Impact of Crocus Sativus L. on Metabolic Profile in Patients with Diabetes Mellitus or Metabolic Syndrome: A Systematic Review

Parthena Giannoulaki, Evangelia Kotzakioulafi, Michail Chourdakis, Apostolos Hatzitolios, Triantafyllos Didangelos, Parthena Giannoulaki, Evangelia Kotzakioulafi, Michail Chourdakis, Apostolos Hatzitolios, Triantafyllos Didangelos

Abstract

Background: Experimental studies demonstrated a positive effect of administration of Crocus sativus L. (saffron) and its bioactive ingredients on metabolic profile through their antioxidant capacity.

Purpose: To determine if the use of saffron in humans is beneficial to patients with diabetes mellitus (DM) or metabolic syndrome (MS).

Methods: This systematic review includes 14randomized control trials that investigated the impact of saffron administration and its bioactive ingredient crocin on the metabolic profile of patients with DM, MS, prediabetes, and coronary artery disease. We documented the following clinical outcomes: fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, systolic, and diastolic blood pressure.

Results: Eight studies examined the efficacy of saffron in patients with DM, four with the metabolic syndrome, one with prediabetes and one with coronary artery disease. A favorable effect on FBG was observed. The results regarding blood lipids and blood pressure were inconclusive in the current review.

Conclusions: According to the available limited evidence, saffron may have a favorable effect on FBG. Many of the studies in the reviewed literature are of poor quality, and more research is needed in this direction to confirm and establish the above findings.

Keywords: Crocus sativus L.; crocin; diabetes mellitus; dyslipidemia; hyperglycemia; picrocrocin; saffron; safranal.

Conflict of interest statement

There are no conflicts of interest related to this publication.

Figures

Figure 1
Figure 1
PRISMA flow diagram.
Figure 2
Figure 2
Risk of Bias assessment summary.
Figure 3
Figure 3
Risk of bias assessment summary for each included study.

References

    1. Didangelos T., Karamitsos D. Chronic diabetic complications. In: Karamitsos D., editor. Diabetologia, Theory and Practice in the Treatment of Diabetes Mellitus. 2nd ed. Volume 1. Siokis, Medical and Scientific Publications; Athens, Greece: 2009. pp. 429–535.
    1. Calcutt N.A., Cooper M.E., Kern T.S., Schmidt A.M. Therapies for hyperglycaemia-induced diabetic complications: From animal models to clinical trials. Nat. Rev. Drug Discov. 2009;8:417–430. doi: 10.1038/nrd2476.
    1. Trisha D. Preiodontal disease, the overlooked the diabetes complication. Nephrol. Nurs. J. 2009;36:489–495.
    1. Brownlee M. A radical explanation for glucose-induced β cell dysfunction. J. Clin. Investig. 2003;112:1788–1790. doi: 10.1172/JCI200320501.
    1. Seino Y., Ueno S., Yabe D., Suzuki A. Dietary recommendations for type 2 diabetes patients: Lessons from recent clinical and basic research in Asia. J. Diabetes Investig. 2019;10:1405–1407. doi: 10.1111/jdi.13135.
    1. Melnyk J.P., Wang S., Marcone M.F. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 2010;43:1981–1989. doi: 10.1016/j.foodres.2010.07.033.
    1. Christodoulou E., Kadoglou N.P., Kostomitsopoulos N., Valsami G. Saffron: A natural product with potential pharmaceutical applications. J. Pharm. Pharmacol. 2015;67:1634–1649. doi: 10.1111/jphp.12456.
    1. Schmidt M., Betti G., Hensel A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien. Med. Wochenschr. 2007;157:315. doi: 10.1007/s10354-007-0428-4.
    1. Arasteh A., Aliyev A., Khamnei S., Delazar A., Mesgari M., Mehmannavaz Y. Crocus sativus on serum glucose, insulin and cholesterol levels in healthy male rats. J. Med. Plants Res. 2010;4:397–402.
    1. Shirali S., Zahra Bathaie S., Nakhjavani M. Effect of Crocin on the Insulin Resistance and Lipid Profile of Streptozotocin-Induced Diabetic Rats. Phytother. Res. 2013;27:1042–1047. doi: 10.1002/ptr.4836.
    1. Rajaei Z., Hadjzadeh M.-A.-R., Nemati H., Hosseini M., Ahmadi M., Shafiee S. Antihyperglycemic and Antioxidant Activity of Crocin in Streptozotocin-Induced Diabetic Rats. J. Med. Food. 2013;16:206–210. doi: 10.1089/jmf.2012.2407.
    1. Asri-Rezaei S., Tamaddonfard E., Ghasemsoltani-Momtaz B., Erfanparast A., Gholamalipour S. Effects of crocin and zinc chloride on blood levels of zinc and metabolic and oxidative parameters in streptozotocin-induced diabetic rats. Avicenna J. Phytomed. 2015;5:403–412.
    1. Kianbakht S., Hajiaghaee R. Anti-hyperglycemic Effects of Saffron and its Active Constituents, Crocin and Safranal, in Alloxan-Induced Diabetic Rats. J. Med. Plants. 2011;3:82–89.
    1. Mohajeri D., Mousavi G., Doustar Y. Antihyperglycemic and pancreas-protective effects of Crocus sativus L. (saffron) stigma-ethanolic extract on rats with alloxan-induced diabetes. Sci. Alert. 2009;9:302–310. doi: 10.3923/jbs.2009.302.310.
    1. Kang C., Lee H., Jung E.-S., Seyedian R., Jo M., Kim J., Kim J.-S., Kim E. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem. 2012;135:2350–2358. doi: 10.1016/j.foodchem.2012.06.092.
    1. Maeda A., Kai K., Ishii M., Ishii T., Akagawa M. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Ay mice. Mol. Nutr. Food Res. 2014;58:1177–1189. doi: 10.1002/mnfr.201300675.
    1. Xi L., Qian Z., Xu G., Zheng S., Sun S., Wen N., Sheng L., Shi Y., Zhang Y. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J. Nutr. Biochem. 2007;18:64–72. doi: 10.1016/j.jnutbio.2006.03.010.
    1. Lee I.-A., Lee J.H., Baek N.-I., Kim D.-H. Antihyperlipidemic Effect of Crocin Isolated from the Fructus of Gardenia jasminoides and Its Metabolite Crocetin. Biol. Pharm. Bull. 2005;28:2106–2110. doi: 10.1248/bpb.28.2106.
    1. Sheng L., Qian Z., Zheng S., Xi L. Mechanism of hypolipidemic effect of crocin in rats: Crocin inhibits pancreatic lipase. Eur. J. Pharmacol. 2006;543:116–122. doi: 10.1016/j.ejphar.2006.05.038.
    1. Xu G.-L., Yu S.-Q., Gong Z.-N., Zhang S.-Q. Study of the effect of crocin on rat experimental hyperlipemia and the underlying mechanisms. Zhongguo Zhong Yao Za Zhi. 2005;30:369–372.
    1. Lee I.-A., Min S.-W., Kim D. Lactic acid bacteria increases hypolipidemic effect of crocin isolated from fructus of Gardenia jasminoides. J. Microbiol. Biotechnol. 2006;16:1084–1089.
    1. Mashmoul M., Azlan A., Yusof B.N.M., Khaza’ai H., Mohtarrudin N., Boroushaki M.T. Effects of saffron extract and crocin on anthropometrical, nutritional and lipid profile parameters of rats fed a high fat diet. J. Funct. Foods. 2014;8:180–187. doi: 10.1016/j.jff.2014.03.017.
    1. Samarghandian S., Azimi-Nezhad M., Samini F. Ameliorative Effect of Saffron Aqueous Extract on Hyperglycemia, Hyperlipidemia, and Oxidative Stress on Diabetic Encephalopathy in Streptozotocin Induced Experimental Diabetes Mellitus. BioMed Res. Int. 2014;2014:112. doi: 10.1155/2014/920857. 920857.
    1. Abe K., Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother. Res. 2000;14:149–152. doi: 10.1002/(SICI)1099-1573(200005)14:3<149::AID-PTR665>;2-5.
    1. Imenshahidi M., Razavi B.M., Faal A., Gholampoor A., Mousavi S.M., Hosseinzadeh H. Effects of chronic crocin treatment on desoxycorticosterone acetate (doca)-salt hypertensive rats. Iran. J. Basic Med. Sci. 2014;17:9–13.
    1. Imenshahidi M., Razavi M., Faal A., Gholampoor A., Mousavi S., Hosseinzadeh H. The effect of chronic administration of safranal on systolic blood pressure in rats. Iran. J. Pharm. Res. 2015;14:585–590. doi: 10.22037/ijpr.2015.1669.
    1. Imenshahidi M., Razavi B.M., Faal A., Gholampoor A., Mousavi S.M., Hosseinzadeh H. The effect of chronic administration of saffron (Crocus sativus) stigma aqueous extract on systolic blood pressure in rats. Jundishapur J. Nat. Pharm. Prod. 2013;8:175–179. doi: 10.17795/jjnpp-12475.
    1. Liu J., Qian Z. Effects of crocin on cholestane-3beta-5alpha-6beta-triol induced apoptosis and related gene expression of cultured endothelial cells. J. China Pharm. Univ. 2005;36:254.
    1. Xu G., Gong Z., Yu W., Gao L., He S., Qian Z. Increased Expression Ratio of Bcl-2/Bax Is Associated with Crocin-Mediated Apoptosis in Bovine Aortic Endothelial Cells. Basic Clin. Pharmacol. Toxicol. 2007;100:31–35. doi: 10.1111/j.1742-7843.2007.00001.x.
    1. Xu G.-L., Qian Z.-Y., Yu S.-Q., Gong Z.-N., Shen X.-C. Evidence of crocin against endothelial injury induced by hydrogen peroxide in vitro. J. Asian Nat. Prod. Res. 2006;8:79–85. doi: 10.1080/10286020500044732.
    1. Ma S., Liu B., Zhou S., Xu X., Yang Q., Zhou J. Pharmacological studies of glycosides of saffron crocus (Crocus sativus).II.Effects on blood coagulation, platelet aggregation and thromobosis. Zhong Cao Yao. 1999;30:196–198.
    1. He S.-Y., Qian Z.-Y., Tang F.-T., Wen N., Xu G.-L., Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005;77:907–921. doi: 10.1016/j.lfs.2005.02.006.
    1. He S.-Y., Qian Z.-Y., Wen N., Tang F.-T., Xu G.-L., Zhou C.-H. Influence of crocetin on experimental atherosclerosis in hyperlipidamic-diet quails. Eur. J. Pharmacol. 2007;554:191–195. doi: 10.1016/j.ejphar.2006.09.071.
    1. Khori V., Rakhshan E., Mirabbas A. A study of the role of nitric oxide in the mechanism of action of hydroalcoholic extract of saffron (Crocus sativus) on the electrophysiological properties of the rabbit atrioventricular node; Proceedings of the II International Symposium on Saffron Biology and Technology; Masshad, Iran. 28–30 October 2016; pp. 351–358.
    1. Boskabady M.H., Shafei M.N., Shakiba A., Sefidi H.S. Effect of aqueous-ethanol extract from Crocus sativus (saffron) on guinea-pig isolated heart. Phytother. Res. 2008;22:330–334. doi: 10.1002/ptr.2317.
    1. Du P., Qian Z.Y., Shen X.C., Rao S.Y., Wen N. Effectiveness of crocin against myocardial injury. Chin. New Drugs J. 2005;14:1424.
    1. Zhang R., Zhi-Yu Q., Xiao-Yuan H., Zhen C., Jun-Ling Y., Hamid A. Comparison of the effects of crocetin and crocin on myocardial injury in rats. Chin. J. Nat. Med. 2009;7:223–227. doi: 10.3724/SP.J.1009.2009.00223.
    1. Goyal S.N., Arora S., Sharma A.K., Joshi S., Ray R., Bhatia J., Kumari S., Arya D.S. Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastuctural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine. 2010;17:227–232. doi: 10.1016/j.phymed.2009.08.009.
    1. EElsherbiny N.M., Salama M.F., Said E., El-Sherbiny M., Al-Gayyar M.M. Crocin protects against doxorubicin-induced myocardial toxicity in rats through down-regulation of inflammatory and apoptic pathways. Chem. Biol. Interact. 2016;247:39–48. doi: 10.1016/j.cbi.2016.01.014.
    1. Farshid A.A., Tamaddonfard E., Moradi-Arzeloo M., Mirzakhani N. The effects of crocin, insulin and their co-administration on the heart function and pathology in streptozotocin-induced diabetic rats. Avicenna J. Phytomed. 2016;6:658–670.
    1. Feidantsis K., Mellidis K., Galatou E., Sinakos Z., Lazou A. Treatment with crocin improves cardiac dysfunction by normalizing autophagy and inhibiting apoptosis in STZ-induced diabetic cardiomyopathy. Nutr. Metab. Cardiovasc. Dis. 2018;28:952–961. doi: 10.1016/j.numecd.2018.06.005.
    1. Cai J., Yi F.F., Bian Z.Y., Shen D.F., Yang L., Yan L., Tang Q.-Z., Yang X.-C., Li H. Crocetin protects against cardiac hypertrophy by blocking MEK-ERK1/2 signalling pathway. J. Cell. Mol. Med. 2009;13:909–925. doi: 10.1111/j.1582-4934.2008.00620.x.
    1. Didangelos T., Doupis J., Veves A. Oxidative Stress in Diabetes Mellitus and Possible Interventions. In: Obrosova I., Stevens M.J., Yorek M.A., editors. Studies in Diabetes. Springer New York; New York, NY, USA: 2014. pp. 237–261.
    1. Azimi P., Ghiasvand R., Feizi A., Hariri M., Abbasi B. Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev. Diabet. Stud. RDS. 2014;11:258–266. doi: 10.1900/RDS.2014.11.258.
    1. Azimi P., Ghiasvand R., Feizi A., Hosseinzadeh J., Bahreynian M., Hariri M., Khosravi-Boroujeni H. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. Blood Press. 2016;25:133–140. doi: 10.3109/08037051.2015.1111020.
    1. Ebrahimi F., Aryaeian N., Pahlavani N., Abbasi D., Hosseini A.F., Fallah S., Moradi N., Heydari I. The effect of saffron (Crocus sativus L.) supplementation on blood pressure, and renal and liver function in patients with type 2 diabetes mellitus: A double-blinded, randomized clinical trial. Avicenna J. Phytomed. 2019;9:322–333.
    1. Ebrahimi F., Sahebkar A., Aryaeian N., Pahlavani N., Fallah S., Moradi N., Abbas D., Hosseini A.F. Effects of saffron supplementation on inflammation and metabolic responses in type 2 diabetic patients: A randomized, double-blind, placebo-controlled trial. Diabetes Metab. Syndr. Obes. Targets Ther. 2019;12:2107–2115. doi: 10.2147/DMSO.S216666.
    1. Milajerdi A., Jazayeri S., Bitarafan V., Hashemzadeh N., Shirzadi E., Derakhshan Z., Mahmoodi M., Rayati A., Djazayeri A., Akhondzadeh S. The effect of saffron (Crocus sativus L.) hydro-alcoholic extract on liver and renal functions in type 2 diabetic patients: A double-blinded randomized and placebo control trial. J. Nutr. Intermed. Metab. 2017;9:6–11. doi: 10.1016/j.jnim.2017.07.002.
    1. Milajerdi A., Jazayeri S., Hashemzadeh N., Shirzadi E., Derakhshan Z., Djazayeri A., Akhondzadeh S. The effect of saffron (Crocus sativus L.) hydroalcoholic extract on metabolic control in type 2 diabetes mellitus: A triple-blinded randomized clinical trial. J. Res. Med Sci. 2018;23:16. doi: 10.4103/jrms.JRMS_286_17.
    1. Moravej Aleali A., Amani R., Shahbazian H., Namjooyan F., Latifi S.M., Cheraghian B. The effect of hydroalcoholic Saffron (Crocus sativus L.) extract on fasting plasma glucose, HbA1c, lipid profile, liver, and renal function tests in patients with type 2 diabetes mellitus: A randomized double-blind clinical trial. Phytother. Res. 2019;33:1648–1657. doi: 10.1002/ptr.6351.
    1. Sepahi S., Mohajeri S.A., Hosseini S.M., Khodaverdi E., Shoeibi N., Namdari M., Tabassi SA S. Effects of Crocin on diabetic maculopathy: A placebo-controlled randomized clinical trial. Am. J. Ophthalmol. 2018;190:89–98. doi: 10.1016/j.ajo.2018.03.007.
    1. Javandoost A., Afshari A., Nikbakht-Jam I., Khademi M., Eslami S., Nosrati M., Foroutan-Tanha M., Sahebkar A., Tavalaie S., Ghayour-Mobarhan M., et al. Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: A double blind randomized clinical trial. ARYA Atheroscler. 2017;13:245–252.
    1. Kermani T., Kazemi T., Molki S., Ilkhani K., Sharifzadeh G., Rajabi O. The efficacy of crocin of saffron (Crocus sativus L.) on the components of metabolic syndrome: A randomized controlled clinical trial. J. Res. Pharm. Pract. 2017;6:228–232.
    1. Nikbakht-Jam I., Khademi M., Nosrati M., Eslami S., Foroutan-Tanha M., Sahebkar A., Tavalaie S., Ghayour-Mobarhan M., Ferns G.A.A., Hadizadeh F., et al. Effect of crocin extracted from saffron on pro-oxidant–anti-oxidant balance in subjects with metabolic syndrome: A randomized, placebo-controlled clinical trial. Eur. J. Integr. Med. 2016;8:307–312. doi: 10.1016/j.eujim.2015.12.008.
    1. Zilaee M., Soukhtanloo M., Ghayour-Mobarhan M., Shemshian M., Salehi M., Ferns G.A. Effect of saffron on serum leptin levels in patients with metabolic syndrome, a double-blind, randomized and placebo-controlled trial study. Prog. Nutr. 2018;20:140–144.
    1. Karimi-Nazari E., Nadjarzadeh A., Masoumi R., Marzban A., Mohajeri S.A., Ramezani-Jolfaie N., Salehi-Abargouei A. Effect of saffron (Crocus sativus L.) on lipid profile, glycemic indices and antioxidant status among overweight/obese prediabetic individuals: A double-blinded, randomized controlled trial. Clin. Nutr. ESPEN. 2019;34:130–136. doi: 10.1016/j.clnesp.2019.07.012.
    1. Abedimanesh N., Bathaie S.Z., Abedimanesh S., Motlagh B., Separham A., Ostadrahimi A. Saffron and crocin improved appetite, dietary intakes and body composition in patients with coronary artery disease. J. Cardiovasc. Thorac. Res. 2017;9:200–208. doi: 10.15171/jcvtr.2017.35.
    1. Gout B., Bourges C., Paineau-Dubreuil S. Satiereal, a Crocus sativus L. extract, reduces snacking and increases satiety in a randomized placebo-controlled study of mildly overweight, healthy women. Nutr. Res. 2010;30:305–313. doi: 10.1016/j.nutres.2010.04.008.
    1. Pourmasoumi M., Hadi A., Najafgholizadeh A., Kafeshani M., Sahebkar A. Clinical evidence on the effects of saffron (Crocus sativus L.) on cardiovascular risk factors: A systematic review meta-analysis. Pharmacol. Res. 2019;139:348–359. doi: 10.1016/j.phrs.2018.11.038.
    1. Alavizadeh S.H., Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: A comprehensive review. Food Chem. Toxicol. 2014;64:65–80. doi: 10.1016/j.fct.2013.11.016.
    1. Razavi B.M., Hosseinzadeh H. Saffron: A promising natural medicine in the treatment of metabolic syndrome. J. Sci. Food Agric. 2017;97:1679–1685. doi: 10.1002/jsfa.8134.
    1. Tome-Carneiro J., Visioli F. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. Phytomedicine. 2016;23:1145–1174. doi: 10.1016/j.phymed.2015.10.018.
    1. Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. JAMA. 2007;297:842–857. doi: 10.1001/jama.297.8.842.
    1. Moyer M.W. The myth of antioxidants. Sci. Am. 2013;308:62–67. doi: 10.1038/scientificamerican0213-62.
    1. Yabe D., Seino Y., Fukushima M., Seino S. β cell dysfunction versus insulin resistance in the pathogenesis of type 2 diabetes in East Asians. Curr. Diabetes Rep. 2015;15:36. doi: 10.1007/s11892-015-0602-9.

Source: PubMed

3
購読する