Does airway pressure release ventilation offer new hope for treating acute respiratory distress syndrome?

Jiangli Cheng, Aijia Ma, Meiling Dong, Yongfang Zhou, Bo Wang, Yang Xue, Peng Wang, Jing Yang, Yan Kang, Jiangli Cheng, Aijia Ma, Meiling Dong, Yongfang Zhou, Bo Wang, Yang Xue, Peng Wang, Jing Yang, Yan Kang

Abstract

Mechanical ventilation (MV) is an essential life support method for patients with acute respiratory distress syndrome (ARDS), which is one of the most common critical illnesses with high mortality in the intensive care unit (ICU). A lung-protective ventilation strategy based on low tidal volume (LTV) has been recommended since a few years; however, as this did not result in a significant decrease of ARDS-related mortality, a more optimal ventilation mode was required. Airway pressure release ventilation (APRV) is an old method defined as a continuous positive airway pressure (CPAP) with a brief intermittent release phase based on the open lung concept; it also perfectly fits the ARDS treatment principle. Despite this, APRV has not been widely used in the past, rather only as a rescue measure for ARDS patients who are difficult to oxygenate. Over recent years, with an increased understanding of the pathophysiology of ARDS, APRV has been reproposed to improve patient prognosis. Nevertheless, this mode is still not routinely used in ARDS patients given its vague definition and complexity. Consequently, in this paper, we summarize the studies that used APRV in ARDS, including adults, children, and animals, to illustrate the settings of parameters, effectiveness in the population, safety (especially in children), incidence, and mechanism of ventilator-induced lung injury (VILI) and effects on extrapulmonary organs. Finally, we found that APRV is likely associated with improvement in ARDS outcomes, and does not increase injury to the lungs and other organs, thereby indicating that personalized APRV settings may be the new hope for ARDS treatment.

Keywords: Acute respiratory distress syndrome; Airway pressure release ventilation; Organ protection; Outcome; Ventilator-induced lung injury.

© 2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Medical Association.

Figures

Figure 1
Figure 1
Pressure (longitudinal axis) and time (horizontal axis) curve in APRV. Two mandatory breaths (without SB, switched by time) and two intermittent mandatory breaths (with SB, triggered by flow or pressure, switched by both time and SB) are shown. Black arrows represent high pressure (Phigh), low pressure (Plow), and mean airway pressure (Pmean). Red arrow represents SB. Blue fontin the horizontal axis represents high pressure time (Thigh) and low-pressure time (Tlow). APRV: Airway pressure release ventilation; SB: Spontaneous breathing.

References

    1. Fan E., Del Sorbo L., Goligher E.C., Hodgson C.L., Munshi L., Walkey A.J., et al. An official American thoracic society/European society of intensive care medicine/society of critical care medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–1263. doi: 10.1164/rccm.201703-0548ST.
    1. Kuchnicka K., Maciejewski D. Ventilator-associated lung injury. Anaesthesiol Intensive Ther. 2013;45(3):164–170. doi: 10.5603/ait.2013.0034.
    1. Meade M.O., Cook D.J., Guyatt G.H., Slutsky A.S., Arabi Y.M., Cooper D.J., et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–645. doi: 10.1001/jama.299.6.637.
    1. Gattinoni L., Protti A., Caironi P., Carlesso E. Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med. 2010;38(10 Suppl):S539–S548. doi: 10.1097/CCM.0b013e3181f1fcf7.
    1. Allen G.B., Pavone L.A., DiRocco J.D., Bates J.H., Nieman G.F. Pulmonary impedance and alveolar instability during injurious ventilation in rats. J Appl Physiol. 2005;99(2):723–730. doi: 10.1152/japplphysiol.01339.2004.
    1. Albert S.P., DiRocco J., Allen G.B., Bates J.H., Lafollette R., Kubiak B.D., et al. The role of time and pressure on alveolar recruitment. J Appl Physiol. 2009;106(3):757–765. doi: 10.1152/japplphysiol.90735.2008.
    1. Downs J.B., Stock M.C. Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med. 1987;15(5):459–461. doi: 10.1097/00003246-198705000-00001.
    1. Zhou Y., Jin X., Lv Y., Wang P., Yang Y., Liang G., et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017;43(11):1648–1659. doi: 10.1007/s00134-017-4912-z.
    1. Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18(6):319–321. doi: 10.1007/bf01694358.
    1. Amato M.B., Barbas C.S., Medeiros D.M., Schettino Gde P., Lorenzi Filho G., Kairalla R.A., et al. Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med. 1995;152(6 Pt 1):1835–1846. doi: 10.1164/ajrccm.152.6.8520744.
    1. Dries D.J., Marini J.J. Airway pressure release ventilation. J Burn Care Res. 2009;30(6):929–936. doi: 10.1097/BCR.0b013e3181bfb84c.
    1. Chatburn R.L. Understanding mechanical ventilators. Expert Rev Respir Med. 2010;4(6):809–819. doi: 10.1586/ers.10.66.
    1. Hess D.R., Kacmarek R.M. McGraw Hill Education, Medical Publishing Division; New York: 2014. Essentials of mechanical ventilation; pp. 84–85.
    1. Daoud E., Farag H., Chatburn R. Airway pressure release ventilation: what do we know? Respir Care. 2012;57(2):282–292. doi: 10.4187/respcare.01238.
    1. Seymour C., Frazer M., Reilly P., Fuchs B. Airway pressure release and biphasic intermittent positive airway pressure ventilation: are they ready for prime time? J Trauma. 2007;62(5):1298–1308. doi: 10.1097/TA.0b013e31803c562f. discussion 308–9.
    1. Yadav H., Thompson B.T., Gajic O. Fifty years of research in ARDS. Is acute respiratory distress syndrome a preventable disease? Am J Respir Crit Care Med. 2017;195(6):725–736. doi: 10.1164/rccm.201609-1767CI.
    1. Jain S.V., Kollisch-Singule M., Sadowitz B., Dombert L., Satalin J., Andrews P., et al. The 30-year evolution of airway pressure release ventilation (APRV) Intensive Care Med Exp. 2016;4(1):11. doi: 10.1186/s40635-016-0085-2.
    1. Mallory P., Cheifetz I. A comprehensive review of the use and understanding of airway pressure release ventilation. Expert Rev Respir Med. 2020;14(3):307–315. doi: 10.1080/17476348.2020.1708719.
    1. Nieman G., Al-Khalisy H., Kollisch-Singule M., Satalin J., Blair S., Trikha G., et al. A physiologically informed strategy to effectively open, stabilize, and protect the acutely injured lung. Front Physiol. 2020;11:227. doi: 10.3389/fphys.2020.00227.
    1. Borges J., Okamoto V., Matos G., Caramez M., Arantes P., Barros F., et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(3):268–278. doi: 10.1164/rccm.200506-976OC.
    1. Fan E., Wilcox M., Brower R., Stewart T., Mehta S., Lapinsky S., et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178(11):1156–1163. doi: 10.1164/rccm.200802-335OC.
    1. Cui Y., Cao R., Wang Y., Li G. Lung recruitment maneuvers for ARDS patients: a systematic review and meta-analysis. Respiration. 2020;99(3):264–276. doi: 10.1159/000501045.
    1. Lu J., Wang X., Chen M., Cheng L., Chen Q., Jiang H., et al. An open lung strategy in the management of acute respiratory distress syndrome: a systematic review and meta-analysis. Shock. 2017;48(1):43–53. doi: 10.1097/shk.0000000000000822.
    1. Rose L. Clinical application of ventilator modes: ventilatory strategies for lung protection. Aust Crit Care. 2010;23(2):71–80. doi: 10.1016/j.aucc.2010.03.003.
    1. Frawley P.M., Habashi N.M. Airway pressure release ventilation and pediatrics: theory and practice. Crit Care Nurs Clin North Am. 2004;16(3):337–348. doi: 10.1016/j.ccell.2004.04.003. viii.
    1. Lim J., Litton E., Robinson H., Das Gupta M. Characteristics and outcomes of patients treated with airway pressure release ventilation for acute respiratory distress syndrome: a retrospective observational study. J Crit Care. 2016;34:154–159. doi: 10.1016/j.jcrc.2016.03.002.
    1. Räsänen J., Cane R.D., Downs J.B., Hurst J.M., Jousela I.T., Kirby R.R., et al. Airway pressure release ventilation during acute lung injury: a prospective multicenter trial. Crit Care Med. 1991;19(10):1234–1241. doi: 10.1097/00003246-199110000-00004.
    1. Song S., Tian H., Yang X., Hu Z. [The clinical effect of airway pressure release ventilation for acute lung injury/acute respiratory distress syndrome]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2016;28(1):15–21. 10.3760/cma.j.issn.2095-4352.2016.01.004.
    1. Li J.Q., Li N., Han G.J., Pan C.G., Zhang Y.H., Shi X.Z., et al. Clinical research about airway pressure release ventilation for moderate to severe acute respiratory distress syndrome. Eur Rev Med Pharmacol Sci. 2016;20(12):2634–2641.
    1. Kaplan L.J., Bailey H., Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221–226. doi: 10.1186/cc1027.
    1. Putensen C., Zech S., Wrigge H., Zinserling J., Stüber F., Von Spiegel T., et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164(1):43–49. doi: 10.1164/ajrccm.164.1.2001078.
    1. Liu L., Tanigawa K., Ota K., Tamura T., Yamaga S., Kida Y., et al. Practical use of airway pressure release ventilation for severe ARDS – a preliminary report in comparison with a conventional ventilatory support. Hiroshima J Med Sci. 2009;58(4):83–88.
    1. Hanna K., Seder C.W., Weinberger J.B., Sills P.A., Hagan M., Janczyk R.J. Airway pressure release ventilation and successful lung donation. Arch Surg. 2011;146(3):325–328. doi: 10.1001/archsurg.2011.35.
    1. Gattinoni L., Coppola S., Cressoni M., Busana M., Rossi S., Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(10):1299–1300. doi: 10.1164/rccm.202003-0817LE.
    1. Gattinoni L., Chiumello D., Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020;24(1):154. doi: 10.1186/s13054-020-02880-z.
    1. Chiumello D., Busana M., Coppola S., Romitti F., Formenti P., Bonifazi M., et al. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Med. 2020;46(12):2187–2196. doi: 10.1007/s00134-020-06281-2.
    1. Kim C.H. SARS-CoV-2 evolutionary adaptation toward host entry and recognition of receptor O-acetyl sialylation in virus-host interaction. Int J Mol Sci. 2020;21(12):4549. doi: 10.3390/ijms21124549.
    1. Jose R.J., Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46–e47. doi: 10.1016/s2213-2600(20)30216-2.
    1. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355–362. doi: 10.1038/s41577-020-0331-4.
    1. Mahmoud O., Patadia D., Salonia J. Utilization of airway pressure release ventilation as a rescue strategy in COVID-19 patients: a retrospective analysis. J Intensive Care Med. 2021;36(10):1194–1200. doi: 10.1177/08850666211030899.
    1. Zorbas J.S., Ho K.M., Litton E., Wibrow B., Fysh E., Anstey M.H. Airway pressure release ventilation in mechanically ventilated patients with COVID-19: a multicenter observational study. Acute Crit Care. 2021;36(2):143–150. doi: 10.4266/acc.2021.00017.
    1. Varpula T., Pettilä V., Nieminen H., Takkunen O. Airway pressure release ventilation and prone positioning in severe acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2001;45(3):340–344. doi: 10.1034/j.1399-6576.2001.045003340.x.
    1. Varpula T., Jousela I., Niemi R., Takkunen O., Pettilä V. Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury. Acta Anaesthesiol Scand. 2003;47(5):516–524. doi: 10.1034/j.1399-6576.2003.00109.x.
    1. Lee S.J., Lee Y., Kong A., Ng S.Y. Airway pressure release ventilation combined with prone positioning in acute respiratory distress syndrome: old tricks new synergy: a case series. A A Pract. 2020;14(8):e01231. doi: 10.1213/XAA.0000000000001231.
    1. Rozé H., Richard J.M., Thumerel M., Ouattara A. Spontaneous breathing (SB) using airway pressure-release ventilation (APRV) in patients under extracorporeal-membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS) Intensive Care Med. 2017;43(12):1919–1920. doi: 10.1007/s00134-017-4892-z.
    1. Dong M., Cheng J., Wang B., Zhou Y., Kang Y. Airway pressure release ventilation: is it really different in adults and children? Am J Respir Crit Care Med. 2019;200(6):788–789. doi: 10.1164/rccm.201901-0179LE.
    1. Schultz T.R., R.A.T.-Costarino A.T.J., Durning S.M., Napoli L.A., Schears G., Godinez R.I., et al. Airway pressure release ventilation in pediatrics. Pediatr Crit Care Med. 2001;2(3):243–246. doi: 10.1097/00130478-200107000-00010.
    1. Lalgudi Ganesan S., Jayashree M., Chandra Singhi S., Bansal A. Airway pressure release ventilation in pediatric acute respiratory distress syndrome. A randomized controlled trial. Am J Respir Crit Care Med. 2018;198(9):1199–1207. doi: 10.1164/rccm.201705-0989OC.
    1. Froese A.B., Kinsella J.P. High-frequency oscillatory ventilation: lessons from the neonatal/pediatric experience. Crit Care Med. 2005;33(3 Suppl):S115–S121. doi: 10.1097/01.ccm.0000155923.97849.6d.
    1. Ning B., Liang L., Lyu Y., Yu Y., Li B. The effect of high-frequency oscillatory ventilation or airway pressure release ventilation on children with acute respiratory distress syndrome as a rescue therapy. Transl Pediatr. 2020;9(3):213–220. doi: 10.21037/tp-19-178.
    1. Yehya N., Topjian A.A., Lin R., Berg R.A., Thomas N.J., Friess S.H. High frequency oscillation and airway pressure release ventilation in pediatric respiratory failure. Pediatr Pulmonol. 2014;49(7):707–715. doi: 10.1002/ppul.22853.
    1. Neumann P., Wrigge H., Zinserling J., Hinz J., Maripuu E., Andersson L., et al. Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med. 2005;33(5):1090–1095. doi: 10.1097/01.ccm.0000163226.34868.0a.
    1. Hering R., Zinserling J., Wrigge H., Varelmann D., Berg A., Kreyer S., et al. Effects of spontaneous breathing during airway pressure release ventilation on respiratory work and muscle blood flow in experimental lung injury. Chest. 2005;128(4):2991–2998. doi: 10.1378/chest.128.4.2991.
    1. Roy S., Habashi N., Sadowitz B., Andrews P., Ge L., Wang G., et al. Early airway pressure release ventilation prevents ARDS – a novel preventive approach to lung injury. Shock. 2013;39(1):28–38. doi: 10.1097/SHK.0b013e31827b47bb.
    1. Kollisch-Singule M., Emr B., Smith B., Roy S., Jain S., Satalin J., et al. Mechanical breath profile of airway pressure release ventilation: the effect on alveolar recruitment and microstrain in acute lung injury. JAMA Surg. 2014;149(11):1138–1145. doi: 10.1001/jamasurg.2014.1829.
    1. Arrindell E.L., Krishnan R., van der Merwe M., Caminita F., Howard S.C., Zhang J., et al. Lung volume recruitment in a preterm pig model of lung immaturity. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1088–L1092. doi: 10.1152/ajplung.00292.2015.
    1. Kollisch-Singule M., Jain S.V., Satalin J., Andrews P., Searles Q., Liu Z., et al. Limiting ventilator-associated lung injury in a preterm porcine neonatal model. J Pediatr Surg. 2017;52(1):50–55. doi: 10.1016/j.jpedsurg.2016.10.020.
    1. Han G.J., Li J.Q., Pan C.G., Sun J.X., Shi Z.X., Xu J.Y., et al. Experimental study of airway pressure release ventilation in the treatment of acute respiratory distress syndrome. Exp Ther Med. 2017;14(3):1941–1946. doi: 10.3892/etm.2017.4718.
    1. Xia J., Sun B., He H., Zhang H., Wang C., Zhan Q. Effect of spontaneous breathing on ventilator-induced lung injury in mechanically ventilated healthy rabbits: a randomized, controlled, experimental study. Crit Care. 2011;15(5):R244. doi: 10.1186/cc10502.
    1. Albert S., Kubiak B.D., Vieau C.J., Roy S.K., DiRocco J., Gatto L.A., et al. Comparison of “open lung” modes with low tidal volumes in a porcine lung injury model. J Surg Res. 2011;166(1):e71–e81. doi: 10.1016/j.jss.2010.10.022.
    1. Roy S., Sadowitz B., Andrews P., Gatto L.A., Marx W., Ge L., et al. Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: a novel timing-based ventilatory intervention to avert lung injury. J Trauma Acute Care Surg. 2012;73(2):391–400. doi: 10.1097/TA.0b013e31825c7a82.
    1. Emr B., Gatto L.A., Roy S., Satalin J., Ghosh A., Snyder K., et al. Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs. JAMA Surg. 2013;148(11):1005–1012. doi: 10.1001/jamasurg.2013.3746.
    1. Ak A.K., Anjum F. StatPearls. Treasure island. StatPearls Publishing; FL: 2021. Ventilator-induced lung injury (VILI)
    1. Slutsky A.S., Ranieri V.M. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–2136. doi: 10.1056/NEJMra1208707.
    1. Roy S.K., Emr B., Sadowitz B., Gatto L.A., Ghosh A., Satalin J.M., et al. Preemptive application of airway pressure release ventilation prevents development of acute respiratory distress syndrome in a rat traumatic hemorrhagic shock model. Shock. 2013;40(3):210–216. doi: 10.1097/SHK.0b013e31829efb06.
    1. Kollisch-Singule M., Emr B., Smith B., Ruiz C., Roy S., Meng Q., et al. Airway pressure release ventilation reduces conducting airway micro-strain in lung injury. J Am Coll Surg. 2014;219(5):968–976. doi: 10.1016/j.jamcollsurg.2014.09.011.
    1. Menk M., Estenssoro E., Sahetya S.K., Neto A.S., Sinha P., Slutsky A.S., et al. Current and evolving standards of care for patients with ARDS. Intensive Care Med. 2020;46(12):2157–2167. doi: 10.1007/s00134-020-06299-6.
    1. Ge H., Lin L., Xu Y., Xu P., Duan K., Pan Q., et al. Airway pressure release ventilation mode improves circulatory and respiratory function in patients after cardiopulmonary bypass, a randomized trial. Front Physiol. 2021;12 doi: 10.3389/fphys.2021.684927.
    1. Marik P.E., Young A., Sibole S., Levitov A. The effect of APRV ventilation on ICP and cerebral hemodynamics. Neurocrit Care. 2012;17(2):219–223. doi: 10.1007/s12028-012-9739-4.
    1. Fletcher J.J., Wilson T.J., Rajajee V., Davidson S.B., Walsh J.C. Changes in therapeutic intensity level following airway pressure release ventilation in severe traumatic brain injury. J Intensive Care Med. 2018;33(3):196–202. doi: 10.1177/0885066616669315.
    1. Edgerton C.A., Leon S.M., Hite M.A., Kalhorn S.P., Scott L.A., Eriksson E.A. Airway pressure release ventilation does not increase intracranial pressure in patients with traumatic brain injury with poor lung compliance. J Crit Care. 2019;50:118–121. doi: 10.1016/j.jcrc.2018.11.034.
    1. Darmon M., Clec'h C., Adrie C., Argaud L., Allaouchiche B., Azoulay E., et al. Acute respiratory distress syndrome and risk of AKI among critically ill patients. Clin J Am Soc Nephrol. 2014;9(8):1347–1353. doi: 10.2215/cjn.08300813.
    1. Han H., Li J., Chen D., Zhang F., Wan X., Cao C. A clinical risk scoring system of acute respiratory distress syndrome-induced acute kidney injury. Med Sci Monit. 2019;25:5606–5612. doi: 10.12659/msm.915905.
    1. Hering R., Peters D., Zinserling J., Wrigge H., von Spiegel T., Putensen C. Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med. 2002;28(10):1426–1433. doi: 10.1007/s00134-002-1442-z.
    1. Hering R., Viehöfer A., Zinserling J., Wrigge H., Kreyer S., Berg A., et al. Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology. 2003;99(5):1137–1144. doi: 10.1097/00000542-200311000-00021.
    1. Jenkins J.K., Gebergzabher Y.D., Island E.R., Habashi N., Hauser G.J. Use of airway pressure release ventilation in a child with refractory hepatopulmonary syndrome after liver transplantation. Pediatr Transplant. 2013;17(3):E81–E87. doi: 10.1111/petr.12058.
    1. Hering R., Bolten J.C., Kreyer S., Berg A., Wrigge H., Zinserling J., et al. Spontaneous breathing during airway pressure release ventilation in experimental lung injury: effects on hepatic blood flow. Intensive Care Med. 2008;34(3):523–527. doi: 10.1007/s00134-007-0957-8.
    1. Varpula T., Valta P., Niemi R., Takkunen O., Hynynen M., Pettilä V.V. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2004;48(6):722–731. doi: 10.1111/j.0001-5172.2004.00411.x.
    1. Yoshida T., Rinka H., Kaji A., Yoshimoto A., Arimoto H., Miyaichi T., et al. The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg. 2009;109(6):1892–1900. doi: 10.1213/ANE.0b013e3181bbd918.
    1. Sydow M., Burchardi H., Ephraim E., Zielmann S., Crozier T.A. Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med. 1994;149(6):1550–1556. doi: 10.1164/ajrccm.149.6.8004312.
    1. Dart B.W., Maxwell R.A., Richart C.M., Brooks D.K., Ciraulo D.L., Barker D.E., et al. Preliminary experience with airway pressure release ventilation in a trauma/surgical intensive care unit. J Trauma. 2005;59(1):71–76. doi: 10.1097/00005373-200507000-00010.
    1. Kamath S.S., Super D.M., Mhanna M.J. Effects of airway pressure release ventilation on blood pressure and urine output in children. Pediatr Pulmonol. 2010;45(1):48–54. doi: 10.1002/ppul.21058.
    1. Yener N., Udurgucu M. Airway pressure release ventilation as a rescue therapy in pediatric acute respiratory distress syndrome. Indian J Pediatr. 2020;87(11):905–909. doi: 10.1007/s12098-020-03235-w.
    1. Kawaguchi A., Guerra G.G., Duff J.P., Ueta I., Fukushima R. Hemodynamic changes in child acute respiratory distress syndrome with airway pressure release ventilation: a case series. Clin Respir J. 2015;9(4):423–429. doi: 10.1111/crj.12155.

Source: PubMed

3
購読する