10.3390/antiox10081278.
    1. Pham VT, et al. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome — a pilot study. Gut Microbes. 2021;13:1875774. doi: 10.1080/19490976.2021.1875774.
    1. Yao C, Chou J, Wang T, Zhao H, Zhang B. Pantothenic acid, vitamin C, and biotin play important roles in the growth of Lactobacillus helveticus. Front. Microbiol. 2018;9:1194. doi: 10.3389/fmicb.2018.01194.
    1. Linares D, Michaud P, Delort A-M, Traïkia M, Warrand J. Catabolism of L-ascorbate by Lactobacillus rhamnosus GG. J. Agric. Food Chem. 2011;59:4140–4147. doi: 10.1021/jf104343r.
    1. Stuivenberg G, Daisley B, Akouris P, Reid G. In vitro assessment of histamine and lactate production by a multi-strain synbiotic. J. Food Sci. Technol. 2021 doi: 10.1007/s13197-021-05327-7.
    1. Chamberlain CA, Hatch M, Garrett TJ. Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS One. 2019;14:e0222393. doi: 10.1371/journal.pone.0222393.
    1. Yew WS, Gerlt JA. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J. Bacteriol. 2002;184:302–306. doi: 10.1128/JB.184.1.302-306.2002.
    1. Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J. Urol. 1998;160:1617–1624. doi: 10.1016/S0022-5347(01)62363-2.
    1. Afzal M, Shafeeq S, Henriques-Normark B, Kuipers OP. UlaR activates expression of the ula operon in Streptococcus pneumoniae in the presence of ascorbic acid. Microbiology. 2015;161:41–49. doi: 10.1099/mic.0.083899-0.
    1. Martinez-Sanguiné AY, et al. Salmonella enterica serovars Dublin and Enteritidis comparative proteomics reveals differential expression of proteins involved in stress resistance, virulence, and anaerobic metabolism. Infect. Immun. 2021;89:e00606–e00620. doi: 10.1128/IAI.00606-20.
    1. Mai S-NT, et al. The evolutionary history of Shigella flexneri serotype 6 in Asia. Microb. Genom. 2021;7:000736.
    1. Mehmeti I, Solheim M, Nes IF, Holo H. Enterococcus faecalis grows on ascorbic acid. Appl. Env. Microbiol. 2013;79:4756–4758. doi: 10.1128/AEM.00228-13.
    1. Campos E, et al. The yiaKLX1X2PQRS and ulaABCDEFG gene systems are required for the aerobic utilization of L-ascorbate in Klebsiella pneumoniae strain 13882 with L-ascorbate-6-phosphate as the inducer. J. Bacteriol. 2008;190:6615–6624. doi: 10.1128/JB.00815-08.
    1. Zhang Z, Aboulwafa M, Smith MH, Saier MH. The ascorbate transporter of Escherichia coli. J. Bacteriol. 2003;185:2243–2250. doi: 10.1128/JB.185.7.2243-2250.2003.
    1. Subramanian VS, Sabui S, Moradi H, Marchant JS, Said HM. Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. Biochim. Biophys. Acta Biomembr. 2018;1860:556–565. doi: 10.1016/j.bbamem.2017.10.010.
    1. Subramanian VS, Sabui S, Subramenium GA, Marchant JS, Said HM. Tumor necrosis factor alpha reduces intestinal vitamin C uptake: a role for NF-κB-mediated signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 2018;315:G241–G248. doi: 10.1152/ajpgi.00071.2018.
    1. Subramanian VS, Teafatiller T, Agrawal A, Kitazawa M, Marchant JS. Effect of lipopolysaccharide and TNFα on neuronal ascorbic acid uptake. Mediat. Inflamm. 2021;2021:4157132. doi: 10.1155/2021/4157132.
    1. Heskett CW, et al. Enteropathogenic Escherichia coli infection inhibits intestinal ascorbic acid uptake via dysregulation of its transporter expression. Dig. Dis. Sci. 2021;66:2250–2260. doi: 10.1007/s10620-020-06389-x.
    1. Subramanian VS, Sabui S, Marchant JS, Said HM. MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells. J. Nutr. Biochem. 2019;65:46–53. doi: 10.1016/j.jnutbio.2018.12.001.
    1. Sangani R, et al. MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells. Mol. Cell Endocrinol. 2015;410:19–26. doi: 10.1016/j.mce.2015.01.007.
    1. Jones G. Extrarenal vitamin D activation and interactions between vitamin D2, vitamin D3, and vitamin D analogs. Annu. Rev. Nutr. 2013;33:23–44. doi: 10.1146/annurev-nutr-071812-161203.
    1. Holick MF, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980;210:203–205. doi: 10.1126/science.6251551.
    1. Slepchenko BM, Bronner F. Modeling of transcellular Ca transport in rat duodenum points to coexistence of two mechanisms of apical entry. Am. J. Physiol. Cell Physiol. 2001;281:C270–C281. doi: 10.1152/ajpcell.2001.281.1.C270.
    1. Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J. Gastroenterol. 2015;21:7142–7154. doi: 10.3748/wjg.v21.i23.7142.
    1. Fleet JC. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol. Cell Endocrinol. 2017;453:36–45. doi: 10.1016/j.mce.2017.04.008.
    1. Lassiter WE, Gottschalk CW, Mylle M. Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Am. J. Physiol. 1963;204:771–775. doi: 10.1152/ajplegacy.1963.204.5.771.
    1. Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. Renal Physiol. 2016;310:F1337–F1350. doi: 10.1152/ajprenal.00273.2015.
    1. Bindels RJ, Hartog A, Timmermans J, Van Os CH. Active Ca2+ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am. J. Physiol. 1991;261:F799–F807.
    1. Hoenderop JGJ, van der Kemp AWCM, Urben CM, Strugnell SA, Bindels RJM. Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. Kidney Int. 2004;66:1082–1089. doi: 10.1111/j.1523-1755.2004.00858.x.
    1. Nijenhuis T, Hoenderop JGJ, van der Kemp AWCM, Bindels RJM. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J. Am. Soc. Nephrol. 2003;14:2731–2740. doi: 10.1097/01.ASN.0000094081.78893.E8.
    1. Hoenderop JGJ, et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. FASEB J. 2002;16:1398–1406. doi: 10.1096/fj.02-0225com.
    1. Xue Y, Fleet JC. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology. 2009;136:1317–1327, e1-2. doi: 10.1053/j.gastro.2008.12.051.
    1. Yamamoto Y, et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology. 2013;154:1008–1020. doi: 10.1210/en.2012-1542.
    1. Kitazawa R, Mori K, Yamaguchi A, Kondo T, Kitazawa S. Modulation of mouse RANKL gene expression by Runx2 and vitamin D3. J. Cell Biochem. 2008;105:1289–1297. doi: 10.1002/jcb.21929.
    1. Mori T, et al. The vitamin D receptor in osteoblast-lineage cells is essential for the proresorptive activity of 1α,25(OH)2D3 in vivo. Endocrinology. 2020;161:bqaa178. doi: 10.1210/endocr/bqaa178.
    1. Hu H, et al. Association between circulating vitamin D level and urolithiasis: a systematic review and meta-analysis. Nutrients. 2017;9:E301. doi: 10.3390/nu9030301.
    1. Malihi Z, Wu Z, Stewart AW, Lawes CM, Scragg R. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am. J. Clin. Nutr. 2016;104:1039–1051. doi: 10.3945/ajcn.116.134981.
    1. Ferraro PM, Taylor EN, Gambaro G, Curhan GC. Vitamin D intake and the risk of incident kidney stones. J. Urol. 2017;197:405–410. doi: 10.1016/j.juro.2016.08.084.
    1. Girón-Prieto MS, et al. Analysis of vitamin D deficiency in calcium stone-forming patients. Int. Urol. Nephrol. 2016;48:1243–1246. doi: 10.1007/s11255-016-1290-3.
    1. Ticinesi A, et al. Idiopathic calcium nephrolithiasis and hypovitaminosis D: a case-control study. Urology. 2016;87:40–45. doi: 10.1016/j.urology.2015.10.009.
    1. Dholakia K, Selvaraj N, Ragavan N. Prevalence of vitamin D inadequacy in urolithiasis patients. Cureus. 2021;13:e15379.
    1. Tang J, Chonchol MB. Vitamin D and kidney stone disease. Curr. Opin. Nephrol. Hypertens. 2013;22:383–389. doi: 10.1097/MNH.0b013e328360bbcd.
    1. Tavasoli S, Taheri M. Vitamin D and calcium kidney stones: a review and a proposal. Int. Urol. Nephrol. 2019;51:101–111. doi: 10.1007/s11255-018-1965-z.
    1. Martins JS, Palhares MDO, Teixeira OCM, Gontijo Ramos M. Vitamin D status and its association with parathyroid hormone concentration in Brazilians. J. Nutr. Metab. 2017;2017:9056470. doi: 10.1155/2017/9056470.
    1. Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 2015;22:41–50. doi: 10.1016/j.coph.2015.03.005.
    1. Prochaska M, Taylor E, Vaidya A, Curhan G. Low bone density and bisphosphonate use and the risk of kidney stones. Clin. J. Am. Soc. Nephrol. 2017;12:1284–1290. doi: 10.2215/CJN.01420217.
    1. Taguchi K, et al. Low bone mineral density is a potential risk factor for symptom onset and related with hypocitraturia in urolithiasis patients: a single-center retrospective cohort study. BMC Urol. 2020;20:174. doi: 10.1186/s12894-020-00749-5.
    1. Carlberg C, Seuter S, Heikkinen S. The first genome-wide view of vitamin D receptor locations and their mechanistic implications. Anticancer. Res. 2012;32:271–282.
    1. Bikle DD. Extraskeletal actions of vitamin D. Ann. N. Y. Acad. Sci. 2016;1376:29–52. doi: 10.1111/nyas.13219.
    1. Thomas RL, et al. Vitamin D metabolites and the gut microbiome in older men. Nat. Commun. 2020;11:5997. doi: 10.1038/s41467-020-19793-8.
    1. Yang X, et al. Causal relationship between gut microbiota and serum vitamin D: evidence from genetic correlation and Mendelian randomization study. Eur. J. Clin. Nutr. 2022;76:1017–1023. doi: 10.1038/s41430-021-01065-3.
    1. Sasaki J, Mikami A, Mizoue K, Omura S. Transformation of 25- and 1 alpha-hydroxyvitamin D3 to 1α, 25-dihydroxyvitamin D3 by using Streptomyces sp. strains. Appl. Environ. Microbiol. 1991;57:2841–2846. doi: 10.1128/aem.57.10.2841-2846.1991.
    1. Sawada N, et al. Conversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochem. Biophys. Res. Commun. 2004;320:156–164. doi: 10.1016/j.bbrc.2004.05.140.
    1. Fujii Y, et al. Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Biochem. Biophys. Res. Commun. 2009;385:170–175. doi: 10.1016/j.bbrc.2009.05.033.
    1. Ang SS, et al. Molecular characterization, modeling and docking of CYP107CB2 from Bacillus lehensis G1, an alkaliphile. Comput. Biol. Chem. 2015;56:19–29. doi: 10.1016/j.compbiolchem.2015.02.015.
    1. Ang SS, et al. Biochemical characterization of the cytochrome P450 CYP107CB2 from Bacillus lehensis G1. Protein J. 2018;37:180–193. doi: 10.1007/s10930-018-9764-z.
    1. Yamamoto EA, Jørgensen TN. Relationships between vitamin D, gut microbiome, and systemic autoimmunity. Front. Immunol. 2019;10:3141. doi: 10.3389/fimmu.2019.03141.
    1. Jakobsen J. Bioavailability and bioactivity of vitamin D3 active compounds — which potency should be used for 25-hydroxyvitamin D3? Int. Congr. Ser. 2007;1297:133–142. doi: 10.1016/j.ics.2006.08.026.
    1. Vasilevskaya AV, et al. Identification of Mycobacterium tuberculosis enzyme involved in vitamin D and 7-dehydrocholesterol metabolism. J. Steroid Biochem. Mol. Biol. 2017;169:202–209. doi: 10.1016/j.jsbmb.2016.05.021.
    1. Varaksa T, et al. Metabolic fate of human immunoactive sterols in Mycobacterium tuberculosis. J. Mol. Biol. 2021;433:166763. doi: 10.1016/j.jmb.2020.166763.
    1. Bora SA, Kennett MJ, Smith PB, Patterson AD, Cantorna MT. The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23. Front. Immunol. 2018;9:408. doi: 10.3389/fimmu.2018.00408.
    1. Shimada T, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Min. Res. 2004;19:429–435. doi: 10.1359/JBMR.0301264.
    1. Peterson CA, Heffernan ME. Serum tumor necrosis factor-alpha concentrations are negatively correlated with serum 25(OH)D concentrations in healthy women. J. Inflamm. 2008;5:10. doi: 10.1186/1476-9255-5-10.
    1. Du J, Wei X, Ge X, Chen Y, Li YC. Microbiota-dependent induction of colonic Cyp27b1 is associated with colonic inflammation: implications of locally produced 1,25-dihydroxyvitamin D3 in inflammatory regulation in the colon. Endocrinology. 2017;158:4064–4075. doi: 10.1210/en.2017-00578.
    1. Chen Y, et al. MicroRNA-346 mediates tumor necrosis factor α-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases. Inflamm. Bowel Dis. 2014;20:1910–1918. doi: 10.1097/MIB.0000000000000158.
    1. Waterhouse JC, Perez TH, Albert PJ. Reversing bacteria-induced vitamin D receptor dysfunction is key to autoimmune disease. Ann. N. Y. Acad. Sci. 2009;1173:757–765. doi: 10.1111/j.1749-6632.2009.04637.x.
    1. Gaschott T, Stein J. Short-chain fatty acids and colon cancer cells: the vitamin D receptor–butyrate connection. Recent Results Cancer Res. 2003;164:247–257. doi: 10.1007/978-3-642-55580-0_18.
    1. Sun J. VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy. 2016;12:1057–1058. doi: 10.1080/15548627.2015.1072670.
    1. Huang F-C, Huang S-C. The combined beneficial effects of postbiotic butyrate on active vitamin D3-orchestrated innate immunity to Salmonella colitis. Biomedicines. 2021;9:1296. doi: 10.3390/biomedicines9101296.
    1. Wang J, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 2016;48:1396–1406. doi: 10.1038/ng.3695.
    1. Jones ML, Martoni CJ, Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab. 2013;98:2944–2951. doi: 10.1210/jc.2012-4262.
    1. Reboul E, et al. Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol. Nutr. Food Res. 2011;55:691–702. doi: 10.1002/mnfr.201000553.
    1. Castagliuolo I, et al. Co-administration of vitamin D3 and Lacticaseibacillus paracasei DG increase 25-hydroxyvitamin D serum levels in mice. Ann. Microbiol. 2021;71:42. doi: 10.1186/s13213-021-01655-3.
    1. Semova I, et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe. 2012;12:277–288. doi: 10.1016/j.chom.2012.08.003.
    1. Jiang Q. Natural forms of vitamin E as effective agents for cancer prevention and therapy. Adv. Nutr. 2017;8:850–867. doi: 10.3945/an.117.016329.
    1. Hosomi A, et al. Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 1997;409:105–108. doi: 10.1016/S0014-5793(97)00499-7.
    1. Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J. Urol. 2013;189:803–811. doi: 10.1016/j.juro.2012.05.078.
    1. Thamilselvan S, Menon M. Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int. 2005;96:117–126. doi: 10.1111/j.1464-410X.2005.05579.x.
    1. Huang H-S, Chen J, Chen C-F, Ma M-C. Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int. 2006;70:699–710. doi: 10.1038/sj.ki.5001651.
    1. Santhosh Kumar M, Selvam R. Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. J. Nutr. Biochem. 2003;14:306–313. doi: 10.1016/S0955-2863(03)00033-0.
    1. Sakly R, Fekih M, Ben Amor A, Najjar MF, Mbazaa M. Possible role of vitamin A and E deficiency in human idiopathic lithiasis. Ann. Urol. 2003;37:217–219. doi: 10.1016/S0003-4401(03)00074-3.
    1. Siener R, Machaka I, Alteheld B, Bitterlich N, Metzner C. Effect of fat-soluble vitamins A, D, E and K on vitamin status and metabolic profile in patients with fat malabsorption with and without urolithiasis. Nutrients. 2020;12:E3110. doi: 10.3390/nu12103110.
    1. Tungsanga K, Sriboonlue P, Futrakul P, Yachantha C, Tosukhowong P. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol. Res. 2005;33:65–69. doi: 10.1007/s00240-004-0444-4.
    1. Huang H-S, Ma M-C, Chen C-F, Chen J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology. 2003;62:1123–1128. doi: 10.1016/S0090-4295(03)00764-7.
    1. Mo L, et al. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int. 2004;66:1159–1166. doi: 10.1111/j.1523-1755.2004.00867.x.
    1. Sumitra K, Pragasam V, Sakthivel R, Kalaiselvi P, Varalakshmi P. Beneficial effect of vitamin E supplementation on the biochemical and kinetic properties of Tamm-Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol. Dial. Transpl. 2005;20:1407–1415. doi: 10.1093/ndt/gfh794.
    1. Viswanathan P, et al. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol. Res. 2011;39:269–282. doi: 10.1007/s00240-010-0353-7.
    1. Hughes PE, Tove SB. Occurrence of alpha-tocopherolquinone and alpha-tocopherolquinol in microorganisms. J. Bacteriol. 1982;151:1397–1402. doi: 10.1128/jb.151.3.1397-1402.1982.
    1. Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant. Physiol. 2003;132:2184–2195. doi: 10.1104/pp.103.024257.
    1. Shen B, et al. Fermentative production of vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat. Commun. 2020;11:5155. doi: 10.1038/s41467-020-18958-9.
    1. Albermann C, et al. Biosynthesis of the vitamin E compound delta-tocotrienol in recombinant Escherichia coli cells. Chembiochem. 2008;9:2524–2533. doi: 10.1002/cbic.200800242.
    1. Ran L, et al. Effects of antibiotics on degradation and bioavailability of different vitamin E forms in mice. Biofactors. 2019;45:450–462. doi: 10.1002/biof.1492.
    1. Knarreborg A, Lauridsen C, Engberg RM, Jensen SK. Dietary antibiotic growth promoters enhance the bioavailability of alpha-tocopheryl acetate in broilers by altering lipid absorption. J. Nutr. 2004;134:1487–1492. doi: 10.1093/jn/134.6.1487.
    1. Reboul E. Vitamin E bioavailability: mechanisms of intestinal absorption in the spotlight. Antioxidants. 2017;6:E95. doi: 10.3390/antiox6040095.
    1. Carey MC, Small DM. Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch. Intern. Med. 1972;130:506–527. doi: 10.1001/archinte.1972.03650040040005.
    1. Ridlon JM, Kang D-J, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200.
    1. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 1999;159:2647–2658. doi: 10.1001/archinte.159.22.2647.
    1. Łozińska N, Jungnickel C. Importance of conjugation of the bile salt on the mechanism of lipolysis. Molecules. 2021;26:5764. doi: 10.3390/molecules26195764.
    1. Roager HM, et al. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice. Gut Microbes. 2014;5:296–303. doi: 10.4161/gmic.28806.
    1. Lombardo D, Guy O. Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim. Biophys. Acta. 1980;611:147–155. doi: 10.1016/0005-2744(80)90050-9.
    1. West B, et al. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am. J. Kidney Dis. 2008;51:741–747. doi: 10.1053/j.ajkd.2007.12.030.
    1. Barzegar-Amini M, et al. Association between serum vitamin E concentrations and the presence of metabolic syndrome: a population-based cohort study. Acta Biomed. 2021;92:e2021047.
    1. Halder M, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int. J. Mol. Sci. 2019;20:896. doi: 10.3390/ijms20040896.
    1. Mladěnka P, et al. Vitamin K — sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr. Rev. 2022;80:677–698. doi: 10.1093/nutrit/nuab061.
    1. Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr. J. 2012;11:93. doi: 10.1186/1475-2891-11-93.
    1. Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis. 2000;30:298–307.
    1. Schurgers LJ, Vermeer C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim. Biophys. Acta. 2002;1570:27–32. doi: 10.1016/S0304-4165(02)00147-2.
    1. Okano T, et al. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 2008;283:11270–11279. doi: 10.1074/jbc.M702971200.
    1. Price PA, Baukol SA. 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J. Biol. Chem. 1980;255:11660–11663. doi: 10.1016/S0021-9258(19)70182-3.
    1. Fraser JD, Otawara Y, Price PA. 1,25-Dihydroxyvitamin D3 stimulates the synthesis of matrix gamma-carboxyglutamic acid protein by osteosarcoma cells. Mutually exclusive expression of vitamin K-dependent bone proteins by clonal osteoblastic cell lines. J. Biol. Chem. 1988;263:911–916. doi: 10.1016/S0021-9258(19)35439-0.
    1. Fraser JD, Price PA. Induction of Matrix Gla protein synthesis during prolonged 1,25-dihydroxyvitamin D3 treatment of osteosarcoma cells. Calcif. Tissue Int. 1990;46:270–279. doi: 10.1007/BF02555007.
    1. Dowd P, Hershline R, Ham SW, Naganathan S. Vitamin K and energy transduction: a base strength amplification mechanism. Science. 1995;269:1684–1691. doi: 10.1126/science.7569894.
    1. Buitenhuis HC, Soute BA, Vermeer C. Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase. Biochim. Biophys. Acta. 1990;1034:170–175. doi: 10.1016/0304-4165(90)90072-5.
    1. Fraser JD, Price PA. Lung, heart, and kidney express high levels of mRNA for the vitamin K-dependent Matrix Gla protein. Implications for the possible functions of Matrix Gla protein and for the tissue distribution of the gamma-carboxylase. J. Biol. Chem. 1988;263:11033–11036. doi: 10.1016/S0021-9258(18)37912-2.
    1. Moser SC, van der Eerden BCJ. Osteocalcin — a versatile bone-derived hormone. Front. Endocrinol. 2018;9:794. doi: 10.3389/fendo.2018.00794.
    1. Jaminon AMG, et al. Matrix Gla protein is an independent predictor of both intimal and medial vascular calcification in chronic kidney disease. Sci. Rep. 2020;10:6586. doi: 10.1038/s41598-020-63013-8.
    1. Schurgers LJ, et al. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin. J. Am. Soc. Nephrol. 2010;5:568–575. doi: 10.2215/CJN.07081009.
    1. Kurnatowska I, et al. Plasma desphospho-uncarboxylated Matrix Gla protein as a marker of kidney damage and cardiovascular risk in advanced stage of chronic kidney disease. Kidney Blood Press. Res. 2016;41:231–239. doi: 10.1159/000443426.
    1. Liabeuf S, et al. Vascular calcification in patients with type 2 diabetes: the involvement of matrix Gla protein. Cardiovasc. Diabetol. 2014;13:85. doi: 10.1186/1475-2840-13-85.
    1. Mayer O, et al. Desphospho-uncarboxylated Matrix Gla protein is associated with increased aortic stiffness in a general population. J. Hum. Hypertens. 2016;30:418–423. doi: 10.1038/jhh.2015.55.
    1. Fabris A, et al. The relationship between calcium kidney stones, arterial stiffness and bone density: unraveling the stone-bone-vessel liaison. J. Nephrol. 2015;28:549–555. doi: 10.1007/s40620-014-0146-0.
    1. Shavit L, et al. Vascular calcification and bone mineral density in recurrent kidney stone formers. Clin. J. Am. Soc. Nephrol. 2015;10:278–285. doi: 10.2215/CJN.06030614.
    1. Stapleton AM, Timme TL, Ryall RL. Gene expression of prothrombin in the human kidney and its potential relevance to kidney stone disease. Br. J. Urol. 1998;81:666–671. doi: 10.1046/j.1464-410x.1998.00620.x.
    1. Ogasawara K, Van Reen R, Ako H. γ-Carboxyglutamic acid, a component in human pediatric bladder stones containing calcium salts. J. Urol. 1987;137:349–352. doi: 10.1016/S0022-5347(17)44021-3.
    1. Lian JB, Prien EL, Glimcher MJ, Gallop PM. The presence of protein-bound gamma-carboxyglutamic acid in calcium-containing renal calculi. J. Clin. Invest. 1977;59:1151–1157. doi: 10.1172/JCI108739.
    1. Grover PK, Ryall RL. Inhibition of calcium oxalate crystal growth and aggregation by prothrombin and its fragments in vitro: relationship between protein structure and inhibitory activity. Eur. J. Biochem. 1999;263:50–56. doi: 10.1046/j.1432-1327.1999.00448.x.
    1. Kurutz JW, Carvalho M, Nakagawa Y. Nephrocalcin isoforms coat crystal surfaces and differentially affect calcium oxalate monohydrate crystal morphology, growth, and aggregation. J. Cryst. Growth. 2003;255:392–402. doi: 10.1016/S0022-0248(03)01308-3.
    1. Nakagawa Y, et al. Urine glycoprotein crystal growth inhibitors. Evidence for a molecular abnormality in calcium oxalate nephrolithiasis. J. Clin. Invest. 1985;76:1455–1462. doi: 10.1172/JCI112124.
    1. Nakagawa Y, Ahmed M, Hall SL, Deganello S, Coe FL. Isolation from human calcium oxalate renal stones of nephrocalcin, a glycoprotein inhibitor of calcium oxalate crystal growth. Evidence that nephrocalcin from patients with calcium oxalate nephrolithiasis is deficient in gamma-carboxyglutamic acid. J. Clin. Invest. 1987;79:1782–1787. doi: 10.1172/JCI113019.
    1. Dalmeijer GW, et al. Circulating Matrix Gla protein is associated with coronary artery calcification and vitamin K status in healthy women. J. Nutr. Biochem. 2013;24:624–628. doi: 10.1016/j.jnutbio.2012.02.012.
    1. Akbulut AC, et al. Vitamin K2 needs an RDI separate from vitamin K1. Nutrients. 2020;12:1852. doi: 10.3390/nu12061852.
    1. Puzantian H, et al. Circulating dephospho-uncarboxylated Matrix Gla-protein Is associated With kidney dysfunction and arterial stiffness. Am. J. Hypertens. 2018;31:988–994. doi: 10.1093/ajh/hpy079.
    1. Chirinos JA, et al. Aldosterone, inactive matrix gla-protein, and large artery stiffness in hypertension. J. Am. Soc. Hypertens. 2018;12:681–689. doi: 10.1016/j.jash.2018.06.018.
    1. Jespersen T, et al. Uncarboxylated matrix Gla-protein: a biomarker of vitamin K status and cardiovascular risk. Clin. Biochem. 2020;83:49–56. doi: 10.1016/j.clinbiochem.2020.05.005.
    1. Gao B, et al. Matrix Gla protein expression in NRK-52E cells exposed to oxalate and calcium oxalate monohydrate crystals. Urol. Int. 2010;85:237–241. doi: 10.1159/000314947.
    1. Khan A, Wang W, Khan SR. Calcium oxalate nephrolithiasis and expression of Matrix Gla protein in the kidneys. World J. Urol. 2014;32:123–130. doi: 10.1007/s00345-013-1050-2.
    1. Goiko M, et al. Peptides of Matrix Gla protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals. PLoS One. 2013;8:e80344. doi: 10.1371/journal.pone.0080344.
    1. Li Y, et al. Vitamin K1 inhibition of renal crystal formation through Matrix Gla protein in the kidney. Kidney Blood Press. Res. 2019;44:1392–1403. doi: 10.1159/000503300.
    1. Wei F-F, et al. The risk of nephrolithiasis is causally related to inactive Matrix Gla protein, a marker of vitamin K status: a Mendelian randomization study in a Flemish population. Nephrol. Dial. Transpl. 2018;33:514–522. doi: 10.1093/ndt/gfx014.
    1. Castiglione V, et al. Evaluation of inactive Matrix-Gla-protein (MGP) as a biomarker for incident and recurrent kidney stones. J. Nephrol. 2020;33:101–107. doi: 10.1007/s40620-019-00623-0.
    1. Gao B, et al. A polymorphism of Matrix Gla protein gene is associated with kidney stones. J. Urol. 2007;177:2361–2365. doi: 10.1016/j.juro.2007.01.118.
    1. Murugesan A, Kumar L, Janarthanan P. Status of single nucleotide polymorphism of Matrix Gla protein gene (rs4236) in nephrolithiasis: a preliminary study in Indian population. Int. J. Appl. Basic. Med. Res. 2018;8:38–41. doi: 10.4103/ijabmr.IJABMR_420_16.
    1. Lu X, et al. A polymorphism of Matrix Gla protein gene is associated with kidney stone in the Chinese Han population. Gene. 2012;511:127–130. doi: 10.1016/j.gene.2012.09.112.
    1. Dalmeijer GW, et al. The effect of menaquinone-7 supplementation on circulating species of Matrix Gla protein. Atherosclerosis. 2012;225:397–402. doi: 10.1016/j.atherosclerosis.2012.09.019.
    1. Knapen MHJ, et al. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb. Haemost. 2015;113:1135–1144. doi: 10.1160/TH14-08-0675.
    1. Westenfeld R, et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am. J. Kidney Dis. 2012;59:186–195. doi: 10.1053/j.ajkd.2011.10.041.
    1. Theuwissen E, et al. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br. J. Nutr. 2012;108:1652–1657. doi: 10.1017/S0007114511007185.
    1. Nakamura E, Aoki M, Watanabe F, Kamimura A. Low-dose menaquinone-4 improves γ-carboxylation of osteocalcin in young males: a non-placebo-controlled dose–response study. Nutr. J. 2014;13:85. doi: 10.1186/1475-2891-13-85.
    1. Inaba N, Sato T, Yamashita T. Low-dose daily intake of vitamin K2 (menaquinone-7) improves osteocalcin γ-carboxylation: a double-blind, randomized controlled trials. J. Nutr. Sci. Vitaminol. 2015;61:471–480. doi: 10.3177/jnsv.61.471.
    1. Nakagawa K, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010;468:117–121. doi: 10.1038/nature09464.
    1. Fernandez F, Collins MD. Vitamin K composition of anaerobic gut bacteria. FEMS Microbiol. Lett. 1987;41:175–180. doi: 10.1111/j.1574-6968.1987.tb02191.x.
    1. Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y. Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2007;57:941–946. doi: 10.1099/ijs.0.64778-0.
    1. Hiratsuka T, et al. An alternative menaquinone biosynthetic pathway operating in microorganisms. Science. 2008;321:1670–1673. doi: 10.1126/science.1160446.
    1. Ravcheev DA, Thiele I. Genomic analysis of the human gut microbiome suggests novel enzymes involved in quinone biosynthesis. Front. Microbiol. 2016;7:128. doi: 10.3389/fmicb.2016.00128.
    1. Fenn K, et al. Quinones are growth factors for the human gut microbiota. Microbiome. 2017;5:161. doi: 10.1186/s40168-017-0380-5.
    1. Karl JP, et al. Fecal menaquinone profiles of overweight adults are associated with gut microbiota composition during a gut microbiota-targeted dietary intervention. Am. J. Clin. Nutr. 2015;102:84–93. doi: 10.3945/ajcn.115.109496.
    1. Karl JP, et al. Fecal concentrations of bacterially derived vitamin K forms are associated with gut microbiota composition but not plasma or fecal cytokine concentrations in healthy adults. Am. J. Clin. Nutr. 2017;106:1052–1061. doi: 10.3945/ajcn.117.155424.
    1. Ozaki D, Kubota R, Maeno T, Abdelhakim M, Hitosugi N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos. Int. 2021;32:145–156. doi: 10.1007/s00198-020-05728-y.
    1. Wagatsuma K, et al. Diversity of gut microbiota affecting serum level of undercarboxylated osteocalcin in patients with Crohn’s disease. Nutrients. 2019;11:1541. doi: 10.3390/nu11071541.
    1. Conly J, Stein K. Reduction of vitamin K2 concentrations in human liver associated with the use of broad spectrum antimicrobials. Clin. Invest. Med. 1994;17:531–539.
    1. Luna M, et al. Components of the gut microbiome that influence bone tissue-level strength. J. Bone Min. Res. 2021;36:1823–1834. doi: 10.1002/jbmr.4341.

Source: PubMed

3
購読する