Promoting Successful Cognitive Aging: A Ten-Year Update

Taylor J Krivanek, Seth A Gale, Brittany M McFeeley, Casey M Nicastri, Kirk R Daffner, Taylor J Krivanek, Seth A Gale, Brittany M McFeeley, Casey M Nicastri, Kirk R Daffner

Abstract

A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.

Keywords: Cognitive aging; cognitive decline; cognitive reserve; dementia; healthy aging; healthy lifestyle; mild cognitive impairment; preventive medicine; risk reduction.

Conflict of interest statement

Authors’ disclosures available online (https://www.j-alz.com/manuscript-disclosures/20-1462r1).

Figures

Fig. 1
Fig. 1
Model of cognitive decline. The black line represents the trajectory of cognitive decline due to neurodegenerative disease. The yellow dashed line represents the threshold for clinical dementia, i.e., the inability to manage activities of daily living. The red line represents the impact of additional injuries to the brain, which can decrease brain reserve and cause a leftward shift of the trajectory of cognitive decline, leading patients to cross the threshold for clinical dementia earlier. The green line represents the effect of increased cognitive and brain reserve, which can cause a rightward shift in the trajectory of cognitive decline, leading patients to cross the threshold for clinical dementia later. These principles involving theoretical shifts in the trajectory of cognitive decline also apply to adults without neurodegenerative disease, though the initial downward trajectory is much less steep.

References

    1. Daffner KR (2010) Promoting successful cognitive aging: A comprehensive review. J Alzheimers Dis 19, 1101–1122.
    1. Institute of Medicine (2015) Cognitive aging: Progress in understanding and opportunities for action, The National Academies Press, Washington DC.
    1. Alzheimer’s Association, 10 Ways to Love Your Brain, , Accessed on 9 September 2020.
    1. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446.
    1. American Heart Association, My Life Check | Life’s Simple 7, , Last updated 2 May 2018, Accessed on 5 September 2019.
    1. National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Board on Health Sciences Policy, Committee on Preventing Dementia and Cognitive Impairment (2017) Preventing Cognitive Decline and Dementia: A Way Forward, National Academies Press (US), Washington (DC).
    1. World Health Organization (2019) Risk reduction of cognitive decline and dementia: WHO guidelines, World Health Organization, Geneva.
    1. United Nations, Department of Economic and Social Affairs, Population Division (2019) World Population Prospects 2019: Highlights, United Nations, New York.
    1. Page KS, Hayslip B, Wadsworth D, Allen PA (2019) Development of a multidimensional measure to examine fear of dementia. Int J Aging Hum Dev 89, 187–205.
    1. Ostergren JE, Heeringa SG, Leon CFM de, Connell CM, Roberts JS (2017) The influence of psychosocial and cognitive factors on perceived threat of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 32, 289–299.
    1. French SL, Floyd M, Wilkins S, Osato S (2012) The Fear of Alzheimer’s Disease Scale: A new measure designed to assess anticipatory dementia in older adults. Int J Geriatr Psychiatry 27, 521–528.
    1. Molden J, Maxfield M (2016) The impact of aging stereotypes on dementia worry. Eur J Ageing 14, 29–37.
    1. Alzheimer’s Association (2020) Alzheimer’s disease facts and figures. Alzheimers Dement 16, 391–460.
    1. Mol M, Carpay M, Ramakers I, Rozendaal N, Verhey F, Jolles J (2007) The effect of perceived forgetfulness on quality of life in older adults; a qualitative review. Int J Geriatr Psychiatry 22, 393–400.
    1. Corner L, Bond J (2004) Being at risk of dementia: Fears and anxieties of older adults. J Aging Stud 18, 143–155.
    1. Gale SA, Acar D, Daffner KR (2018) Dementia. Am J Med 131, 1161–1169.
    1. Petersen RC (2016) Mild cognitive impairment. Continuum Minneap Minn 22, 404–418.
    1. Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, Gronseth GS, Marson D, Pringsheim T, Day GS, Sager M, Stevens J, Rae-Grant A (2018) Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 90, 126–135.
    1. World Health Organization (2018) Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016, Geneva, World Health Organization.
    1. El-Hayek YH, Wiley RE, Khoury CP, Daya RP, Ballard C, Evans AR, Karran M, Molinuevo JL, Norton M, Atri A (2019) Tip of the iceberg: Assessing the global socioeconomic costs of Alzheimer’s disease and related dementias and strategic implications for stakeholders. J Alzheimers Dis 70, 323–341.
    1. Kelley AS, McGarry K, Gorges R, Skinner JS (2015) The burden of health care costs for patients with dementia in the last 5 years of life. Ann Intern Med 163, 729.
    1. Al-Sari UA, Tobias JH, Archer H, Clark EM (2017) Do subjective memory complaints predict falls, fractures and healthcare utilization? A two-year prospective study based on a cohort of older women recruited from primary care. Int J Geriatr Psychiatry 32, 968–976.
    1. Andrews JS, Desai U, Kirson NY, Enloe CJ, Ristovska L, King S, Birnbaum HG, Fleisher AS, Ye W, Kahle-Wrobleski K (2016) Functional limitations and health care resource utilization for individuals with cognitive impairment without dementia: Findings from a United States population-based survey. Alzheimers Dement (Amst) 6, 65–74.
    1. Zhu CW, Cosentino S, Ornstein K, Gu Y, Andrews H, Stern Y (2015) Use and cost of hospitalization in dementia: Longitudinal results from a community-based study. Int J Geriatr Psychiatry 30, 833–841.
    1. Zhu CW, Scarmeas N, Ornstein K, Albert M, Brandt J, Blacker D, Sano M, Stern Y (2015) Healthcare use and cost in dementia caregivers: Longitudinal results from the Predictors Caregiver Study. Alzheimers Dement 11, 444–454.
    1. Tom SE, Hubbard RA, Crane PK, Haneuse SJ, Bowen J, McCormick WC, McCurry S, Larson EB (2014) Characterization of dementia and Alzheimer’s disease in an older population: Updated incidence and life expectancy with and without dementia. Am J Public Health 105, 408–413.
    1. Pimouguet C, Rizzuto D, Fastbom J, Lagergren M, Fratiglioni L, Xu W (2016) Influence of incipient dementia on hospitalization for primary care sensitive conditions: A population-based cohort study. J Alzheimers Dis 52, 213–222.
    1. Goren A, Montgomery W, Kahle-Wrobleski K, Nakamura T, Ueda K (2016) Impact of caring for persons with Alzheimer’s disease or dementia on caregivers’ health outcomes: Findings from a community based survey in Japan. BMC Geriatr 16, 122.
    1. Stites SD, Harkins K, Rubright JD, Karlawish J (2018) Relationships between cognitive complaints and quality of life in older adults with mild cognitive impairment, mild Alzheimer disease dementia, and normal cognition. Alzheimer Dis Assoc Disord 32, 276–283.
    1. Brodaty H, Connors MH, Xu J, Woodward M, Ames D, PRIME study group (2015) The course of neuropsychiatric symptoms in dementia: A 3-year longitudinal study. J Am Med Dir Assoc 16, 380–387.
    1. Leibson CL, Long KH, Ransom JE, Roberts RO, Hass SL, Duhig AM, Smith CY, Emerson JA, Pankratz VS, Petersen RC (2015) Direct medical costs and source of cost differences across the spectrum of cognitive decline: A population-based study. Alzheimers Dement 11, 917–932.
    1. Ton TGN, DeLeire T, May SG, Hou N, Tebeka MG, Chen E, Chodosh J (2017) The financial burden and health care utilization patterns associated with amnestic mild cognitive impairment. Alzheimers Dement 13, 217–224.
    1. Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88, 1337–1342.
    1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3, 186–191.
    1. Glisky EL (2007) Changes in cognitive function in human aging. In Brain Aging: Models, Methods, and Mechanisms, Riddle DR, ed. CRC Press/Taylor & Francis, Boca Raton, FL, pp. 3–21.
    1. Smith GE (2016) Healthy cognitive aging and dementia prevention. Am Psychol 71, 268–275.
    1. Nyberg L, Pudas S (2019) Successful memory aging. Annu Rev Psychol 70, 219–243.
    1. Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, Ewers M, Franzmeier N, Kempermann G, Kremen WS, Okonkwo O, Scarmeas N, Soldan A, Udeh-Momoh C, Valenzuela M, Vemuri P, Vuoksimaa E (2020) Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement 16, 1305–1311.
    1. Pettigrew C, Soldan A (2019) Defining cognitive reserve and implications for cognitive aging. Curr Neurol Neurosci Rep 19, 1.
    1. Daviglus ML (2010) National Institutes of Health State-of-the-Science Conference Statement: Preventing Alzheimer disease and cognitive decline. Ann Intern Med 153, 176.
    1. Snowden M, Steinman L, Mochan K, Grodstein F, Prohaska TR, Thurman DJ, Brown DR, Laditka JN, Soares J, Zweiback DJ, Little D, Anderson LA (2011) Effect of exercise on cognitive performance in community-dwelling older adults: Review of intervention trials and recommendations for public health practice and research. J Am Geriatr Soc 59, 704–716.
    1. Brasure M, Desai P, Davila H, Nelson VA, Calvert C, Jutkowitz E, Butler M, Fink HA, Ratner E, Hemmy LS, McCarten JR, Barclay TR, Kane RL (2017) Physical activity interventions in preventing cognitive decline and Alzheimer-type dementia. Ann Intern Med 168, 30–38.
    1. Butler M, McCreedy E, Nelson VA, Desai P, Ratner E, Fink HA, Hemmy LS, McCarten JR, Barclay TR, Brasure M, Davila H, Kane RL (2017) Does cognitive training prevent cognitive decline? Ann Intern Med 168, 63–68.
    1. Fink HA, Jutkowitz E, McCarten JR, Hemmy LS, Butler M, Davila H, Ratner E, Calvert C, Barclay TR, Brasure M, Nelson VA, Kane RL (2017) Pharmacologic interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia. Ann Intern Med 168, 39–51.
    1. Lourida I, Hannon E, Littlejohns TJ, Langa KM, Hyppönen E, Kuźma E, Llewellyn DJ (2019) Association of lifestyle and genetic risk with incidence of dementia. JAMA 322, 430–437.
    1. U.S. Department of Health and Human Services (2018) Physical Activity Guidelines for Americans, 2nd edition, U.S. Department of Health and Human Services, Washington D.C.
    1. U.S. Centers for Disease Control and Prevention, Early Release of Selected Estimates Based on Data From the 2018 National Health Interview Survey. , Last updated 20 May 2019, Accessed on 27 August 2019.
    1. Weuve J, Kang JH, Manson JE, Breteler MMB, Ware JH, Grodstein F (2004) Physical activity, including walking, and cognitive function in older women. JAMA 292, 1454–1461.
    1. Hörder H, Johansson L, Guo X, Grimby G, Kern S, Östling S, Skoog I (2018) Midlife cardiovascular fitness and dementia. Neurology 90, e1298–e1305.
    1. Najar J, Östling S, Gudmundsson P, Sundh V, Johansson L, Kern S, Guo X, Hällström T, Skoog I (2019) Cognitive and physical activity and dementia: A 44-year longitudinal population study of women. Neurology 92, e1322–e1330.
    1. Carlson MC, Helms MJ, Steffens DC, Burke JR, Potter GG, Plassman BL (2008) Midlife activity predicts risk of dementia in older male twin pairs. Alzheimers Dement 4, 324–331.
    1. Casaletto KB, Staffaroni AM, Wolf A, Appleby B, Brushaber D, Coppola G, Dickerson B, Domoto-Reilly K, Elahi FM, Fields J, Fong JC, Forsberg L, Ghoshal N, Graff-Radford N, Grossman M, Heuer HW, Hsiung G-Y, Huey ED, Irwin D, Kantarci K, Kaufer D, Kerwin D, Knopman D, Kornak J, Kramer JH, Litvan I, Mackenzie IR, Mendez M, Miller B, Rademakers R, Ramos EM, Rascovsky K, Roberson ED, Syrjanen JA, Tartaglia MC, Weintraub S, Boeve B, Boxer AL, Rosen H, Yaffe K, ARTFL/LEFFTDS Study (2020) Active lifestyles moderate clinical outcomes in autosomal dominant frontotemporal degeneration. Alzheimers Dement 16, 91–105.
    1. Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, Macchi C (2011) Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. J Intern Med 269, 107–117.
    1. Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol Med 39, 3–11.
    1. Sabia S, Dugravot A, Dartigues J-F, Abell J, Elbaz A, Kivimäki M, Singh-Manoux A (2017) Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. BMJ 357, j2709.
    1. Fordyce DE, Wehner JM (1993) Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Res 619, 111–119.
    1. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT (2002) Exercise, experience and the aging brain. Neurobiol Aging 23, 941–955.
    1. Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726, 49–56.
    1. Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20, 2580–2590.
    1. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: Exercise effects on brain and cognition. Nat Rev Neurosci 9, 58–65.
    1. Nichol KE, Poon WW, Parachikova AI, Cribbs DH, Glabe CG, Cotman CW (2008) Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J Neuroinflammation 5, 13.
    1. Kim D, Cho J, Kang H (2019) Protective effect of exercise training against the progression of Alzheimer’s disease in 3xTg-AD mice. Behav Brain Res 374, 112105.
    1. Ohia-Nwoko O, Montazari S, Lau Y-S, Eriksen JL (2014) Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener 9, 54.
    1. Sherrington C, Fairhall NJ, Wallbank GK, Tiedemann A, Michaleff ZA, Howard K, Clemson L, Hopewell S, Lamb SE (2019) Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev, CD012424.
    1. Cassilhas RC, Viana VAR, Grassmann V, Santos RT, Santos RF, Tufik S, Mello MT (2007) The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 39, 1401–1407.
    1. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Cholerton BA, Plymate SR, Fishel MA, Watson GS, Duncan GE, Mehta PD, Craft S (2010) Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer’s disease. J Alzheimers Dis 22, 569–579.
    1. Tsai C-L, Wang C-H, Pan C-Y, Chen F-C (2015) The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Front Behav Neurosci 9, 23.
    1. Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I (2018) The neuroprotective effects of exercise: Maintaining a healthy brain throughout aging. Brain Plast 4, 17–52.
    1. Leal G, Bramham CR, Duarte CB (2017) BDNF and hippocampal synaptic plasticity. Vitam Horm 104, 153–195.
    1. de Pins B, Cifuentes-Díaz C, Farah AT, López-Molina L, Montalban E, Sancho-Balsells A, López A, Ginés S, Delgado-García JM, Alberch J, Gruart A, Girault J-A, Giralt A (2019) Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J Neurosci 39, 2441–2458.
    1. von Bohlen Und Halbach O, von Bohlen Und Halbach V (2018) BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 373, 729–741.
    1. Liu PZ, Nusslock R (2018) Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 12, 52.
    1. Babaei P, Azali Alamdari K, Soltani Tehrani B, Damirchi A (2013) Effect of six weeks of endurance exercise and following detraining on serum brain derived neurotrophic factor and memory performance in middle aged males with metabolic syndrome. J Sports Med Phys Fitness 53, 437–443.
    1. Håkansson K, Ledreux A, Daffner K, Terjestam Y, Bergman P, Carlsson R, Kivipelto M, Winblad B, Granholm A-C, Mohammed AKH (2017) BDNF responses in healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: Associations with working memory function. J Alzheimers Dis 55, 645–657.
    1. Küster OC, Laptinskaya D, Fissler P, Schnack C, Zügel M, Nold V, Thurm F, Pleiner S, Karabatsiakis A, von Einem B, Weydt P, Liesener A, Borta A, Woll A, Hengerer B, Kolassa I-T, von Arnim CAF (2017) Novel blood-based biomarkers of cognition, stress, and physical or cognitive training in older adults at risk of dementia: Preliminary evidence for a role of BDNF, irisin, and the kynurenine pathway. J Alzheimers Dis 59, 1097–1111.
    1. Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, Lanctôt KL (2016) The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PloS One 11, e0163037.
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108, 3017–3022.
    1. Marks BL, Madden DJ, Bucur B, Provenzale JM, White LE, Cabeza R, Huettel SA (2007) Role of aerobic fitness and aging on cerebral white matter integrity. Ann N Y Acad Sci 1097, 171–174.
    1. Spartano NL, Davis-Plourde KL, Himali JJ, Andersson C, Pase MP, Maillard P, DeCarli C, Murabito JM, Beiser AS, Vasan RS, Seshadri S (2019) Association of accelerometer-measured light-intensity physical activity with brain volume: The Framingham Heart Study. JAMA Netw Open 2, e192745-e192745.
    1. ten Brinke LF, Bolandzadeh N, Nagamatsu LS, Hsu CL, Davis JC, Miran-Khan K, Liu-Ambrose T (2015) Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: A 6-month randomised controlled trial. Br J Sports Med 49, 248–254.
    1. Alber J, Alladi S, Bae H-J, Barton DA, Beckett LA, Bell JM, Berman SE, Biessels GJ, Black SE, Bos I, Bowman GL, Brai E, Brickman AM, Callahan BL, Corriveau RA, Fossati S, Gottesman RF, Gustafson DR, Hachinski V, Hayden KM, Helman AM, Hughes TM, Isaacs JD, Jefferson AL, Johnson SC, Kapasi A, Kern S, Kwon JC, Kukolja J, Lee A, Lockhart SN, Murray A, Osborn KE, Power MC, Price BR, Rhodius-Meester HFM, Rondeau JA, Rosen AC, Rosene DL, Schneider JA, Scholtzova H, Shaaban CE, Silva NCBS, Snyder HM, Swardfager W, Troen AM, van Veluw SJ, Vemuri P, Wallin A, Wellington C, Wilcock DM, Xie SX, Hainsworth AH (2019) White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimers Dement 5, 107–117.
    1. Nagamatsu LS, Handy TC, Hsu CL, Voss M, Liu-Ambrose T (2012) Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med 172, 666–668.
    1. Liu-Ambrose T, Nagamatsu LS, Voss MW, Khan KM, Handy TC (2012) Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiol Aging 33, 1690–1698.
    1. Brown BM, Rainey-Smith SR, Dore V, Peiffer JJ, Burnham SC, Laws SM, Taddei K, Ames D, Masters CL, Rowe CC, Martins RN, Villemagne VL (2018) Self-reported physical activity is associated with tau burden measured by positron emission tomography. J Alzheimers Dis 63, 1299–1305.
    1. Rabin JS, Klein H, Kirn DR, Schultz AP, Yang H-S, Hampton O, Jiang S, Buckley RF, Viswanathan A, Hedden T, Pruzin J, Yau W-YW, Guzmán-Vélez E, Quiroz YT, Properzi M, Marshall GA, Rentz DM, Johnson KA, Sperling RA, Chhatwal JP (2019) Associations of physical activity and β-amyloid with longitudinal cognition and neurodegeneration in clinically normal older adults. JAMA Neurol 76, 1203–1210.
    1. Muscari A, Giannoni C, Pierpaoli L, Berzigotti A, Maietta P, Foschi E, Ravaioli C, Poggiopollini G, Bianchi G, Magalotti D, Tentoni C, Zoli M (2010) Chronic endurance exercise training prevents aging-related cognitive decline in healthy older adults: A randomized controlled trial. Int J Geriatr Psychiatry 25, 1055–1064.
    1. Antunes HKM, Santos-Galduroz RF, De Aquino Lemos V, Bueno OFA, Rzezak P, de Santana MG, De Mello MT (2015) The influence of physical exercise and leisure activity on neuropsychological functioning in older adults. Age (Dordr) 37, 9815.
    1. Blumenthal JA, Smith PJ, Mabe S, Hinderliter A, Lin P-H, Liao L, Welsh-Bohmer KA, Browndyke JN, Kraus WE, Doraiswamy PM, Burke JR, Sherwood A (2019) Lifestyle and neurocognition in older adults with cognitive impairments. Neurology 92, e212–e223.
    1. Albinet CT, Abou-Dest A, André N, Audiffren M (2016) Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biol Psychol 115, 69–77.
    1. Fabre C, Chamari K, Mucci P, Massé-Biron J, Préfaut C (2002) Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med 23, 415–421.
    1. Antunes HK, De Mello MT, Santos-Galduróz RF, Galduróz JCF, Lemos VA, Tufik S, Bueno OFA (2015) Effects of a physical fitness program on memory and blood viscosity in sedentary elderly men. Braz J Med Biol Res Rev Bras Pesqui Medicas E Biol 48, 805–812.
    1. Lautenschlager NT, Cox KL, Flicker L, Foster JK, Bockxmeer FM van, Xiao J, Greenop KR, Almeida OP (2008) Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. JAMA 300, 1027–1037.
    1. de Oliveira Silva F, Ferreira JV, Plácido J, Sant’Anna P, Araújo J, Marinho V, Laks J, Camaz Deslandes A (2019) Three months of multimodal training contributes to mobility and executive function in elderly individuals with mild cognitive impairment, but not in those with Alzheimer’s disease: A randomized controlled trial. Maturitas 126, 28–33.
    1. Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC (2010) Resistance training and executive functions: A 12-month randomized controlled trial. Arch Intern Med 170, 170–178.
    1. Busse A, Filho W, Magaldi R, Coelho V, Melo A, Betoni R, Santarém J (2008) Effects of resistance training exercise on cognitive performance in elderly individuals with memory impairment: Results of a controlled trial. Einstein 6, 402–407.
    1. Fiatarone Singh MA, Gates N, Saigal N, Wilson GC, Meiklejohn J, Brodaty H, Wen W, Singh N, Baune BT, Suo C, Baker MK, Foroughi N, Wang Y, Sachdev PS, Valenzuela M (2014) The Study of Mental and Resistance Training (SMART) study—resistance training and/or cognitive training in mild cognitive impairment: A randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc 15, 873–880.
    1. Yoon DH, Kang D, Kim H-J, Kim J-S, Song HS, Song W (2017) Effect of elastic band-based high-speed power training on cognitive function, physical performance and muscle strength in older women with mild cognitive impairment. Geriatr Gerontol Int 17, 765–772.
    1. Gomes-Osman J, Cabral DF, Morris TP, McInerney K, Cahalin LP, Rundek T, Oliveira A, Pascual-Leone A (2018) Exercise for cognitive brain health in aging: A systematic review for an evaluation of dose. Neurol Clin Pract 8, 257–265.
    1. Wilson RS, Leon CFM de, Barnes LL, Schneider JA, Bienias JL, Evans DA, Bennett DA (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 287, 742–748.
    1. Wang H-X, Karp A, Winblad B, Fratiglioni L (2002) Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: A longitudinal study from the Kungsholmen Project. Am J Epidemiol 155, 1081–1087.
    1. Verghese J, LeValley A, Derby C, Kuslansky G, Katz M, Hall C, Buschke H, Lipton RB (2006) Leisure activities and the risk of amnestic mild cognitive impairment in the elderly. Neurology 66, 821–827.
    1. Lee ATC, Richards M, Chan WC, Chiu HFK, Lee RSY, Lam LCW (2018) Association of daily intellectual activities with lower risk of incident dementia among older Chinese adults. JAMA Psychiatry 75, 697–703.
    1. Yates LA, Ziser S, Spector A, Orrell M (2016) Cognitive leisure activities and future risk of cognitive impairment and dementia: Systematic review and meta-analysis. Int Psychogeriatr 28, 1791–1806.
    1. Sampedro-Piquero P, Begega A (2017) Environmental enrichment as a positive behavioral intervention across the lifespan. Curr Neuropharmacol 15, 459–470.
    1. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1, 191–198.
    1. Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, Selkoe DJ (2013) Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron 77, 929–941.
    1. Lazarov O, Robinson J, Tang Y-P, Hairston IS, Korade-Mirnics Z, Lee VM-Y, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120, 701–713.
    1. Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, Younkin LH, Younkin SG, Borchelt DR, Savonenko AV (2005) Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci 25, 5217–5224.
    1. Ledreux A, Håkansson K, Carlsson R, Kidane M, Columbo L, Terjestam Y, Ryan E, Tusch E, Winblad B, Daffner K, Granholm A-C, Mohammed AKH (2019) Differential effects of physical exercise, cognitive training, and mindfulness practice on serum BDNF levels in healthy older adults: A randomized controlled intervention study. J Alzheimers Dis 71, 1245–1261.
    1. Landau SM, Marks SM, Mormino EC, Rabinovici GD, Oh H, O’Neil JP, Wilson RS, Jagust WJ (2012) Association of lifetime cognitive engagement and low β-amyloid deposition. Arch Neurol 69, 623–629.
    1. Gidicsin CM, Maye JE, Locascio JJ, Pepin LC, Philiossaint M, Becker JA, Younger AP, Dekhtyar M, Schultz AP, Amariglio RE, Marshall GA, Rentz DM, Hedden T, Sperling RA, Johnson KA (2015) Cognitive activity relates to cognitive performance but not to Alzheimer disease biomarkers. Neurology 85, 48–55.
    1. Vemuri P, Lesnick TG, Przybelski SA, Knopman DS, Roberts RO, Lowe VJ, Kantarci K, Senjem ML, Gunter JL, Boeve BF, Petersen RC, Jack CR (2012) Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Ann Neurol 72, 730–738.
    1. Wilson RS, Scherr PA, Schneider JA, Tang Y, Bennett DA (2007) Relation of cognitive activity to risk of developing Alzheimer disease. Neurology 69, 1911–1920.
    1. Park DC, Bischof GN (2013) The aging mind: Neuroplasticity in response to cognitive training. Dialogues Clin Neurosci 15, 109–119.
    1. Nguyen L, Murphy K, Andrews G (2019) Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training. Ageing Res Rev 53, 100912.
    1. Rosen AC, Sugiura L, Kramer JH, Whitfield-Gabrieli S, Gabrieli JD (2011) Cognitive training changes hippocampal function in mild cognitive impairment: A pilot study. J Alzheimers Dis 26 Suppl 3, 349–357.
    1. Kirchhoff BA, Anderson BA, Smith SE, Barch DM, Jacoby LL (2012) Cognitive training-related changes in hippocampal activity associated with recollection in older adults. Neuroimage 62, 1956–1964.
    1. Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, Morris JN, Rebok GW, Smith DM, Tennstedt SL, Unverzagt FW, Willis SL, Advanced Cognitive Training for Independent and Vital Elderly Study Group (2002) Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA 288, 2271–2281.
    1. Corbett A, Owen A, Hampshire A, Grahn J, Stenton R, Dajani S, Burns A, Howard R, Williams N, Williams G, Ballard C (2015) The effect of an online cognitive training package in healthy older adults: An online randomized controlled trial. J Am Med Dir Assoc 16, 990–997.
    1. Belleville S, Hudon C, Bier N, Brodeur C, Gilbert B, Grenier S, Ouellet M-C, Viscogliosi C, Gauthier S (2018) MEMO+: Efficacy, durability and effect of cognitive training and psychosocial intervention in individuals with mild cognitive impairment. J Am Geriatr Soc 66, 655–663.
    1. Han JW, Lee H, Hong JW, Kim K, Kim T, Byun HJ, Ko JW, Youn JC, Ryu S-H, Lee N-J, Pae C-U, Kim KW (2017) Multimodal cognitive enhancement therapy for patients with mild cognitive impairment and mild dementia: A multi- center, randomized, controlled, double-blind, crossover trial. J Alzheimers Dis 55, 787–796.
    1. Rebok GW, Ball K, Guey LT, Jones RN, Kim H-Y, King JW, Marsiske M, Morris JN, Tennstedt SL, Unverzagt FW, Willis SL, ACTIVE Study Group (2014) Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc 62, 16–24.
    1. Edwards JD, Xu H, Clark DO, Guey LT, Ross LA, Unverzagt FW (2017) Speed of processing training results in lower risk of dementia. Alzheimers Dement N Y 3, 603–611.
    1. Simon SS, Hampstead BM, Nucci MP, Duran FLS, Fonseca LM, Martin M da GM, Ávila R, Porto FHG, Brucki SMD, Martins CB, Tascone LS, Amaro E, Busatto GF, Bottino CMC (2018) Cognitive and brain activity changes after mnemonic strategy training in amnestic mild cognitive impairment: Evidence from a randomized controlled trial. Front Aging Neurosci 10, 342.
    1. Wolinsky FD, Vander Weg MW, Howren MB, Jones MP, Dotson MM (2013) A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults. PloS One 8, e61624.
    1. Kallio E-L, Öhman H, Hietanen M, Soini H, Strandberg TE, Kautiainen H, Pitkälä KH (2018) Effects of cognitive training on cognition and quality of life of older persons with dementia. J Am Geriatr Soc 66, 664–670.
    1. McDonough IM, Haber S, Bischof GN, Park DC (2015) The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency. Restor Neurol Neurosci 33, 865–882.
    1. Simons DJ, Boot WR, Charness N, Gathercole SE, Chabris CF, Hambrick DZ, Stine-Morrow EAL (2016) Do “brain-training” programs work? Psychol Sci Public Interest 17, 103–186.
    1. Kable JW, Caulfield MK, Falcone M, McConnell M, Bernardo L, Parthasarathi T, Cooper N, Ashare R, Audrain-McGovern J, Hornik R, Diefenbach P, Lee FJ, Lerman C (2017) No effect of commercial cognitive training on brain activity, choice behavior, or cognitive performance. J Neurosci 37, 7390–7402.
    1. Håkansson K, Rovio S, Helkala E-L, Vilska A-R, Winblad B, Soininen H, Nissinen A, Mohammed AH, Kivipelto M (2009) Association between mid-life marital status and cognitive function in later life: Population based cohort study. BMJ 339, b2462.
    1. Sundström A, Westerlund O, Kotyrlo E (2016) Marital status and risk of dementia: A nationwide population-based prospective study from Sweden. BMJ Open 6, e008565.
    1. Crooks VC, Lubben J, Petitti DB, Little D, Chiu V (2008) Social network, cognitive function, and dementia incidence among elderly women. Am J Public Health 98, 1221–1227.
    1. Evans IEM, Martyr A, Collins R, Brayne C, Clare L (2019) Social isolation and cognitive function in later life: A systematic review and meta-analysis. J Alzheimers Dis 70, S119–S144.
    1. Kuiper JS, Zuidersma M, Oude Voshaar RC, Zuidema SU, van den Heuvel ER, Stolk RP, Smidt N (2015) Social relationships and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev 22, 39–57.
    1. Ali AA, Khalil MG, Elariny HA, Elfotuh karema A (2017) Study on social isolation as a risk factor in development of Alzheimer’s disease in rats. Brain Disord Ther 06, 230.
    1. Powell ND, Sloan EK, Bailey MT, Arevalo JMG, Miller GE, Chen E, Kobor MS, Reader BF, Sheridan JF, Cole SW (2013) Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proc Natl Acad Sci U S A 110, 16574–16579.
    1. Huang H, Wang L, Cao M, Marshall C, Gao J, Xiao N, Hu G, Xiao M (2015) Isolation housing exacerbates Alzheimer’s disease-like pathophysiology in aged APP/PS1 mice. Int J Neuropsychopharmacol 18, pyu116.
    1. Stranahan AM, Khalil D, Gould E (2006) Social isolation delays the positive effects of running on adult neurogenesis. Nat Neurosci 9, 526–533.
    1. Murínová J, Hlaváčová N, Chmelová M, Riečanský I (2017) The evidence for altered BDNF expression in the brain of rats reared or housed in social isolation: A systematic review. Front Behav Neurosci 11, 101.
    1. McHugh JE, Lawlor BA (2013) Perceived stress mediates the relationship between emotional loneliness and sleep quality over time in older adults. Br J Health Psychol 18, 546–555.
    1. Hawkley LC, Cacioppo JT (2010) Loneliness matters: A theoretical and empirical review of consequences and mechanisms. Ann Behav Med Publ Soc Behav Med 40, 218–227.
    1. Hackett RA, Hamer M, Endrighi R, Brydon L, Steptoe A (2012) Loneliness and stress-related inflammatory and neuroendocrine responses in older men and women. Psychoneuroendocrinology 37, 1801–1809.
    1. Jaremka LM, Fagundes CP, Peng J, Bennett JM, Glaser R, Malarkey WB, Kiecolt-Glaser JK (2013) Loneliness promotes inflammation during acute stress. Psychol Sci 24, 1089–1097.
    1. Uchino BN, Trettevik R, Kent de Grey RG, Cronan S, Hogan J, Baucom BRW (2018) Social support, social integration, and inflammatory cytokines: A meta-analysis. Health Psychol 37, 462–471.
    1. Hawkley LC, Masi CM, Berry JD, Cacioppo JT (2006) Loneliness is a unique predictor of age-related differences in systolic blood pressure. Psychol Aging 21, 152–164.
    1. James BD, Glass TA, Caffo B, Bobb JF, Davatzikos C, Yousem D, Schwartz BS (2012) Association of social engagement with brain volumes assessed by structural MRI. J Aging Res 2012, 512714.
    1. Felix C, Rosano C, Zhu X, Flatt JD, Rosso AL (2020) Greater social engagement and greater gray matter microstructural integrity in brain regions relevant to dementia. J Gerontol B Psychol Sci Soc Sci, doi: 10.1093/geronb/gbaa173
    1. Yu L, Boyle PA, Segawa E, Leurgans S, Schneider JA, Wilson RS, Bennett DA (2015) Residual decline in cognition after adjustment for common neuropathologic conditions. Neuropsychology 29, 335–343.
    1. Bennett DA, Schneider JA, Tang Y, Arnold SE, Wilson RS (2006) The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: A longitudinal cohort study. Lancet Neurol 5, 406–412.
    1. Biddle KD, d’Oleire Uquillas F, Jacobs HIL, Zide B, Kirn DR, Rentz DM, Johnson KA, Sperling RA, Donovan NJ (2019) Social engagement and amyloid-β-related cognitive decline in cognitively normal older adults. Am J Geriatr Psychiatry 27, 1247–1256.
    1. Carlson MC, Saczynski JS, Rebok GW, Seeman T, Glass TA, McGill S, Tielsch J, Frick KD, Hill J, Fried LP (2008) Exploring the effects of an “everyday” activity program on executive function and memory in older adults: Experience Corps. Gerontologist 48, 793–801.
    1. Carlson MC, Erickson KI, Kramer AF, Voss MW, Bolea N, Mielke M, McGill S, Rebok GW, Seeman T, Fried LP (2009) Evidence for neurocognitive plasticity in at-risk older adults: The experience corps program. J Gerontol A Biol Sci Med Sci 64, 1275–1282.
    1. Carlson MC, Kuo JH, Chuang Y-F, Varma VR, Harris G, Albert MS, Erickson KI, Kramer AF, Parisi JM, Xue Q-L, Tan EJ, Tanner EK, Gross AL, Seeman TE, Gruenewald TL, McGill S, Rebok GW, Fried LP (2015) Impact of the Baltimore Experience Corps Trial on cortical and hippocampal volumes. Alzheimers Dement 11, 1340–1348.
    1. Cohen-Mansfield J, Cohen R, Buettner L, Eyal N, Jakobovits H, Rebok G, Rotenberg-Shpigelman S, Sternberg S (2015) Interventions for older persons reporting memory difficulties: A randomized controlled pilot study. Int J Geriatr Psychiatry 30, 478–486.
    1. Scarmeas N, Stern Y, Tang M-X, Mayeux R, Luchsinger JA (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59, 912–921.
    1. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N (1997) A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 336, 1117–1124.
    1. Morris MC, Tangney CC, Wang Y, Barnes LL, Bennett D, Aggarwal N (2014) MIND diet score more predictive than DASH or Mediterranean diet scores. Alzheimers Dement 10, P166.
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture (2015) Dietary Guidelines for Americans 2015-2020, U.S. Department of Health and Human Services and U.S. Department of Agriculture, Washington D.C.
    1. McEvoy CT, Guyer H, Langa KM, Yaffe K (2017) Neuroprotective diets are associated with better cognitive function: The Health and Retirement Study. J Am Geriatr Soc 65, 1857–1862.
    1. Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA (2009) Mediterranean diet and mild cognitive impairment. Arch Neurol 66, 216–225.
    1. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT (2015) MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement 11, 1007–1014.
    1. Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, Aggarwal NT (2015) MIND diet slows cognitive decline with aging. Alzheimers Dement 11, 1015–1022.
    1. Hosking DE, Eramudugolla R, Cherbuin N, Anstey KJ (2019) MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement 15, 581–589.
    1. Wu L, Sun D (2017) Adherence to Mediterranean diet and risk of developing cognitive disorders: An updated systematic review and meta-analysis of prospective cohort studies. Sci Rep 7, 41317.
    1. Singh B, Parsaik AK, Mielke MM, Erwin PJ, Knopman DS, Petersen RC, Roberts RO (2014) Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. J Alzheimers Dis 39, 271–282.
    1. Cao L, Tan L, Wang H-F, Jiang T, Zhu X-C, Lu H, Tan M-S, Yu J-T (2016) Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Mol Neurobiol 53, 6144–6154.
    1. Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, Morris MC (2014) Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 83, 1410–1416.
    1. van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de Rest O (2019) The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease—a review. Adv Nutr 10, 1040–1065.
    1. Shakersain B, Santoni G, Larsson SC, Faxén-Irving G, Fastbom J, Fratiglioni L, Xu W (2016) Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dement 12, 100–109.
    1. Rees K, Takeda A, Martin N, Ellis L, Wijesekara D, Vepa A, Das A, Hartley L, Stranges S (2020) Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease: A Cochrane review. Glob Heart 15, 56.
    1. McGrattan AM, McGuinness B, McKinley MC, Kee F, Passmore P, Woodside JV, McEvoy CT (2019) Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr Nutr Rep 8, 53–65.
    1. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 4, 575–590.
    1. Devassy JG, Leng S, Gabbs M, Monirujjaman M, Aukema HM (2016) Omega-3 polyunsaturated fatty acids and oxylipins in neuroinflammation and management of Alzheimer disease. Adv Nutr 7, 905–916.
    1. Vauzour D, Martinsen A, Layé S (2015) Neuroinflammatory processes in cognitive disorders: Is there a role for flavonoids and n-3 polyunsaturated fatty acids in counteracting their detrimental effects? Neurochem Int 89, 63–74.
    1. Monacelli F, Acquarone E, Giannotti C, Borghi R, Nencioni A (2017) Vitamin C, aging and Alzheimer’s disease. Nutrients 9, 670.
    1. Flanagan E, Müller M, Hornberger M, Vauzour D (2018) Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Curr Nutr Rep 7, 49–57.
    1. Gu Y, Brickman AM, Stern Y, Habeck CG, Razlighi QR, Luchsinger JA, Manly JJ, Schupf N, Mayeux R, Scarmeas N (2015) Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 85, 1744–1751.
    1. Luciano M, Corley J, Cox SR, Valdés Hernández MC, Craig LCA, Dickie DA, Karama S, McNeill GM, Bastin ME, Wardlaw JM, Deary IJ (2017) Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology 88, 449–455.
    1. Gu Y, Scarmeas N, Stern Y, Manly JJ, Schupf N, Mayeux R, Brickman AM (2016) Mediterranean DIET is associated with slower rate of hippocampal atrophy: A longitudinal study in cognitively normal older adults. Alzheimers Dement 12, P193–P194.
    1. Vassilaki M, Aakre JA, Syrjanen JA, Mielke MM, Geda YE, Kremers WK, Machulda MM, Alhurani RE, Staubo SC, Knopman DS, Petersen RC, Lowe VJ, Jack CR, Roberts RO (2018) Mediterranean diet, its components, and amyloid imaging biomarkers. J Alzheimers Dis 64, 281–290.
    1. Berti V, Walters M, Sterling J, Quinn CG, Logue M, Andrews R, Matthews DC, Osorio RS, Pupi A, Vallabhajosula S, Isaacson RS, de Leon MJ, Mosconi L (2018) Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 90, e1789–e1798.
    1. Rainey-Smith SR, Gu Y, Gardener SL, Doecke JD, Villemagne VL, Brown BM, Taddei K, Laws SM, Sohrabi HR, Weinborn M, Ames D, Fowler C, Macaulay SL, Maruff P, Masters CL, Salvado O, Rowe CC, Scarmeas N, Martins RN (2018) Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: Data from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Transl Psychiatry 8, 238.
    1. Martínez-Lapiscina EH, Clavero P, Toledo E, Estruch R, Salas-Salvadó J, San Julián B, Sanchez-Tainta A, Ros E, Valls-Pedret C, Martinez-Gonzalez MÁ (2013) Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry 84, 1318–1325.
    1. Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martínez-González MÁ, Martínez-Lapiscina EH, Fitó M, Pérez-Heras A, Salas-Salvadó J, Estruch R, Ros E (2015) Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern Med 175, 1094–1103.
    1. Lee J, Pase M, Pipingas A, Raubenheimer J, Thurgood M, Villalon L, Macpherson H, Gibbs A, Scholey A (2015) Switching to a 10-day Mediterranean-style diet improves mood and cardiovascular function in a controlled crossover study. Nutrition 31, 647–652.
    1. Lehtisalo J, Levälahti E, Lindström J, Hänninen T, Paajanen T, Peltonen M, Antikainen R, Laatikainen T, Strandberg T, Soininen H, Tuomilehto J, Kivipelto M, Ngandu T (2019) Dietary changes and cognition over 2 years within a multidomain intervention trial-The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Dement 15, 410–417.
    1. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Fitó M, Gea A, Hernán MA, Martínez-González MA, PREDIMED Study Investigators (2018) Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378, e34.
    1. Boespflug EL, Eliassen JC, Dudley JA, Shidler MD, Kalt W, Summer SS, Stein AL, Stover AN, Krikorian R (2018) Enhanced neuronal activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci 21, 297–305.
    1. Whyte AR, Cheng N, Fromentin E, Williams CM (2018) A randomized, double-blinded, placebo-controlled study to compare the safety and efficacy of low dose enhanced wild blueberry powder and wild blueberry extract (ThinkBlueTM) in maintenance of episodic and working memory in older adults. Nutrients 10, 660.
    1. McNamara RK, Kalt W, Shidler MD, McDonald J, Summer SS, Stein AL, Stover AN, Krikorian R (2018) Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging 64, 147–156.
    1. Külzow N, Witte AV, Kerti L, Grittner U, Schuchardt JP, Hahn A, Flöel A (2016) Impact of omega-3 fatty acid supplementation on memory functions in healthy older adults. J Alzheimers Dis 51, 713–725.
    1. Bo Y, Zhang X, Wang Y, You J, Cui H, Zhu Y, Pang W, Liu W, Jiang Y, Lu Q (2017) The n-3 polyunsaturated fatty acids supplementation improved the cognitive function in the Chinese elderly with mild cognitive impairment: A double-blind randomized controlled trial. Nutrients 9, 54.
    1. Danthiir V, Hosking DE, Nettelbeck T, Vincent AD, Wilson C, O’Callaghan N, Calvaresi E, Clifton P, Wittert GA (2018) An 18-mo randomized, double-blind, placebo-controlled trial of DHA-rich fish oil to prevent age-related cognitive decline in cognitively normal older adults. Am J Clin Nutr 107, 754–762.
    1. Leckie RL, Lehman DE, Gianaros PJ, Erickson KI, Sereika SM, Kuan DCH, Manuck SB, Ryan CM, Yao JK, Muldoon MF (2020) The effects of omega-3 fatty acids on neuropsychological functioning and brain morphology in mid-life adults: A randomized clinical trial. Psychol Med 50, 2425–2434.
    1. Devore EE, Kang JH, Breteler MMB, Grodstein F (2012) Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 72, 135–143.
    1. Akbaraly TN, Singh-Manoux A, Dugravot A, Brunner EJ, Kivimäki M, Sabia S (2019) Association of midlife diet with subsequent risk for dementia. JAMA 321, 957–968.
    1. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison-Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, e13–e115.
    1. Ou Y-N, Tan C-C, Shen X-N, Xu W, Hou X-H, Dong Q, Tan L, Yu J-T (2020) Blood pressure and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 209 prospective studies. Hypertension 76, 217–225.
    1. Sharp SI, Aarsland D, Day S, Sønnesyn H, Ballard C (2011) Hypertension is a potential risk factor for vascular dementia: Systematic review. Int J Geriatr Psychiatry 26, 661–669.
    1. Tadic M, Cuspidi C, Hering D (2016) Hypertension and cognitive dysfunction in elderly: Blood pressure management for this global burden. BMC Cardiovasc Disord 16, 208.
    1. Birns J, Morris R, Donaldson N, Kalra L (2006) The effects of blood pressure reduction on cognitive function: A review of effects based on pooled data from clinical trials. J Hypertens 24, 1907–1914.
    1. Sun D, Thomas EA, Launer LJ, Sidney S, Yaffe K, Fornage M (2020) Association of blood pressure with cognitive function at midlife: A Mendelian randomization study. BMC Med Genomics 13, 121.
    1. Tully PJ, Hanon O, Cosh S, Tzourio C (2016) Diuretic antihypertensive drugs and incident dementia risk: A systematic review, meta-analysis and meta-regression of prospective studies. J Hypertens 34, 1027–1035.
    1. Hussain S, Singh A, Zameer S, Jamali MC, Baxi H, Rahman SO, Alam M, Altamish M, Singh AK, Anil D, Hussain MS, Ahmad A, Najmi AK (2020) No association between proton pump inhibitor use and risk of dementia: Evidence from a meta-analysis. J Gastroenterol Hepatol 35, 19–28.
    1. Ding J, Davis-Plourde KL, Sedaghat S, Tully PJ, Wang W, Phillips C, Pase MP, Himali JJ, Gwen Windham B, Griswold M, Gottesman R, Mosley TH, White L, Guðnason V, Debette S, Beiser AS, Seshadri S, Ikram MA, Meirelles O, Tzourio C, Launer LJ (2020) Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: A meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol 19, 61–70.
    1. Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10, 819–828.
    1. Kennelly SP, Lawlor BA, Kenny RA (2009) Blood pressure and dementia - a comprehensive review. Ther Adv Neurol Disord 2, 241–260.
    1. Kivipelto M, Helkala EL, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ 322, 1447–1451.
    1. McGrath ER, Beiser AS, DeCarli C, Plourde KL, Vasan RS, Greenberg SM, Seshadri S (2017) Blood pressure from mid- to late life and risk of incident dementia. Neurology 89, 2447–2454.
    1. Abell JG, Kivimäki M, Dugravot A, Tabak AG, Fayosse A, Shipley M, Sabia S, Singh-Manoux A (2018) Association between systolic blood pressure and dementia in the Whitehall II cohort study: Role of age, duration, and threshold used to define hypertension. Eur Heart J 39, 3119–3125.
    1. Delgado J, Bowman K, Ble A, Masoli J, Han Y, Henley W, Welsh S, Kuchel GA, Ferrucci L, Melzer D (2018) Blood pressure trajectories in the 20 years before death. JAMA Intern Med 178, 93–99.
    1. Walker KA, Sharrett AR, Wu A, Schneider ALC, Albert M, Lutsey PL, Bandeen-Roche K, Coresh J, Gross AL, Windham BG, Knopman DS, Power MC, Rawlings AM, Mosley TH, Gottesman RF (2019) Association of midlife to late-life blood pressure patterns with incident dementia. JAMA 322, 535–545.
    1. Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM (2019) Animal models of hypertension: A scientific statement from the American Heart Association. Hypertension 73, e87–e120.
    1. Jennings JR, Muldoon MF, Ryan C, Price JC, Greer P, Sutton-Tyrrell K, van der Veen FM, Meltzer CC (2005) Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology 64, 1358–1365.
    1. Portegies MLP, Mirza SS, Verlinden VJA, Hofman A, Koudstaal PJ, Swanson SA, Ikram MA (2016) Mid- to late-life trajectories of blood pressure and the risk of stroke: The Rotterdam Study. Hypertension 67, 1126–1132.
    1. Arvanitakis Z, Capuano AW, Lamar M, Shah RC, Barnes LL, Bennett DA, Schneider JA (2018) Late-life blood pressure association with cerebrovascular and Alzheimer disease pathology. Neurology 91, e517–e525.
    1. Beauchet O, Celle S, Roche F, Bartha R, Montero-Odasso M, Allali G, Annweiler C (2013) Blood pressure levels and brain volume reduction: A systematic review and meta-analysis. J Hypertens 31, 1502–1516.
    1. Lane CA, Barnes J, Nicholas JM, Sudre CH, Cash DM, Parker TD, Malone IB, Lu K, James S-N, Keshavan A, Murray-Smith H, Wong A, Buchanan SM, Keuss SE, Gordon E, Coath W, Barnes A, Dickson J, Modat M, Thomas D, Crutch SJ, Hardy R, Richards M, Fox NC, Schott JM (2019) Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): An epidemiological study. Lancet Neurol 18, 942–952.
    1. Poels MMF, Zaccai K, Verwoert GC, Vernooij MW, Hofman A, van der Lugt A, Witteman JCM, Breteler MMB, Mattace-Raso FUS, Ikram MA (2012) Arterial stiffness and cerebral small vessel disease: The Rotterdam Scan Study. Stroke 43, 2637–2642.
    1. Verhaaren BFJ, Vernooij MW, de Boer R, Hofman A, Niessen WJ, van der Lugt A, Ikram MA (2013) High blood pressure and cerebral white matter lesion progression in the general population. Hypertension 61, 1354–1359.
    1. Hoffman LB, Schmeidler J, Lesser GT, Beeri MS, Purohit DP, Grossman HT, Haroutunian V (2009) Less Alzheimer disease neuropathology in medicated hypertensive than nonhypertensive persons. Neurology 72, 1720–1726.
    1. Shah NS, Vidal J-S, Masaki K, Petrovitch H, Ross GW, Tilley C, DeMattos RB, Tracy RP, White LR, Launer LJ (2012) Midlife blood pressure, plasma β-amyloid, and the risk for Alzheimer disease: The Honolulu Asia Aging Study. Hypertension 59, 780–786.
    1. Ashby EL, Miners JS, Kehoe PG, Love S (2016) Effects of hypertension and anti-hypertensive treatment on amyloid-β (Aβ) plaque load and Aβ-synthesizing and Aβ-degrading enzymes in frontal cortex. J Alzheimers Dis 50, 1191–1203.
    1. Köbe T, Gonneaud J, Pichet Binette A, Meyer P-F, McSweeney M, Rosa-Neto P, Breitner JCS, Poirier J, Villeneuve S, Presymptomatic Evaluation of Experimental or Novel Treatments for Alzheimer Disease (PREVENT-AD) Research Group (2020) Association of vascular risk factors with β-amyloid peptide and tau burdens in cognitively unimpaired individuals and its interaction with vascular medication use. JAMA Netw Open 3, e1920780.
    1. Muñoz Maniega S, Chappell FM, Valdés Hernández MC, Armitage PA, Makin SD, Heye AK, Thrippleton MJ, Sakka E, Shuler K, Dennis MS, Wardlaw JM (2017) Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease. J Cereb Blood Flow Metab 37, 644–656.
    1. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14, 133–150.
    1. Affleck AJ, Sachdev PS, Stevens J, Halliday GM (2020) Antihypertensive medications ameliorate Alzheimer’s disease pathology by slowing its propagation. Alzheimers Dement 6, e12060.
    1. Williamson JD, Pajewski NM, Auchus AP, Bryan RN, Chelune G, Cheung AK, Cleveland ML, Coker LH, Crowe MG, Cushman WC, Cutler JA, Davatzikos C, Desiderio L, Erus G, Fine LJ, Gaussoin SA, Harris D, Hsieh M-K, Johnson KC, Kimmel PL, Tamura MK, Launer LJ, Lerner AJ, Lewis CE, Martindale-Adams J, Moy CS, Nasrallah IM, Nichols LO, Oparil S, Ogrocki PK, Rahman M, Rapp SR, Reboussin DM, Rocco MV, Sachs BC, Sink KM, Still CH, Supiano MA, Snyder JK, Wadley VG, Walker J, Weiner DE, Whelton PK, Wilson VM, Woolard N, Wright JT, Wright CB (2019) Effect of intensive vs standard blood pressure control on probable dementia: A randomized clinical trial. JAMA 321, 553–561.
    1. Zhang H, Cui Y, Zhao Y, Dong Y, Duan D, Wang J, Sheng L, Ji T, Zhou T, Hu W, Chen Y, Sun S, Gong G, Chai Q, Liu Z (2019) Effects of sartans and low-dose statins on cerebral white matter hyperintensities and cognitive function in older patients with hypertension: A randomized, double-blind and placebo-controlled clinical trial. Hypertens Res 42, 717–729.
    1. Sink KM, Evans GW, Shorr RI, Bates JT, Berlowitz D, Conroy MB, Felton DM, Gure T, Johnson KC, Kitzman D, Lyles MF, Servilla K, Supiano MA, Whittle J, Wiggers A, Fine LJ (2018) Syncope, hypotension, and falls in the treatment of hypertension: Results from the randomized clinical systolic blood pressure intervention trial. J Am Geriatr Soc 66, 679–686.
    1. Pajewski NM, Berlowitz DR, Bress AP, Callahan KE, Cheung AK, Fine LJ, Gaussoin SA, Johnson KC, King J, Kitzman DW, Kostis JB, Lerner AJ, Lewis CE, Oparil S, Rahman M, Reboussin DM, Rocco MV, Snyder JK, Still C, Supiano MA, Wadley VG, Whelton PK, Wright JT, Williamson JD (2020) Intensive vs standard blood pressure control in adults 80 years or older: A secondary analysis of the systolic blood pressure intervention trial. J Am Geriatr Soc 68, 496–504.
    1. SPRINT MIND Investigators for the SPRINT Research Group, Nasrallah IM, Pajewski NM, Auchus AP, Chelune G, Cheung AK, Cleveland ML, Coker LH, Crowe MG, Cushman WC, Cutler JA, Davatzikos C, Desiderio L, Doshi J, Erus G, Fine LJ, Gaussoin SA, Harris D, Johnson KC, Kimmel PL, Kurella Tamura M, Launer LJ, Lerner AJ, Lewis CE, Martindale-Adams J, Moy CS, Nichols LO, Oparil S, Ogrocki PK, Rahman M, Rapp SR, Reboussin DM, Rocco MV, Sachs BC, Sink KM, Still CH, Supiano MA, Snyder JK, Wadley VG, Walker J, Weiner DE, Whelton PK, Wilson VM, Woolard N, Wright JT, Wright CB, Williamson JD, Bryan RN (2019) Association of intensive vs standard blood pressure control with cerebral white matter lesions. JAMA 322, 524–534.
    1. Bosch J, O’Donnell M, Swaminathan B, Lonn EM, Sharma M, Dagenais G, Diaz R, Khunti K, Lewis BS, Avezum A, Held C, Keltai M, Reid C, Toff WD, Dans A, Leiter LA, Sliwa K, Lee SF, Pogue JM, Hart R, Yusuf S, on behalf of the HOPE-3 Investigators (2019) Effects of blood pressure and lipid lowering on cognition: Results from the HOPE-3 study. Neurology 92, e1435–e1446.
    1. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, Waldman A, Walton I, Poulter R, Ma S, Comsa M, Burch L, Fletcher A, Bulpitt C, HYVET investigators (2008) Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): A double-blind, placebo controlled trial. Lancet Neurol 7, 683–689.
    1. Warwick J, Falaschetti E, Rockwood K, Mitnitski A, Thijs L, Beckett N, Bulpitt C, Peters R (2015) No evidence that frailty modifies the positive impact of antihypertensive treatment in very elderly people: An investigation of the impact of frailty upon treatment effect in the HYpertension in the Very Elderly Trial (HYVET) study, a double-blind, placebo-controlled study of antihypertensives in people with hypertension aged 80 and over. BMC Med 13, 78.
    1. Benetos A, Petrovic M, Strandberg T (2019) Hypertension management in older and frail older patients. Circ Res 124, 1045–1060.
    1. Odden MC, Peralta CA, Berlowitz DR, Johnson KC, Whittle J, Kitzman DW, Beddhu S, Nord JW, Papademetriou V, Williamson JD, Pajewski NM, Systolic Blood Pressure Intervention Trial (SPRINT) Research Group (2017) Effect of intensive blood pressure control on gait speed and mobility limitation in adults 75 years or older: A randomized clinical trial. JAMA Intern Med 177, 500–507.
    1. McCrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. Lancet 379, 2291–2299.
    1. Smith MA, Else JE, Paul L, Foster JK, Walker M, Wesnes KA, Riby LM (2014) Functional living in older adults with type 2 diabetes: Executive functioning, dual task performance, and the impact on postural stability and motor control. J Aging Health 26, 841–859.
    1. Palta P, Carlson MC, Crum RM, Colantuoni E, Sharrett AR, Yasar S, Nahin RL, DeKosky ST, Snitz B, Lopez O, Williamson JD, Furberg CD, Rapp SR, Golden SH (2017) Diabetes and cognitive decline in older adults: The Ginkgo Evaluation of Memory Study. J Gerontol A Biol Sci Med Sci 73, 123–130.
    1. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53, 1937–1942.
    1. Fan Y-C, Hsu J-L, Tung H-Y, Chou C-C, Bai C-H (2017) Increased dementia risk predominantly in diabetes mellitus rather than in hypertension or hyperlipidemia: A population-based cohort study. Alzheimers Res Ther 9, 7.
    1. Frison E, Dufouil C, Helmer C, Berr C, Auriacombe S, Chêne G (2019) Diabetes-associated dementia risk and competing risk of death in the Three-City Study. J Alzheimers Dis 71, 1339–1350.
    1. Xue M, Xu W, Ou Y-N, Cao X-P, Tan M-S, Tan L, Yu J-T (2019) Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev 55, 100944.
    1. Zhang J, Chen C, Hua S, Liao H, Wang M, Xiong Y, Cao F (2017) An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Res Clin Pract 124, 41–47.
    1. Lee JH, Choi Y, Jun C, Hong YS, Cho HB, Kim JE, Lyoo IK (2014) Neurocognitive changes and their neural correlates in patients with type 2 diabetes mellitus. Endocrinol Metab 29, 112–121.
    1. Byrn MA, Adams W, Penckofer S, Emanuele MA (2019) Vitamin D supplementation and cognition in people with type 2 diabetes: A randomized control trial. J Diabetes Res 2019, 5696391.
    1. Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 6, 551–559.
    1. Zhao X, Han Q, Lv Y, Sun L, Gang X, Wang G (2017) Biomarkers for cognitive decline in patients with diabetes mellitus: Evidence from clinical studies. Oncotarget 9, 7710–7726.
    1. Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat Rev Endocrinol 14, 591–604.
    1. Tan ZS, Beiser AS, Fox CS, Au R, Himali JJ, Debette S, Decarli C, Vasan RS, Wolf PA, Seshadri S (2011) Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: The Framingham Offspring Study. Diabetes Care 34, 1766–1770.
    1. Yaffe K, Falvey C, Hamilton N, Schwartz AV, Simonsick EM, Satterfield S, Cauley JA, Rosano C, Launer LJ, Strotmeyer ES, Harris TB (2012) Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol 69, 1170–1175.
    1. Lacy ME, Gilsanz P, Karter AJ, Quesenberry CP, Pletcher MJ, Whitmer RA (2018) Long-term glycemic control and dementia risk in type 1 diabetes. Diabetes Care 41, 2339–2345.
    1. Lehtisalo J, Lindström J, Ngandu T, Kivipelto M, Ahtiluoto S, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Eriksson JG, Uusitupa M, Tuomilehto J, Luchsinger JA, Finnish Diabetes Prevention Study (DPS) (2016) Diabetes, glycaemia, and cognition-a secondary analysis of the Finnish Diabetes Prevention Study. Diabetes Metab Res Rev 32, 102–110.
    1. Launer LJ, Miller ME, Williamson JD, Lazar RM, Gerstein HC, Murray AM, Sullivan M, Horowitz KR, Ding J, Marcovina S, Lovato LC, Lovato J, Margolis KL, O’Connor P, Lipkin EW, Hirsch J, Coker L, Maldjian J, Sunshine JL, Truwit C, Davatzikos C, Bryan RN, ACCORD MIND investigators (2011) Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): A randomised open-label substudy. Lancet Neurol 10, 969–977.
    1. Cukierman-Yaffe T, Bosch J, Diaz R, Dyal L, Hancu N, Hildebrandt P, Lanas F, Lewis BS, Marre M, Yale J-F, Yusuf S, Gerstein HC, ORIGIN Investigators (2014) Effects of basal insulin glargine and omega-3 fatty acid on cognitive decline and probable cognitive impairment in people with dysglycaemia: A substudy of the ORIGIN trial. Lancet Diabetes Endocrinol 2, 562–572.
    1. Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, Ichise M, Manly J, Devanand DP, Bagiella E (2016) Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis 51, 501–514.
    1. Biessels GJ, Verhagen C, Janssen J, van den Berg E, Zinman B, Rosenstock J, George JT, Passera A, Schnaidt S, Johansen OE, CARMELINA Investigators (2019) Effect of linagliptin on cognitive performance in patients with type 2 diabetes and cardiorenal comorbidities: The CARMELINA Randomized Trial. Diabetes Care 42, 1930–1938.
    1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC, Sperling L, Virani SS, Yeboah J (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e1082–e1143.
    1. Anstey KJ, Lipnicki DM, Low L-F (2008) Cholesterol as a risk factor for dementia and cognitive decline: A systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry 16, 343–354.
    1. Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA (2009) Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord 28, 75–80.
    1. Anstey KJ, Ashby-Mitchell K, Peters R (2017) Updating the evidence on the association between serum cholesterol and risk of late-life dementia: Review and meta-analysis. J Alzheimers Dis 56, 215–228.
    1. Mielke MM, Zandi PP, Shao H, Waern M, Östling S, Guo X, Björkelund C, Lissner L, Skoog I, Gustafson DR (2010) The 32-year relationship between cholesterol and dementia from midlife to late life. Neurology 75, 1888–1895.
    1. Han K-T, Kim SJ (2021) Are serum cholesterol levels associated with cognitive impairment and depression in elderly individuals without dementia?: A retrospective cohort study in South Korea. Int J Geriatr Psychiatry 36, 163–173.
    1. McFarlane O, Kędziora-Kornatowska K (2020) Cholesterol and dementia: A long and complicated relationship. Curr Aging Sci 13, 42–51.
    1. Tóth ME, Dukay B, Hoyk Z, Sántha M (2020) Cerebrovascular changes and neurodegeneration related to hyperlipidemia: Characteristics of the human ApoB-100 transgenic mice. Curr Pharm Des 26, 1486–1494.
    1. Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40, 195–211.
    1. Menet R, Bernard M, ElAli A (2018) Hyperlipidemia in stroke pathobiology and therapy: Insights and perspectives. Front Physiol 9, 488.
    1. Bowman GL, Kaye JA, Quinn JF (2012) Dyslipidemia and blood-brain barrier integrity in Alzheimer’s disease. Curr Gerontol Geriatr Res 2012, 184042.
    1. Buxbaum JD, Cullen EI, Friedhoff LT (2002) Pharmacological concentrations of the HMG-CoA reductase inhibitor lovastatin decrease the formation of the Alzheimer beta-amyloid peptide in vitro and in patients. Front Biosci J Virtual Libr 7, a50–59.
    1. Chu C-S, Tseng P-T, Stubbs B, Chen T-Y, Tang C-H, Li D-J, Yang W-C, Chen Y-W, Wu C-K, Veronese N, Carvalho AF, Fernandes BS, Herrmann N, Lin P-Y (2018) Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis. Sci Rep 8, 5804.
    1. Zissimopoulos JM, Barthold D, Brinton RD, Joyce G (2017) Sex and race differences in the association between statin use and the incidence of Alzheimer disease. JAMA Neurol 74, 225–232.
    1. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365, 1415–1428.
    1. Ma Y, Ajnakina O, Steptoe A, Cadar D (2020) Higher risk of dementia in English older individuals who are overweight or obese. Int J Epidemiol 49, 1353–1365.
    1. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, Helkala E-L, Tuomilehto J, Soininen H, Nissinen A (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62, 1556–1560.
    1. Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K (2008) Central obesity and increased risk of dementia more than three decades later. Neurology 71, 1057–1064.
    1. Kerwin DR, Gaussoin SA, Chlebowski RT, Kuller LH, Vitolins M, Coker LH, Kotchen JM, Nicklas BJ, Wassertheil-Smoller S, Hoffmann RG, Espeland MA, Women’s Health Initiative Memory Study (2011) Interaction between body mass index and central adiposity and risk of incident cognitive impairment and dementia: Results from the Women’s Health Initiative Memory Study. J Am Geriatr Soc 59, 107–112.
    1. Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L (2011) Midlife overweight and obesity increase late-life dementia risk: A population-based twin study. Neurology 76, 1568–1574.
    1. Pedditzi E, Peters R, Beckett N (2016) The risk of overweight/obesity in mid-life and late life for the development of dementia: A systematic review and meta-analysis of longitudinal studies. Age Ageing 45, 14–21.
    1. Singh-Manoux A, Dugravot A, Shipley M, Brunner EJ, Elbaz A, Sabia S, Kivimaki M (2018) Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement 14, 178–186.
    1. Buie JJ, Watson LS, Smith CJ, Sims-Robinson C (2019) Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis 132, 104580.
    1. Bednarska-Makaruk M, Graban A, Wiśniewska A, Łojkowska W, Bochyńska A, Gugała-Iwaniuk M, Sławińska K, Ługowska A, Ryglewicz D, Wehr H (2017) Association of adiponectin, leptin and resistin with inflammatory markers and obesity in dementia. Biogerontology 18, 561–580.
    1. Prehn K, Jumpertz von Schwartzenberg R, Mai K, Zeitz U, Witte AV, Hampel D, Szela A-M, Fabian S, Grittner U, Spranger J, Flöel A (2017) Caloric restriction in older adults-differential effects of weight loss and reduced weight on brain structure and function. Cereb Cortex 27, 1765–1778.
    1. Napoli N, Shah K, Waters DL, Sinacore DR, Qualls C, Villareal DT (2014) Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am J Clin Nutr 100, 189–198.
    1. Horie NC, Serrao VT, Simon SS, Gascon MRP, Dos Santos AX, Zambone MA, Del Bigio de Freitas MM, Cunha-Neto E, Marques EL, Halpern A, de Melo ME, Mancini MC, Cercato C (2016) Cognitive effects of intentional weight loss in elderly obese individuals with mild cognitive impairment. J Clin Endocrinol Metab 101, 1104–1112.
    1. Witte AV, Fobker M, Gellner R, Knecht S, Flöel A (2009) Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A 106, 1255–1260.
    1. Siervo M, Nasti G, Stephan BCM, Papa A, Muscariello E, Wells JCK, Prado CM, Colantuoni A (2012) Effects of intentional weight loss on physical and cognitive function in middle-aged and older obese participants: A pilot study. J Am Coll Nutr 31, 79–86.
    1. Durazzo TC, Meyerhoff DJ, Nixon SJ (2012) A comprehensive assessment of neurocognition in middle-aged chronic cigarette smokers. Drug Alcohol Depend 122, 105–111.
    1. Wagner M, Schulze-Rauschenbach S, Petrovsky N, Brinkmeyer J, von der Goltz C, Gründer G, Spreckelmeyer KN, Wienker T, Diaz-Lacava A, Mobascher A, Dahmen N, Clepce M, Thuerauf N, Kiefer F, de Millas JW, Gallinat J, Winterer G (2013) Neurocognitive impairments in non-deprived smokers–results from a population-based multi-center study on smoking-related behavior. Addict Biol 18, 752–761.
    1. Reitz C, den Heijer T, van Duijn C, Hofman A, Breteler MMB (2007) Relation between smoking and risk of dementia and Alzheimer disease: The Rotterdam Study. Neurology 69, 998–1005.
    1. Rusanen M, Kivipelto M, Quesenberry CP, Zhou J, Whitmer RA (2011) Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med 171, 333–339.
    1. Anstey KJ, von Sanden C, Salim A, O’Kearney R (2007) Smoking as a risk factor for dementia and cognitive decline: A meta-analysis of prospective studies. Am J Epidemiol 166, 367–378.
    1. Zhong G, Wang Y, Zhang Y, Guo JJ, Zhao Y (2015) Smoking is associated with an increased risk of dementia: A meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One 10, e0118333.
    1. Merchant C, Tang MX, Albert S, Manly J, Stern Y, Mayeux R (1999) The influence of smoking on the risk of Alzheimer’s disease. Neurology 52, 1408–1412.
    1. Cataldo JK, Prochaska JJ, Glantz SA (2010) Cigarette smoking is a risk factor for Alzheimer’s disease: An analysis controlling for tobacco industry affiliation. J Alzheimers Dis 19, 465–480.
    1. Khanna A, Guo M, Mehra M, Royal W (2013) Inflammation and oxidative stress induced by cigarette smoke in Lewis rat brains. J Neuroimmunol 254, 69–75.
    1. Swan GE, Lessov-Schlaggar CN (2007) The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev 17, 259–273.
    1. Durazzo TC, Mattsson N, Weiner MW (2014) Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimers Dement 10, S122–S145.
    1. Giunta B, Deng J, Jin J, Sadic E, Rum S, Zhou H, Sanberg P, Tan J (2012) Evaluation of how cigarette smoke is a direct risk factor for Alzheimer’s disease. Technol Innov 14, 39–48.
    1. Teipel S, Grothe MJ, Alzheimer’s Disease Neuroimaging Initiative (2016) Association between smoking and cholinergic basal forebrain volume in healthy aging and prodromal and dementia stages of Alzheimer’s disease. J Alzheimers Dis 52, 1443–1451.
    1. Fratiglioni L, Wang HX (2000) Smoking and Parkinson’s and Alzheimer’s disease: Review of the epidemiological studies. Behav Brain Res 113, 117–120.
    1. Letenneur L, Larrieu S, Barberger-Gateau P (2004) Alcohol and tobacco consumption as risk factors of dementia: A review of epidemiological studies. Biomed Pharmacother 58, 95–99.
    1. Hernán MA, Alonso A, Logroscino G (2008) Cigarette smoking and dementia: Potential selection bias in the elderly. Epidemiology 19, 448–450.
    1. Weuve J, Tchetgen Tchetgen EJ, Glymour MM, Beck TL, Aggarwal NT, Wilson RS, Evans DA, Mendes de Leon CF (2012) Accounting for bias due to selective attrition: The example of smoking and cognitive decline. Epidemiology 23, 119–128.
    1. Abner EL, Nelson PT, Jicha GA, Cooper GE, Fardo DW, Schmitt FA, Kryscio RJ (2019) Tobacco smoking and dementia in a Kentucky cohort: A competing risk analysis. J Alzheimers Dis 68, 625–633.
    1. The American Institute of Stress, What is Stress? , Accessed on 10 October 2020.
    1. Sandi C (2013) Stress and cognition. Wiley Interdiscip Rev Cogn Sci 4, 245–261.
    1. Sousa N (2016) The dynamics of the stress neuromatrix. Mol Psychiatry 21, 302–312.
    1. Shields GS, Rivers AM, Ramey MM, Trainor BC, Yonelinas AP (2019) Mild acute stress improves response speed without impairing accuracy or interference control in two selective attention tasks: Implications for theories of stress and cognition. Psychoneuroendocrinology 108, 78–86.
    1. Munoz E, Sliwinski MJ, Scott SB, Hofer S (2015) Global perceived stress predicts cognitive change among older adults. Psychol Aging 30, 487–499.
    1. Stawski RS, Mogle JA, Sliwinski MJ (2013) Daily stressors and self-reported changes in memory in old age: The mediating effects of daily negative affect and cognitive interference. Aging Ment Health 17, 168–172.
    1. Shields GS, Sazma MA, Yonelinas AP (2016) The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci Biobehav Rev 68, 651–668.
    1. Hermans EJ, Henckens MJAG, Joëls M, Fernández G (2014) Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci 37, 304–314.
    1. Chen Y, Liang Y, Zhang W, Crawford JC, Sakel KL, Dong X (2019) Perceived stress and cognitive decline in Chinese-American older adults. J Am Geriatr Soc 67, S519–S524.
    1. Johansson L, Guo X, Waern M, Ostling S, Gustafson D, Bengtsson C, Skoog I (2010) Midlife psychological stress and risk of dementia: A 35-year longitudinal population study. Brain 133, 2217–2224.
    1. Greenberg MS, Tanev K, Marin M-F, Pitman RK (2014) Stress, PTSD, and dementia. Alzheimers Dement 10, S155–165.
    1. Peavy GM, Jacobson MW, Salmon DP, Gamst AC, Patterson TL, Goldman S, Mills PJ, Khandrika S, Galasko D (2012) The influence of chronic stress on dementia-related diagnostic change in older adults. Alzheimer Dis Assoc Disord 26, 260–266.
    1. Gradus JL, Horváth-Puhó E, Lash TL, Ehrenstein V, Tamang S, Adler NE, Milstein A, Glymour MM, Henderson VW, Sørensen HT (2019) Stress disorders and dementia in the Danish population. Am J Epidemiol 188, 493–499.
    1. Wang H-X, Wahlberg M, Karp A, Winblad B, Fratiglioni L (2012) Psychosocial stress at work is associated with increased dementia risk in late life. Alzheimers Dement 8, 114–120.
    1. Dong H, Csernansky JG (2009) Effects of stress and stress hormones on amyloid-beta protein and plaque deposition. J Alzheimers Dis 18, 459–469.
    1. Ouanes S, Popp J (2019) High cortisol and the risk of dementia and Alzheimer’s disease: A review of the literature. Front Aging Neurosci 11, 43.
    1. Fotuhi M, Do D, Jack C (2012) Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 8, 189–202.
    1. Suri D, Vaidya VA (2013) Glucocorticoid regulation of brain-derived neurotrophic factor: Relevance to hippocampal structural and functional plasticity. Neuroscience 239, 196–213.
    1. Tata DA, Anderson BJ (2010) The effects of chronic glucocorticoid exposure on dendritic length, synapse numbers and glial volume in animal models: Implications for hippocampal volume reductions in depression. Physiol Behav 99, 186–193.
    1. Geerlings MI, Sigurdsson S, Eiriksdottir G, Garcia ME, Harris TB, Gudnason V, Launer LJ (2015) Salivary cortisol, brain volumes, and cognition in community-dwelling elderly without dementia. Neurology 85, 976–983.
    1. Echouffo-Tcheugui JB, Conner SC, Himali JJ, Maillard P, DeCarli CS, Beiser AS, Vasan RS, Seshadri S (2018) Circulating cortisol and cognitive and structural brain measures: The Framingham Heart Study. Neurology 91, e1961–e1970.
    1. Cox SR, MacPherson SE, Ferguson KJ, Royle NA, Maniega SM, Hernández MDCV, Bastin ME, MacLullich AMJ, Wardlaw JM, Deary IJ (2015) Does white matter structure or hippocampal volume mediate associations between cortisol and cognitive ageing? Psychoneuroendocrinology 62, 129–137.
    1. Kanamaru T, Kamimura N, Yokota T, Iuchi K, Nishimaki K, Takami S, Akashiba H, Shitaka Y, Katsura K-I, Kimura K, Ohta S (2015) Oxidative stress accelerates amyloid deposition and memory impairment in a double-transgenic mouse model of Alzheimer’s disease. Neurosci Lett 587, 126–131.
    1. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM (2006) Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26, 9047–9056.
    1. Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A, Sousa N, Almeida OFX (2011) Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J Neurosci 31, 7840–7847.
    1. Toledo JB, Toledo E, Weiner MW, Jack CR, Jagust W, Lee VMY, Shaw LM, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative (2012) Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement 8, 483–489.
    1. Innes KE, Selfe TK (2014) Meditation as a therapeutic intervention for adults at risk for Alzheimer’s disease - potential benefits and underlying mechanisms. Front Psychiatry 5, 40.
    1. Innes KE, Selfe TK, Khalsa DS, Kandati S (2016) Effects of meditation versus music listening on perceived stress, mood, sleep, and quality of life in adults with early memory loss: A pilot randomized controlled trial. J Alzheimers Dis 52, 1277–1298.
    1. Wells RE, Kerr CE, Wolkin J, Dossett M, Davis RB, Walsh J, Wall RB, Kong J, Kaptchuk T, Press D, Phillips RS, Yeh G (2013) Meditation for adults with mild cognitive impairment: A pilot randomized trial. J Am Geriatr Soc 61, 642–645.
    1. Sharma A, Kumar Y (2019) Nature’s derivative(s) as alternative anti-Alzheimer’s disease treatments. J Alzheimers Dis Rep 3, 279–297.
    1. Tolahunase M, Sagar R, Dada R (2017) Impact of yoga and meditation on cellular aging in apparently healthy individuals: A prospective, open-label single-arm exploratory study. Oxid Med Cell Longev 2017, 7928981.
    1. Berk L, Warmenhoven F, van Os J, van Boxtel M (2018) Mindfulness training for people with dementia and their caregivers: Rationale, current research, and future directions. Front Psychol 9, 982.
    1. Marciniak R, Sheardova K, Cermáková P, Hudeček D, Sumec R, Hort J (2014) Effect of meditation on cognitive functions in context of aging and neurodegenerative diseases. Front Behav Neurosci 8, 17.
    1. Byers AL, Yaffe K (2011) Depression and risk of developing dementia. Nat Rev Neurol 7, 323–331.
    1. Dotson VM, Beydoun MA, Zonderman AB (2010) Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology 75, 27–34.
    1. Singh-Manoux A, Dugravot A, Fournier A, Abell J, Ebmeier K, Kivimäki M, Sabia S (2017) Trajectories of depressive symptoms before diagnosis of dementia: A 28-year follow-up study. JAMA Psychiatry 74, 712–718.
    1. Bennett S, Thomas AJ (2014) Depression and dementia: Cause, consequence or coincidence? Maturitas 79, 184–190.
    1. Salvat-Pujol N, Labad J, Urretavizcaya M, de Arriba-Arnau A, Segalàs C, Real E, Ferrer A, Crespo JM, Jiménez-Murcia S, Soriano-Mas C, Menchón JM, Soria V (2017) Hypothalamic-pituitary-adrenal axis activity and cognition in major depression: The role of remission status. Psychoneuroendocrinology 76, 38–48.
    1. Morimoto SS, Alexopoulos GS (2013) Cognitive deficits in geriatric depression: Clinical correlates and implications for current and future treatment. Psychiatr Clin North Am 36, 517–531.
    1. Morimoto SS, Kanellopoulos D, Manning KJ, Alexopoulos GS (2015) Diagnosis and treatment of depression and cognitive impairment in late life. Ann N Y Acad Sci 1345, 36–46.
    1. Gandelman JA, Albert K, Boyd BD, Park JW, Riddle M, Woodward ND, Kang H, Landman BA, Taylor WD (2019) Intrinsic functional network connectivity is associated with clinical symptoms and cognition in late-life depression. Biol Psychiatry Cogn Neurosci Neuroimaging 4, 160–170.
    1. Mackin RS, Nelson JC, Delucchi K, Raue P, Byers A, Barnes D, Satre DD, Yaffe K, Alexopoulos GS, Arean PA (2014) Cognitive outcomes after psychotherapeutic interventions for major depression in older adults with executive dysfunction. Am J Geriatr Psychiatry 22, 1496–1503.
    1. Scullin MK, Bliwise DL (2015) Sleep, cognition, and normal aging: Integrating a half century of multidisciplinary research. Perspect Psychol Sci 10, 97–137.
    1. Alfini AJ, Tzuang M, Owusu JT, Spira AP (2020) Later-life sleep, cognition, and neuroimaging research: An update for 2020. Curr Opin Behav Sci 33, 72–77.
    1. Elcombe EL, Lagopoulos J, Duffy SL, Lewis SJG, Norrie L, Hickie IB, Naismith SL (2015) Hippocampal volume in older adults at risk of cognitive decline: The role of sleep, vascular risk, and depression. J Alzheimers Dis 44, 1279–1290.
    1. Sawyer K, Corsentino E, Sachs-Ericsson N, Steffens DC (2012) Depression, hippocampal volume changes, and cognitive decline in a clinical sample of older depressed outpatients and non-depressed controls. Aging Ment Health 16, 753–762.
    1. Jiang S, Zhang Q-A, Guo Q, Di Z (2019) The glutamatergic system and astrocytic impairment in rat hippocampus: A comparative study of underlying etiology and pathophysiology of depression. J Integr Neurosci 18, 387–392.
    1. Qiao H, An S-C, Xu C, Ma X-M (2017) Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res 1663, 29–37.
    1. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, Hazen N, Herman J, Adams Hillard PJ, Katz ES, Kheirandish-Gozal L, Neubauer DN, O’Donnell AE, Ohayon M, Peever J, Rawding R, Sachdeva RC, Setters B, Vitiello MV, Ware JC (2015) National Sleep Foundation’s updated sleep duration recommendations: Final report. Sleep Health 1, 233–243.
    1. Blackwell T, Yaffe K, Ancoli-Israel S, Redline S, Ensrud KE, Stefanick ML, Laffan A, Stone KL (2011) Association of sleep characteristics and cognition in older community-dwelling men: The MrOS Sleep Study. Sleep 34, 1347–1356.
    1. Lim ASP, Kowgier M, Yu L, Buchman AS, Bennett DA (2013) Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep 36, 1027–1032.
    1. Osorio RS, Pirraglia E, Agüera-Ortiz LF, During EH, Sacks H, Ayappa I, Walsleben J, Mooney A, Hussain A, Glodzik L, Frangione B, Martínez-Martín P, de Leon MJ (2011) Greater risk of Alzheimer’s disease in older adults with insomnia. J Am Geriatr Soc 59, 559–562.
    1. Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastião YV, Wen Y, Schwartz S, Borenstein AR, Wu Y, Morgan D, Anderson WM (2017) Sleep, cognitive impairment, and Alzheimer’s disease: A systematic review and meta-analysis. Sleep 40, zsw032.
    1. Shi L, Chen S-J, Ma M-Y, Bao Y-P, Han Y, Wang Y-M, Shi J, Vitiello MV, Lu L (2018) Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med Rev 40, 4–16.
    1. Tsapanou A, Gu Y, Manly J, Schupf N, Tang M-X, Zimmerman M, Scarmeas N, Stern Y (2015) Daytime sleepiness and sleep inadequacy as risk factors for dementia. Dement Geriatr Cogn Disord Extra 5, 286–295.
    1. Pace-Schott EF, Spencer RMC (2015) Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment. Curr Top Behav Neurosci 25, 307–330.
    1. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342, 373–377.
    1. Owen JE, Veasey SC (2020) Impact of sleep disturbances on neurodegeneration: Insight from studies in animal models. Neurobiol Dis 139, 104820.
    1. Faraut B, Boudjeltia KZ, Vanhamme L, Kerkhofs M (2012) Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep Med Rev 16, 137–149.
    1. Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JAHR (2014) Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: A randomized clinical trial. JAMA Neurol 71, 971–977.
    1. Spira AP, Gamaldo AA, An Y, Wu MN, Simonsick EM, Bilgel M, Zhou Y, Wong DF, Ferrucci L, Resnick SM (2013) Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurol 70, 1537–1543.
    1. Sprecher KE, Bendlin BB, Racine AM, Okonkwo OC, Christian BT, Koscik RL, Sager MA, Asthana S, Johnson SC, Benca RM (2015) Amyloid burden is associated with self-reported sleep in nondemented late middle-aged adults. Neurobiol Aging 36, 2568–2576.
    1. Sprecher KE, Koscik RL, Carlsson CM, Zetterberg H, Blennow K, Okonkwo OC, Sager MA, Asthana S, Johnson SC, Benca RM, Bendlin BB (2017) Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 89, 445–453.
    1. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP, Ramar K, Rogers R, Schwab RJ, Weaver EM, Weinstein MD, Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine (2009) Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 05, 263–276.
    1. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pépin J-L, Peppard PE, Sinha S, Tufik S, Valentine K, Malhotra A (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir Med 7, 687–698.
    1. Andrade A, Bubu OM, Varga AW, Osorio RS (2018) The relationship between obstructive sleep apnea and Alzheimer’s disease. J Alzheimers Dis 64, S255–S270.
    1. Yaffe K, Laffan AM, Harrison SL, Redline S, Spira AP, Ensrud KE, Ancoli-Israel S, Stone KL (2011) Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 306, 613–619.
    1. Osorio RS, Gumb T, Pirraglia E, Varga AW, Lu S-E, Lim J, Wohlleber ME, Ducca EL, Koushyk V, Glodzik L, Mosconi L, Ayappa I, Rapoport DM, de Leon MJ, Alzheimer’s Disease Neuroimaging Initiative (2015) Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 84, 1964–1971.
    1. Castronovo V, Scifo P, Castellano A, Aloia MS, Iadanza A, Marelli S, Cappa SF, Strambi LF, Falini A (2014) White matter integrity in obstructive sleep apnea before and after treatment. Sleep 37, 1465–1475.
    1. Kushida CA, Nichols DA, Holmes TH, Quan SF, Walsh JK, Gottlieb DJ, Simon RD, Guilleminault C, White DP, Goodwin JL, Schweitzer PK, Leary EB, Hyde PR, Hirshkowitz M, Green S, McEvoy LK, Chan C, Gevins A, Kay GG, Bloch DA, Crabtree T, Dement WC (2012) Effects of continuous positive airway pressure on neurocognitive function in obstructive sleep apnea patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep 35, 1593–1602.
    1. Cooke JR, Ayalon L, Palmer BW, Loredo JS, Corey-Bloom J, Natarajan L, Liu L, Ancoli-Israel S (2009) Sustained use of CPAP slows deterioration of cognition, sleep, and mood in patients with Alzheimer’s disease and obstructive sleep apnea: A preliminary study. J Clin Sleep Med 5, 305–309.
    1. Ancoli-Israel S, Palmer BW, Cooke JR, Corey-Bloom J, Fiorentino L, Natarajan L, Liu L, Ayalon L, He F, Loredo JS (2008) Cognitive effects of treating obstructive sleep apnea in Alzheimer’s disease: A randomized controlled study. J Am Geriatr Soc 56, 2076–2081.
    1. Sharma RA, Varga AW, Bubu OM, Pirraglia E, Kam K, Parekh A, Wohlleber M, Miller MD, Andrade A, Lewis C, Tweardy S, Buj M, Yau PL, Sadda R, Mosconi L, Li Y, Butler T, Glodzik L, Fieremans E, Babb JS, Blennow K, Zetterberg H, Lu SE, Badia SG, Romero S, Rosenzweig I, Gosselin N, Jean-Louis G, Rapoport DM, de Leon MJ, Ayappa I, Osorio RS (2018) Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. A longitudinal study. Am J Respir Crit Care Med 197, 933–943.
    1. Maharani A, Dawes P, Nazroo J, Tampubolon G, Pendleton N (2018) Visual and hearing impairments are associated with cognitive decline in older people. Age Ageing 47, 575–581.
    1. Deal JA, Betz J, Yaffe K, Harris T, Purchase-Helzner E, Satterfield S, Pratt S, Govil N, Simonsick EM, Lin FR (2017) Hearing impairment and incident dementia and cognitive decline in older adults: The Health ABC Study. J Gerontol Ser A 72, 703–709.
    1. Gallacher J, Ilubaera V, Ben-Shlomo Y, Bayer A, Fish M, Babisch W, Elwood P (2012) Auditory threshold, phonologic demand, and incident dementia. Neurology 79, 1583–1590.
    1. Gurgel RK, Ward PD, Schwartz S, Norton MC, Foster NL, Tschanz JT (2014) Relationship of hearing loss and dementia: A prospective, population-based study. Otol Neurotol 35, 775–781.
    1. Lin MY, Gutierrez PR, Stone KL, Yaffe K, Ensrud KE, Fink HA, Sarkisian CA, Coleman AL, Mangione CM (2004) Vision impairment and combined vision and hearing impairment predict cognitive and functional decline in older women. J Am Geriatr Soc 52, 1996–2002.
    1. Fritze T, Teipel S, Óvári A, Kilimann I, Witt G, Doblhammer G (2016) Hearing impairment affects dementia incidence. An analysis based on longitudinal health claims data in Germany. PLoS One 11, e0156876.
    1. Naël V, Pérès K, Dartigues J-F, Letenneur L, Amieva H, Arleo A, Scherlen A-C, Tzourio C, Berr C, Carrière I, Delcourt C, Helmer C, Sense-Cog consortium (2019) Vision loss and 12-year risk of dementia in older adults: The 3C cohort study. Eur J Epidemiol 34, 141–152.
    1. Chen SP, Bhattacharya J, Pershing S (2017) Association of vision loss with cognition in older adults. JAMA Ophthalmol 135, 963–970.
    1. Davies-Kershaw HR, Hackett RA, Cadar D, Herbert A, Orrell M, Steptoe A (2018) Vision impairment and risk of dementia: Findings from the English Longitudinal Study of Ageing. J Am Geriatr Soc 66, 1823–1829.
    1. Hwang PH, Longstreth WT, Brenowitz WD, Thielke SM, Lopez OL, Francis CE, DeKosky ST, Fitzpatrick AL (2020) Dual sensory impairment in older adults and risk of dementia from the GEM Study. Alzheimers Dement (Amst) 12, e12054.
    1. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N (2017) Dementia prevention, intervention, and care. Lancet 390, 2673–2734.
    1. Hong T, Mitchell P, Burlutsky G, Liew G, Wang JJ (2016) Visual impairment, hearing loss and cognitive function in an older population: Longitudinal findings from the Blue Mountains Eye Study. PLoS One 11, e0147646.
    1. Michalowsky B, Hoffmann W, Kostev K (2019) Association between hearing and vision impairment and risk of dementia: Results of a case-control study based on secondary data. Front Aging Neurosci 11, 363.
    1. Lin FR, Ferrucci L, An Y, Goh JO, Doshi J, Metter EJ, Davatzikos C, Kraut MA, Resnick SM (2014) Association of hearing impairment with brain volume changes in older adults. Neuroimage 90, 84–92.
    1. Beckmann D, Feldmann M, Shchyglo O, Manahan-Vaughan D (2020) Hippocampal synaptic plasticity, spatial memory, and neurotransmitter receptor expression are profoundly altered by gradual loss of hearing ability. Cereb Cortex 30, 4581–4596.
    1. Peelle JE, Troiani V, Grossman M, Wingfield A (2011) Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci 31, 12638–12643.
    1. Lin FR, Albert M (2014) Hearing loss and dementia - who’s listening? Aging Ment Health 18, 671–673.
    1. Billig AR, Feng N, Behforuzi H, McFeeley BM, Nicastri CM, Daffner KR (2020) Capacity-limited resources are used for managing sensory degradation and cognitive demands: Implications for age-related cognitive decline and dementia. Cortex 133, 277–294.
    1. Gopinath B, Wang JJ, Schneider J, Burlutsky G, Snowdon J, McMahon CM, Leeder SR, Mitchell P (2009) Depressive symptoms in older adults with hearing impairments: The Blue Mountains Study. J Am Geriatr Soc 57, 1306–1308.
    1. Maharani A, Pendleton N, Leroi I (2019) Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English Longitudinal Study on Ageing. Am J Geriatr Psychiatry 27, 1348–1356.
    1. Brenowitz WD, Besser LM, Kukull WA, Keene CD, Glymour MM, Yaffe K (2020) Clinician-judged hearing impairment and associations with neuropathologic burden. Neurology 95, e1640–e1649.
    1. Dawes P, Emsley R, Cruickshanks KJ, Moore DR, Fortnum H, Edmondson-Jones M, McCormack A, Munro KJ (2015) Hearing loss and cognition: The role of hearing aids, social isolation and depression. PLoS One 10, e0119616.
    1. Maharani A, Dawes P, Nazroo J, Tampubolon G, Pendleton N (2018) Longitudinal relationship between hearing aid use and cognitive function in older Americans. J Am Geriatr Soc 66, 1130–1136.
    1. Maharani A, Dawes P, Nazroo J, Tampubolon G, Pendleton N, SENSE-Cog WP1 group (2018) Cataract surgery and age-related cognitive decline: A 13-year follow-up of the English Longitudinal Study of Ageing. PloS One 13, e0204833.
    1. Yu W-K, Chen Y-T, Wang S-J, Kuo S-C, Shia B-C, Liu CJ-L (2015) Cataract surgery is associated with a reduced risk of dementia: A nationwide population-based cohort study. Eur J Neurol 22, 1370–1377, e79-80.
    1. Lee SY, Mesfin FB (2020) Blindness. In StatPearls, StatPearls Publishing, Treasure Island, FL.
    1. Varma R, Vajaranant TS, Burkemper B, Wu S, Torres M, Hsu C, Choudhury F, McKean-Cowdin R (2016) Visual impairment and blindness in adults in the United States: Demographic and geographic variations from 2015 to 2050. JAMA Ophthalmol 134, 802–809.
    1. Davis AC, Hoffman HJ (2019) Hearing loss: Rising prevalence and impact. Bull World Health Organ 97, 646–646A.
    1. Gray SL, Anderson ML, Dublin S, Hanlon JT, Hubbard R, Walker R, Yu O, Crane PK, Larson EB (2015) Cumulative use of strong anticholinergics and incident dementia: A prospective cohort study. JAMA Intern Med 175, 401–407.
    1. Papenberg G, Bäckman L, Fratiglioni L, Laukka EJ, Fastbom J, Johnell K (2017) Anticholinergic drug use is associated with episodic memory decline in older adults without dementia. Neurobiol Aging 55, 27–32.
    1. Grossi CM, Richardson K, Fox C, Maidment I, Steel N, Loke YK, Arthur A, Myint PK, Campbell N, Boustani M, Robinson L, Brayne C, Matthews FE, Savva GM (2019) Anticholinergic and benzodiazepine medication use and risk of incident dementia: A UK cohort study. BMC Geriatr 19, 276.
    1. Richardson K, Fox C, Maidment I, Steel N, Loke YK, Arthur A, Myint PK, Grossi CM, Mattishent K, Bennett K, Campbell NL, Boustani M, Robinson L, Brayne C, Matthews FE, Savva GM (2018) Anticholinergic drugs and risk of dementia: Case-control study. BMJ 361, k1315.
    1. Coupland CAC, Hill T, Dening T, Morriss R, Moore M, Hippisley-Cox J (2019) Anticholinergic drug exposure and the risk of dementia: A nested case-control study. JAMA Intern Med 179, 1084–1093.
    1. Carrière I, Fourrier-Reglat A, Dartigues J-F, Rouaud O, Pasquier F, Ritchie K, Ancelin M-L (2009) Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: The 3-city study. Arch Intern Med 169, 1317–1324.
    1. Campbell NL, Lane KA, Gao S, Boustani MA, Unverzagt F (2018) Anticholinergics influence transition from normal cognition to mild cognitive impairment in older adults in primary care. Pharmacotherapy 38, 511–519.
    1. Weigand AJ, Bondi MW, Thomas KR, Campbell NL, Galasko DR, Salmon DP, Sewell D, Brewer JB, Feldman HH, Delano-Wood L, Alzheimer’s Disease Neuroimaging Initiative (2020) Association of anticholinergic medications and AD biomarkers with incidence of MCI among cognitively normal older adults. Neurology 95, e2295–e2304.
    1. Risacher SL, McDonald BC, Tallman EF, West JD, Farlow MR, Unverzagt FW, Gao S, Boustani M, Crane PK, Petersen RC, Jack CR, Jagust WJ, Aisen PS, Weiner MW, Saykin AJ, Alzheimer’s Disease Neuroimaging Initiative (2016) Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurol 73, 721–732.
    1. Campbell NL, Maidment I, Fox C, Khan B, Boustani M (2013) The 2012 update to the anticholinergic cognitive burden scale. J Am Geriatr Soc 61, S142–S143.
    1. Cai X, Campbell N, Khan B, Callahan C, Boustani M (2013) Chronic anticholinergic use and the aging brain. Alzheimers Dement 9, 377–385.
    1. Chhatwal JP, Schultz AP, Hedden T, Boot BP, Wigman S, Rentz D, Johnson KA, Sperling RA (2019) Anticholinergic amnesia is mediated by alterations in human network connectivity architecture. Cereb Cortex 29, 3445–3456.
    1. Wurtman RJ (2015) How anticholinergic drugs might promote alzheimer’s disease: More amyloid-β and less phosphatidylcholine. J Alzheimers Dis 46, 983–987.
    1. Yoshiyama Y, Kojima A, Itoh K, Isose S, Koide M, Hori K, Arai K (2015) Does anticholinergic activity affect neuropathology? Implication of neuroinflammation in Alzheimer’s disease. Neurodegener Dis 15, 140–148.
    1. Kersten H, Molden E, Tolo IK, Skovlund E, Engedal K, Wyller TB (2013) Cognitive effects of reducing anticholinergic drug burden in a frail elderly population: A randomized controlled trial. J Gerontol A Biol Sci Med Sci 68, 271–278.
    1. van der Meer HG, Wouters H, Pont LG, Taxis K (2018) Reducing the anticholinergic and sedative load in older patients on polypharmacy by pharmacist-led medication review: A randomised controlled trial. BMJ Open 8, e019042.
    1. Birks JS (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev, CD005593.
    1. Gallacher J, Elwood P, Pickering J, Bayer A, Fish M, Ben-Shlomo Y (2012) Benzodiazepine use and risk of dementia: Evidence from the Caerphilly Prospective Study (CaPS). J Epidemiol Community Health 66, 869–873.
    1. Billioti de Gage S, Bégaud B, Bazin F, Verdoux H, Dartigues J-F, Pérès K, Kurth T, Pariente A (2012) Benzodiazepine use and risk of dementia: Prospective population based study. BMJ 345, e6231.
    1. Billioti de Gage S, Moride Y, Ducruet T, Kurth T, Verdoux H, Tournier M, Pariente A, Bégaud B (2014) Benzodiazepine use and risk of Alzheimer’s disease: Case-control study. BMJ 349, g5205.
    1. Gomm W, von Holt K, Thomé F, Broich K, Maier W, Weckbecker K, Fink A, Doblhammer G, Haenisch B (2016) Regular benzodiazepine and Z-substance use and risk of dementia: An analysis of German claims data. J Alzheimers Dis 54, 801–808.
    1. He Q, Chen X, Wu T, Li L, Fei X (2019) Risk of dementia in long-term benzodiazepine users: Evidence from a meta-analysis of observational studies. J Clin Neurol 15, 9–19.
    1. Osler M, Jørgensen MB (2020) Associations of benzodiazepines, Z-drugs, and other anxiolytics with subsequent dementia in patients with affective disorders: A nationwide cohort and nested case-control study. Am J Psychiatry 177, 497–505.
    1. Imfeld P, Bodmer M, Jick SS, Meier CR (2015) Benzodiazepine use and risk of developing Alzheimer’s disease or vascular dementia: A case-control analysis. Drug Saf 38, 909–919.
    1. Gray SL, Dublin S, Yu O, Walker R, Anderson M, Hubbard RA, Crane PK, Larson EB (2016) Benzodiazepine use and risk of incident dementia or cognitive decline: Prospective population based study. BMJ 352, i90.
    1. Nafti M, Sirois C, Kröger E, Carmichael P-H, Laurin D (2020) Is benzodiazepine use associated with the risk of dementia and cognitive impairment-not dementia in older persons? The Canadian Study of Health and Aging. Ann Pharmacother 54, 219–225.
    1. Salzman C (2020) Do benzodiazepines cause Alzheimer’s disease? Am J Psychiatry 177, 476–478.
    1. Gomm W, von Holt K, Thomé F, Broich K, Maier W, Fink A, Doblhammer G, Haenisch B (2016) Association of proton pump inhibitors with risk of dementia: A pharmacoepidemiological claims data analysis. JAMA Neurol 73, 410.
    1. Haenisch B, von Holt K, Wiese B, Prokein J, Lange C, Ernst A, Brettschneider C, König H-H, Werle J, Weyerer S, Luppa M, Riedel-Heller SG, Fuchs A, Pentzek M, Weeg D, Bickel H, Broich K, Jessen F, Maier W, Scherer M (2015) Risk of dementia in elderly patients with the use of proton pump inhibitors. Eur Arch Psychiatry Clin Neurosci 265, 419–428.
    1. Tai S-Y, Chien C-Y, Wu D-C, Lin K-D, Ho B-L, Chang Y-H, Chang Y-P (2017) Risk of dementia from proton pump inhibitor use in Asian population: A nationwide cohort study in Taiwan. PLoS One 12, e0171006.
    1. Gray SL, Walker RL, Dublin S, Yu O, Aiello Bowles EJ, Anderson ML, Crane PK, Larson EB (2018) Proton pump inhibitor use and dementia risk: Prospective population-based study. J Am Geriatr Soc 66, 247–253.
    1. Hwang IC, Chang J, Park SM (2018) A nationwide population-based cohort study of dementia risk among acid suppressant users. Am J Geriatr Psychiatry 26, 1175–1183.
    1. Huang S-T, Tseng L-Y, Chen L-K, Peng L-N, Hsiao F-Y (2019) Does long-term proton pump inhibitor use increase risk of dementia? Not really! Results of the group-based trajectory analysis. Clin Pharmacol Ther 106, 616–622.
    1. Imfeld P, Bodmer M, Jick SS, Meier CR (2018) Proton pump inhibitor use and risk of developing Alzheimer’s disease or vascular dementia: A case-control analysis. Drug Saf 41, 1387–1396.
    1. Taipale H, Tolppanen A-M, Tiihonen M, Tanskanen A, Tiihonen J, Hartikainen S (2017) No association between proton pump inhibitor use and risk of Alzheimer’s disease. Am J Gastroenterol 112, 1802–1808.
    1. Li M, Luo Z, Yu S, Tang Z (2019) Proton pump inhibitor use and risk of dementia: Systematic review and meta-analysis. Medicine (Baltimore) 98, e14422.
    1. Goldstein FC, Steenland K, Zhao L, Wharton W, Levey AI, Hajjar I (2017) Proton pump inhibitors and risk of mild cognitive impairment and dementia. J Am Geriatr Soc 65, 1969–1974.
    1. Booker A, Jacob LE, Rapp M, Bohlken J, Kostev K (2016) Risk factors for dementia diagnosis in German primary care practices. Int Psychogeriatr 28, 1059–1065.
    1. Oesterle A, Laufs U, Liao JK (2017) Pleiotropic effects of statins on the cardiovascular system. Circ Res 120, 229–243.
    1. Taylor F, Huffman MD, Macedo AF, Moore THM, Burke M, Davey Smith G, Ward K, Ebrahim S (2013) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev, CD004816.
    1. Refolo LM, Pappolla MA, LaFrancois J, Malester B, Schmidt SD, Thomas-Bryant T, Tint GS, Wang R, Mercken M, Petanceska SS, Duff KE (2001) A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 8, 890–899.
    1. Di Paolo G, Kim T-W (2011) Linking lipids to Alzheimer’s disease: Cholesterol and beyond. Nat Rev Neurosci 12, 284–296.
    1. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356, 1627–1631.
    1. Corrao G, Ibrahim B, Nicotra F, Zambon A, Merlino L, Pasini TS, Catapano AL, Mancia G (2013) Long-term use of statins reduces the risk of hospitalization for dementia. Atherosclerosis 230, 171–176.
    1. Chang C-F, Liou Y-S, Lin T-K, Ma S, Hu Y-R, Chen H-Y, Jong G-P (2019) High exposure to statins decrease the risk of new-onset dementia: A nationwide population-based longitudinal cohort study. Medicine (Baltimore) 98, e16931.
    1. Bettermann K, Arnold AM, Williamson J, Rapp S, Sink K, Toole JF, Carlson MC, Yasar S, Dekosky S, Burke GL (2012) Statins, risk of dementia, and cognitive function: Secondary analysis of the ginkgo evaluation of memory study. J Stroke Cerebrovasc Dis 21, 436–444.
    1. Zhang X, Wen J, Zhang Z (2018) Statins use and risk of dementia: A dose-response meta analysis. Medicine (Baltimore) 97, e11304.
    1. Poly TN, Islam MM, Walther BA, Yang H-C, Wu C-C, Lin M-C, Li Y-C (2020) Association between use of statin and risk of dementia: A meta-analysis of observational studies. Neuroepidemiology 54, 214–226.
    1. McGuinness B, Craig D, Bullock R, Passmore P (2016) Statins for the prevention of dementia. Cochrane Database Syst Rev, CD003160.
    1. Rea TD, Breitner JC, Psaty BM, Fitzpatrick AL, Lopez OL, Newman AB, Hazzard WR, Zandi PP, Burke GL, Lyketsos CG, Bernick C, Kuller LH (2005) Statin use and the risk of incident dementia: The Cardiovascular Health Study. Arch Neurol 62, 1047–1051.
    1. Samaras K, Makkar SR, Crawford JD, Kochan NA, Slavin MJ, Wen W, Trollor JN, Brodaty H, Sachdev PS (2019) Effects of statins on memory, cognition, and brain volume in the elderly. J Am Coll Cardiol 74, 2554–2568.
    1. Ramanan VK, Przybelski SA, Graff-Radford J, Castillo AM, Lowe VJ, Mielke MM, Roberts RO, Reid RI, Knopman DS, Jack CR, Petersen RC, Vemuri P (2018) Statins and brain health: Alzheimer’s disease and cerebrovascular disease biomarkers in older adults. J Alzheimers Dis 65, 1345–1352.
    1. Roy S, Weinstock JL, Ishino AS, Benites JF, Pop SR, Perez CD, Gumbs EA, Rosenbaum JA, Roccato MK, Shah H, Contino G, Hunter K (2017) Association of cognitive impairment in patients on 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors. J Clin Med Res 9, 638–649.
    1. D’Cunha NM, Georgousopoulou EN, Dadigamuwage L, Kellett J, Panagiotakos DB, Thomas J, McKune AJ, Mellor DD, Naumovski N (2018) Effect of long-term nutraceutical and dietary supplement use on cognition in the elderly: A 10-year systematic review of randomised controlled trials. Br J Nutr 119, 280–298.
    1. Butler M, Nelson VA, Davila H, Ratner E, Fink HA, Hemmy LS, McCarten JR, Barclay TR, Brasure M, Kane RL (2018) Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: A systematic review. Ann Intern Med 168, 52–62.
    1. Crawford C, Boyd C, Avula B, Wang Y-H, Khan IA, Deuster PA (2020) A public health issue: Dietary supplements promoted for brain health and cognitive performance. J Altern Complement Med 26, 265–272.
    1. Santini A, Cammarata SM, Capone G, Ianaro A, Tenore GC, Pani L, Novellino E (2018) Nutraceuticals: Opening the debate for a regulatory framework. Br J Clin Pharmacol 84, 659–672.
    1. Alzheimer’s Association, Alternative Treatments, , Accessed on 18 October 2020.
    1. Hellmuth J, Rabinovici GD, Miller BL (2019) The rise of pseudomedicine for dementia and brain health. JAMA 321, 543.
    1. Rehm J, Hasan OSM, Black SE, Shield KD, Schwarzinger M (2019) Alcohol use and dementia: A systematic scoping review. Alzheimers Res Ther 11, 1.
    1. Ilomaki J, Jokanovic N, Tan ECK, Lonnroos E (2015) Alcohol consumption, dementia and cognitive decline: An overview of systematic reviews. Curr Clin Pharmacol 10, 204–212.
    1. Sabia S, Fayosse A, Dumurgier J, Dugravot A, Akbaraly T, Britton A, Kivimäki M, Singh-Manoux A (2018) Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. BMJ 362, k2927.
    1. Schwarzinger M, Pollock BG, Hasan OSM, Dufouil C, Rehm J, QalyDays Study Group (2018) Contribution of alcohol use disorders to the burden of dementia in France 2008-13: A nationwide retrospective cohort study. Lancet Public Health 3, e124–e132.
    1. Hersi M, Irvine B, Gupta P, Gomes J, Birkett N, Krewski D (2017) Risk factors associated with the onset and progression of Alzheimer’s disease: A systematic review of the evidence. Neurotoxicology 61, 143–187.
    1. Sabia S, Nabi H, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A (2009) Health behaviors from early to late midlife as predictors of cognitive function: The Whitehall II study. Am J Epidemiol 170, 428–437.
    1. National Institute on Alcohol Abuse and Alcoholism (NIAAA), Alcohol Facts and Statistics, , Last updated 25 April 2019, Accessed on 25 September 2020.
    1. Harper C (2009) The neuropathology of alcohol-related brain damage. Alcohol Alcohol 44, 136–140.
    1. Venkataraman A, Kalk N, Sewell G, Ritchie CW, Lingford-Hughes A (2017) Alcohol and Alzheimer’s disease—does alcohol dependence contribute to beta-amyloid deposition, neuroinflammation and neurodegeneration in Alzheimer’s disease? Alcohol Alcohol 52, 151–158.
    1. Wei J, Qin L, Fu Y, Dai Y, Wen Y, Xu S (2019) Long-term consumption of alcohol exacerbates neural lesions by destroying the functional integrity of the blood-brain barrier. Drug Chem Toxicol, doi: 10.1080/01480545.2019.1681444
    1. Huang D, Yu M, Yang S, Lou D, Zhou W, Zheng L, Wang Z, Cai F, Zhou W, Li T, Song W (2018) Ethanol alters APP processing and aggravates Alzheimer-associated phenotypes. Mol Neurobiol 55, 5006–5018.
    1. Bell S, Daskalopoulou M, Rapsomaniki E, George J, Britton A, Bobak M, Casas JP, Dale CE, Denaxas S, Shah AD, Hemingway H (2017) Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population based cohort study using linked health records. BMJ 356, j909.
    1. Mukamal KJ, Chen CM, Rao SR, Breslow RA (2010) Alcohol consumption and cardiovascular mortality among U.S. adults, 1987 to 2002. J Am Coll Cardiol 55, 1328–1335.
    1. Ridley NJ, Draper B, Withall A (2013) Alcohol-related dementia: An update of the evidence. Alzheimers Res Ther 5, 3.
    1. O’Keefe JH, Bhatti SK, Bajwa A, DiNicolantonio JJ, Lavie CJ (2014) Alcohol and cardiovascular health: The dose makes the poison... or the remedy. Mayo Clin Proc 89, 382–393.
    1. Brust JCM (2010) Ethanol and cognition: Indirect effects, neurotoxicity and neuroprotection: A review. Int J Environ Res Public Health 7, 1540–1557.
    1. Koch M, Fitzpatrick AL, Rapp SR, Nahin RL, Williamson JD, Lopez OL, DeKosky ST, Kuller LH, Mackey RH, Mukamal KJ, Jensen MK, Sink KM (2019) Alcohol consumption and risk of dementia and cognitive decline among older adults with or without mild cognitive impairment. JAMA Netw Open 2, e1910319.
    1. Anstey KJ, Mack HA, Cherbuin N (2009) Alcohol consumption as a risk factor for dementia and cognitive decline: Meta-analysis of prospective studies. Am J Geriatr Psychiatry 17, 542–555.
    1. U.S. Centers for Disease Control and Prevention, Traumatic Brain Injury & Concussion, , Last updated 28 August 2020, Accessed on 14 November 2020.
    1. Fann JR, Ribe AR, Pedersen HS, Fenger-Grøn M, Christensen J, Benros ME, Vestergaard M (2018) Long-term risk of dementia among people with traumatic brain injury in Denmark: A population-based observational cohort study. Lancet Psychiatry 5, 424–431.
    1. Nordström A, Nordström P (2018) Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study. PLOS Med 15, e1002496.
    1. Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K (2018) Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans. JAMA Neurol 75, 1055–1061.
    1. Abner EL, Nelson PT, Schmitt FA, Browning SR, Fardo DW, Wan L, Jicha GA, Cooper GE, Smith CD, Caban-Holt AM, Van Eldik LJ, Kryscio RJ (2014) Self-reported head injury and risk of late-life impairment and AD pathology in an AD center cohort. Dement Geriatr Cogn Disord 37, 294–306.
    1. Li Y, Li Y, Li X, Zhang S, Zhao J, Zhu X, Tian G (2017) Head injury as a risk factor for dementia and Alzheimer’s disease: A systematic review and meta-analysis of 32 observational studies. PLoS One 12, e0169650.
    1. LoBue C, Woon FL, Rossetti HC, Hynan LS, Hart J, Cullum CM (2018) Traumatic brain injury history and progression from mild cognitive impairment to Alzheimer disease. Neuropsychology 32, 401–409.
    1. Schaffert J, LoBue C, White CL, Chiang H-S, Didehbani N, Lacritz L, Rossetti H, Dieppa M, Hart J, Cullum CM (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer’s disease. Neuropsychology 32, 410–416.
    1. Filley CM, Kelly JP (2018) White matter and cognition in traumatic brain injury. J Alzheimers Dis 65, 345–362.
    1. Kokiko-Cochran ON, Godbout JP (2018) The inflammatory continuum of traumatic brain injury and Alzheimer’s disease. Front Immunol 9, 672.
    1. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136, 28–42.
    1. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ (2011) Inflammation after trauma: Microglial activation and traumatic brain injury. Ann Neurol 70, 374–383.
    1. Acosta SA, Tajiri N, Sanberg PR, Kaneko Y, Borlongan CV (2017) Increased amyloid precursor protein and tau expression manifests as key secondary cell death in chronic traumatic brain injury. J Cell Physiol 232, 665–677.
    1. Gao H, Han Z, Bai R, Huang S, Ge X, Chen F, Lei P (2017) The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury. Brain Res 1657, 1–8.
    1. Washington PM, Morffy N, Parsadanian M, Zapple DN, Burns MP (2014) Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer’s disease mouse model. J Neurotrauma 31, 125–134.
    1. Shishido H, Ueno M, Sato K, Matsumura M, Toyota Y, Kirino Y, Tamiya T, Kawai N, Kishimoto Y (2019) Traumatic brain injury by weight-drop method causes transient amyloid-β deposition and acute cognitive deficits in mice. Behav Neurol 2019, 3248519.
    1. Johnson VE, Stewart W, Smith DH (2012) Widespread τ and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol 22, 142–149.
    1. Mayeux R, Ottman R, Maestre G, Ngai C, Tang MX, Ginsberg H, Chun M, Tycko B, Shelanski M (1995) Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology 45, 555–557.
    1. Tripodis Y, Alosco ML, Zirogiannis N, Gavett BE, Chaisson C, Martin B, McClean MD, Mez J, Kowall N, Stern RA (2017) The effect of traumatic brain injury history with loss of consciousness on rate of cognitive decline among older adults with normal cognition and Alzheimer’s disease dementia. J Alzheimers Dis 59, 251–263.
    1. Sugarman MA, McKee AC, Stein TD, Tripodis Y, Besser LM, Martin B, Palmisano JN, Steinberg EG, O’Connor MK, Au R, McClean M, Killiany R, Mez J, Weiner MW, Kowall NW, Stern RA, Alosco ML (2019) Failure to detect an association between self-reported traumatic brain injury and Alzheimer’s disease neuropathology and dementia. Alzheimers Dement 15, 686–698.
    1. Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ (2019) Air pollution and dementia: A systematic review. J Alzheimers Dis 70, S145–S163.
    1. Lai C-Y, Huang Y-W, Tseng C-H, Lin C-L, Sung F-C, Kao C-H (2016) Patients with carbon monoxide poisoning and subsequent dementia: A population-based cohort study. Medicine (Baltimore) 95, e2418.
    1. Wong C-S, Lin Y-C, Hong L-Y, Chen T-T, Ma H-P, Hsu Y-H, Tsai S-H, Lin Y-F, Wu M-Y (2016) Increased long-term risk of dementia in patients with carbon monoxide poisoning: A population-based study. Medicine (Baltimore) 95, e2549.
    1. Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, van Donkelaar A, Hystad P, Martin RV, Murray BJ, Jessiman B, Wilton AS, Kopp A, Burnett RT (2017) Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. Lancet 389, 718–726.
    1. Oudin A, Forsberg B, Adolfsson AN, Lind N, Modig L, Nordin M, Nordin S, Adolfsson R, Nilsson L-G (2016) Traffic-related air pollution and dementia incidence in northern Sweden: A longitudinal study. Environ Health Perspect 124, 306–312.
    1. Carey IM, Anderson HR, Atkinson RW, Beevers SD, Cook DG, Strachan DP, Dajnak D, Gulliver J, Kelly FJ (2018) Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open 8, e022404.
    1. Chang K-H, Chang M-Y, Muo C-H, Wu T-N, Chen C-Y, Kao C-H (2014) Increased risk of dementia in patients exposed to nitrogen dioxide and carbon monoxide: A population-based retrospective cohort study. PloS One 9, e103078.
    1. Ailshire JA, Clarke P (2015) Fine particulate matter air pollution and cognitive function among U.S. older adults. J Gerontol B Psychol Sci Soc Sci 70, 322–328.
    1. Gatto NM, Henderson VW, Hodis HN, St John JA, Lurmann F, Chen J-C, Mack WJ (2014) Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology 40, 1–7.
    1. Schikowski T, Vossoughi M, Vierkötter A, Schulte T, Teichert T, Sugiri D, Fehsel K, Tzivian L, Bae I, Ranft U, Hoffmann B, Probst-Hensch N, Herder C, Krämer U, Luckhaus C (2015) Association of air pollution with cognitive functions and its modification by APOE gene variants in elderly women. Environ Res 142, 10–16.
    1. Kulick ER, Wellenius GA, Boehme AK, Joyce NR, Schupf N, Kaufman JD, Mayeux R, Sacco RL, Manly JJ, Elkind MSV (2020) Long-term exposure to air pollution and trajectories of cognitive decline among older adults. Neurology 94, e1782–e1792.
    1. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9, 124.
    1. Levesque S, Surace MJ, McDonald J, Block ML (2011) Air pollution & the brain: Subchronic diesel exhaust exosure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation 8, 105.
    1. Kim SH, Knight EM, Saunders EL, Cuevas AK, Popovech M, Chen L-C, Gandy S (2012) Rapid doubling of Alzheimer’s amyloid-β40 and 42 levels in brains of mice exposed to a nickel nanoparticle model of air pollution. F1000Res 1, 70.
    1. Rivas-Arancibia S, Hernández-Zimbrón LF, Rodríguez-Martínez E, Borgonio-Pérez G, Velumani V, Durán-Bedolla J (2013) Chronic exposure to low doses of ozone produces a state of oxidative stress and blood-brain barrier damage in the hippocampus of rat. Adv Biosci Biotechnol 4, 24–29.
    1. Calderón-Garcidueñas L, Reed W, Maronpot RR, Henríquez-Roldán C, Delgado-Chavez R, Calderón-Garcidueñas A, Dragustinovis I, Franco-Lira M, Aragón-Flores M, Solt AC, Altenburg M, Torres-Jardón R, Swenberg JA (2004) Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32, 650–658.
    1. Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C, Torres-Jardón R, Nuse B, Herritt L, Villarreal-Calderón R, Osnaya N, Stone I, García R, Brooks DM, González-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Reed W (2008) Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol 36, 289–310.
    1. Moulton PV, Yang W (2012) Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health 2012, 472751.
    1. Cesaroni G, Forastiere F, Stafoggia M, Andersen ZJ, Badaloni C, Beelen R, Caracciolo B, de Faire U, Erbel R, Eriksen KT, Fratiglioni L, Galassi C, Hampel R, Heier M, Hennig F, Hilding A, Hoffmann B, Houthuijs D, Jöckel K-H, Korek M, Lanki T, Leander K, Magnusson PKE, Migliore E, Ostenson C-G, Overvad K, Pedersen NL, J JP, Penell J, Pershagen G, Pyko A, Raaschou-Nielsen O, Ranzi A, Ricceri F, Sacerdote C, Salomaa V, Swart W, Turunen AW, Vineis P, Weinmayr G, Wolf K, de Hoogh K, Hoek G, Brunekreef B, Peters A (2014) Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 348, f7412.
    1. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD (2013) Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ Health 12, 43.
    1. Shah ASV, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, Langrish JP, Newby DE, Mills NL (2015) Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ 350, h1295.
    1. Hajat A, Hsia C, O’Neill MS (2015) Socioeconomic disparities and air pollution exposure: A global review. Curr Environ Health Rep 2, 440–450.
    1. Karp A, Paillard-Borg S, Wang H-X, Silverstein M, Winblad B, Fratiglioni L (2006) Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dement Geriatr Cogn Disord 21, 65–73.
    1. Anastasiou CA, Yannakoulia M, Kontogianni MD, Kosmidis MH, Mamalaki E, Dardiotis E, Hadjigeorgiou G, Sakka P, Tsapanou A, Lykou A, Scarmeas N (2018) Mediterranean lifestyle in relation to cognitive health: Results from the HELIAD Study. Nutrients 10, 1557.
    1. Dhana K, Evans DA, Rajan KB, Bennett DA, Morris MC (2020) Healthy lifestyle and the risk of Alzheimer dementia: Findings from 2 longitudinal studies. Neurology 95, e374–e383.
    1. Anderson-Hanley C, Barcelos NM, Zimmerman EA, Gillen RW, Dunnam M, Cohen BD, Yerokhin V, Miller KE, Hayes DJ, Arciero PJ, Maloney M, Kramer AF (2018) The Aerobic and Cognitive Exercise Study (ACES) for community-dwelling older adults with or at-risk for mild cognitive impairment (MCI): Neuropsychological, neurobiological and neuroimaging outcomes of a randomized clinical trial. Front Aging Neurosci 10, 76.
    1. Karssemeijer EGA, Aaronson JA, Bossers WJR, Donders R, Olde Rikkert MGM, Kessels RPC (2019) The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: A randomized controlled trial. Alzheimers Res Ther 11, 3.
    1. Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T, Lindström J, Mangialasche F, Paajanen T, Pajala S, Peltonen M, Rauramaa R, Stigsdotter-Neely A, Strandberg T, Tuomilehto J, Soininen H, Kivipelto M (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 385, 2255–2263.
    1. Isaacson RS, Hristov H, Saif N, Hackett K, Hendrix S, Melendez J, Safdieh J, Fink M, Thambisetty M, Sadek G, Bellara S, Lee P, Berkowitz C, Rahman A, Meléndez-Cabrero J, Caesar E, Cohen R, Lu P-L, Dickson SP, Hwang MJ, Scheyer O, Mureb M, Schelke MW, Niotis K, Greer CE, Attia P, Mosconi L, Krikorian R (2019) Individualized clinical management of patients at risk for Alzheimer’s dementia. Alzheimers Dement 15, 1588–1602.
    1. Andrieu S, Guyonnet S, Coley N, Cantet C, Bonnefoy M, Bordes S, Bories L, Cufi M-N, Dantoine T, Dartigues J-F, Desclaux F, Gabelle A, Gasnier Y, Pesce A, Sudres K, Touchon J, Robert P, Rouaud O, Legrand P, Payoux P, Caubere J-P, Weiner M, Carrié I, Ousset P-J, Vellas B, MAPT Study Group (2017) Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurol 16, 377–389.
    1. Yu J-T, Xu W, Tan C-C, Andrieu S, Suckling J, Evangelou E, Pan A, Zhang C, Jia J, Feng L, Kua E-H, Wang Y-J, Wang H-F, Tan M-S, Li J-Q, Hou X-H, Wan Y, Tan L, Mok V, Tan L, Dong Q, Touchon J, Gauthier S, Aisen PS, Vellas B (2020) Evidence-based prevention of Alzheimer’s disease: Systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry 91, 1201–1209.
    1. WWFINGERS, US-POINTER, , Accessed on 23 July 2020.
    1. Rosenberg A, Mangialasche F, Ngandu T, Solomon A, Kivipelto M (2020) Multidomain interventions to prevent cognitive impairment, Alzheimer’s disease, and dementia: From FINGER to World-Wide FINGERS. J Prev Alzheimers Dis 7, 29–36.
    1. Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, Eccles MP, Cane J, Wood CE (2013) The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Ann Behav Med 46, 81–95.
    1. Moyers TB (2014) The relationship in motivational interviewing. Psychotherapy 51, 358–363.
    1. Rollnick S, Mason P, Butler C (1999), Health behavior change: A guide for practitioners, Churchill Livingstone, Edinburgh.
    1. Miller W, Rollnick S (2013) Motivational interviewing: Helping people change, Guilford Press, New York, NY.
    1. Lindson N, Thompson TP, Ferrey A, Lambert JD, Aveyard P (2019) Motivational interviewing for smoking cessation. Cochrane Database Syst Rev 7, CD006936.
    1. D’Onofrio G, Pantalon MV, Degutis LC, Fiellin DA, O’Connor PG (2005) Development and implementation of an emergency practitioner-performed brief intervention for hazardous and harmful drinkers in the emergency department. Acad Emerg Med 12, 249–256.
    1. O’Halloran PD, Blackstock F, Shields N, Holland A, Iles R, Kingsley M, Bernhardt J, Lannin N, Morris ME, Taylor NF (2014) Motivational interviewing to increase physical activity in people with chronic health conditions: A systematic review and meta-analysis. Clin Rehabil 28, 1159–1171.
    1. Olson R, Wipfli B, Thompson SV, Elliot DL, Anger WK, Bodner T, Hammer LB, Perrin NA (2016) Weight control intervention for truck drivers: The SHIFT Randomized Controlled Trial, United States. Am J Public Health 106, 1698–1706.
    1. Barnes RD, Barber J (2017) Preliminary examination of metabolic syndrome response to motivational interviewing for weight loss as compared to an attentional control and usual care in primary care for individuals with and without binge-eating disorder. Eat Behav 26, 108–113.
    1. Bóveda-Fontán J, Barragán-Brun N, Campiñez-Navarro M, Pérula-de Torres LÁ, Bosch-Fontcuberta JM, Martín-Álvarez R, Arbonies-Ortiz JC, Novo-Rodríguez JM, Criado-Larumbe M, Fernández-García JA, Martín-Rioboó E, Collaborative Group Estudio Dislip-EM (2015) Effectiveness of motivational interviewing in patients with dyslipidemia: A randomized cluster trial. BMC Fam Pract 16, 151.
    1. Hardcastle SJ, Taylor AH, Bailey MP, Harley RA, Hagger MS (2013) Effectiveness of a motivational interviewing intervention on weight loss, physical activity and cardiovascular disease risk factors: A randomised controlled trial with a 12-month post-intervention follow-up. Int J Behav Nutr Phys Act 10, 40.
    1. Lundahl B, Moleni T, Burke BL, Butters R, Tollefson D, Butler C, Rollnick S (2013) Motivational interviewing in medical care settings: A systematic review and meta-analysis of randomized controlled trials. Patient Educ Couns 93, 157–168.
    1. Rovner BW, Casten RJ, Hegel MT, Leiby B (2018) Preventing cognitive decline in black individuals with mild cognitive impairment: A randomized clinical trial. JAMA Neurol 75, 1487–1493.
    1. Kanter JW, Manos RC, Bowe WM, Baruch DE, Busch AM, Rusch LC (2010) What is behavioral activation? A review of the empirical literature. Clin Psychol Rev 30, 608–620.
    1. Cuijpers P, van Straten A, Warmerdam L (2007) Behavioral activation treatments of depression: A meta-analysis. Clin Psychol Rev 27, 318–326.
    1. Kahneman D (2011) Thinking Fast and Slow, Farrar, Straus and Giroux, New York, NY.
    1. Thorgeirsson T, Kawachi I (2013) Behavioral economics: Merging psychology and economics for lifestyle interventions. Am J Prev Med 44, 185–189.
    1. Kawachi I (2015) Why do behavior interventions fail? Insights from behavioral economics. J Nutr Sci Vitaminol (Tokyo) 61(Suppl), S210.
    1. Shuval K, Leonard T, Drope J, Katz DL, Patel AV, Maitin-Shepard M, Amir O, Grinstein A (2017) Physical activity counseling in primary care: Insights from public health and behavioral economics. CA Cancer J Clin 67, 233–244.
    1. Roberto CA, Kawachi I (2014) Use of psychology and behavioral economics to promote healthy eating. Am J Prev Med 47, 832–837.
    1. Stevens J (2015) Behavioral economics strategies for promoting adherence to sleep interventions. Sleep Med Rev 23, 20–27.
    1. Chang LL, DeVore AD, Granger BB, Eapen ZJ, Ariely D, Hernandez AF (2017) Leveraging behavioral economics to improve heart failure care and outcomes. Circulation 136, 765–772.
    1. Schwartz HEM, Bay CP, McFeeley BM, Krivanek TJ, Daffner KR, Gale SA (2019) The Brain Health Champion study: Health coaching changes behaviors in patients with cognitive impairment. Alzheimers Dement (N Y) 5, 771–779.

Source: PubMed

3
購読する