Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health

Suzana Almoosawi, Snieguole Vingeliene, Frederic Gachon, Trudy Voortman, Luigi Palla, Jonathan D Johnston, Rob Martinus Van Dam, Christian Darimont, Leonidas G Karagounis, Suzana Almoosawi, Snieguole Vingeliene, Frederic Gachon, Trudy Voortman, Luigi Palla, Jonathan D Johnston, Rob Martinus Van Dam, Christian Darimont, Leonidas G Karagounis

Abstract

Chrono-nutrition is an emerging research field in nutritional epidemiology that encompasses 3 dimensions of eating behavior: timing, frequency, and regularity. To date, few studies have investigated how an individual's circadian typology, i.e., one's chronotype, affects the association between chrono-nutrition and cardiometabolic health. This review sets the directions for future research by providing a narrative overview of recent epidemiologic research on chronotype, its determinants, and its association with dietary intake and cardiometabolic health. Limited research was found on the association between chronotype and dietary intake in infants, children, and older adults. Moreover, most of the evidence in adolescents and adults was restricted to cross-sectional surveys with few longitudinal cohorts simultaneously collecting data on chronotype and dietary intake. There was a gap in the research concerning the association between chronotype and the 3 dimensions of chrono-nutrition. Whether chronotype modifies the association between diet and cardiometabolic health outcomes remains to be elucidated. In conclusion, further research is required to understand the interplay between chronotype, chrono-nutrition, and cardiometabolic health outcomes.

Figures

FIGURE 1
FIGURE 1
Summary of the determinants of chronotype and research framework for examining the association between chronotype, chrono-nutrition, and cardiometabolic health outcomes.

References

    1. Almoosawi S, Vingeliene S, Karagounis LG, Pot GK. Chrono-nutrition: a review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity. Proc Nutr Soc 2016;75(4):487–500.
    1. Johnston JD, Ordovas JM, Scheer FA, Turek FW. Circadian rhythms, metabolism, and chrononutrition in rodents and humans. Adv Nutr 2016;7(2):399–406.
    1. Bedrosian TA, Fonken LK, Nelson RJ. Endocrine effects of circadian disruption. Annu Rev Physiol 2016;78:109–31.
    1. St-Onge M-P, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, Varady K. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation 2017;135(9):e96–121.
    1. Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, Merrow M. A marker for the end of adolescence. Curr Biol 2004;14(24):R1038–9.
    1. Allebrandt KV, Roenneberg T. The search for circadian clock components in humans: new perspectives for association studies. Braz J Med Biol Res 2008;41(8):716–21.
    1. Gottlieb DJ, Hek K, Chen TH, Watson NF, Eiriksdottir G, Byrne EM, Cornelis M, Warby SC, Bandinelli S, Cherkas L et al. . Novel loci associated with usual sleep duration: the CHARGE Consortium genome-wide association study. Mol Psychiatry 2015;20(10):1232–9.
    1. Di Milia L, Adan A, Natale V, Randler C. Reviewing the psychometric properties of contemporary circadian typology measures. Chronobiol Int 2013;30(10):1261–71.
    1. Levandovski R, Sasso E, Hidalgo MP. Chronotype: a review of the advances, limits and applicability of the main instruments used in the literature to assess human phenotype. Trends Psychiatry Psychother 2013;35:3–11.
    1. Lack LC, Bailey ME, Lovato N, Wright HR. Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol. Nat Sci Sleep 2009;1:1–8.
    1. Yu JH, Yun C-H, Ahn JH, Suh S, Cho HJ, Lee SK, Yoo HJ, Seo JA, Kim SG, Choi KM et al. . Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J Clin Endocrinol Metab 2015;100(4):1494–502.
    1. Kantermann T, Meisel A, Fitzthum K, Penzel T, Fietze I, Ulm L. Changes in chronotype after stroke: a pilot study. Front Neurol 2014;5:287.
    1. Merikanto I, Lahti T, Puolijoki H, Vanhala M, Peltonen M, Laatikainen T, Vartiainen E, Salomaa V, Kronholm E, Partonen T. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol Int 2013;30(4):470–7.
    1. Stephan FK. The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 2002;17(4):284–92.
    1. Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN, Skene DJ, Johnston JD. Meal timing regulates the human circadian system. Curr Biol 2017;27(12):1768–75.e3.
    1. Oike H. Modulation of circadian clocks by nutrients and food factors. Biosci Biotechnol Biochem 2017;81(5):863–70.
    1. Mendoza J. Circadian clocks: setting time by food. J Neuroendocrinol 2007;19(2):127–37.
    1. Bravo R, Matito S, Cubero J, Paredes S, Franco L, Rivero M, Rodríguez A, Barriga C. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age 2013;35(4):1277–85.
    1. Meule A, Roeser K, Randler C, Kübler A. Skipping breakfast: morningness-eveningness preference is differentially related to state and trait food cravings. Eat Weight Disord 2012;17(4):e304–8.
    1. Randler C, Schaal S. Morningness-eveningness, habitual sleep-wake variables and cortisol level. Biol Psychol 2010;85(1):14–18.
    1. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int 2014;31(1):64–71.
    1. Dashti HS, Scheer FAJL, Jacques PF, Lamon-Fava S, Ordovas JM. Short sleep duration and dietary intake: epidemiological evidence, mechanisms, and health implications. Adv Nutr 2015;6(6):648–59.
    1. Amoutzopoulos B, Steer T, Roberts C, Cade J, Boushey C, Collins C, Trolle E, De Boer E, Ziauddeen N, van Rossum C. Traditional methods v. new technologies – dilemmas for dietary assessment in large-scale nutrition surveys and studies: a report following an international panel discussion at the 9th International Conference on Diet and Activity Methods (ICDAM9), Brisbane, 3 September 2015. J Nutr Sci 2018;7:e11.
    1. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int 2006;23(1–2):497–509.
    1. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 2012;35:445–62.
    1. Kantermann T, Sung H, Burgess HJ. Comparing the Morningness-Eveningness Questionnaire and Munich ChronoType Questionnaire to the Dim Light Melatonin Onset. J Biol Rhythms 2015;30(5):449–53.
    1. Mirick DK, Davis S. Melatonin as a biomarker of circadian dysregulation. Cancer Epidemiol Biomarkers Prev 2008;17(12):3306–13.
    1. Benloucif S, Burgess HJ, Klerman EB, Lewy AJ, Middleton B, Murphy PJ, Parry BL, Revell VL. Measuring melatonin in humans. J Clin Sleep Med 2008;4(1):66–9.
    1. Kasukawa T, Sugimoto M, Hida A, Minami Y, Mori M, Honma S, Honma K, Mishima K, Soga T, Ueda HR. Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci USA 2012;109(37):15036–41.
    1. Laing EE, Moller-Levet CS, Poh N, Santhi N, Archer SN, Dijk DJ. Blood transcriptome based biomarkers for human circadian phase. eLife 2017;6:e20214.
    1. Ortiz-Tudela E, Martinez-Nicolas A, Campos M, Rol MA, Madrid JA. A new integrated variable based on thermometry, actimetry and body position (TAP) to evaluate circadian system status in humans. PLoS Comput Biol 2010;6(11):e1000996.
    1. Randler C, Diaz-Morales JF, Rahafar A, Vollmer C. Morningness-eveningness and amplitude - development and validation of an improved composite scale to measure circadian preference and stability (MESSi). Chronobiol Int 2016;33(7):832–48.
    1. Zavada A, Gordijn MC, Beersma DG, Daan S, Roenneberg T. Comparison of the Munich Chronotype Questionnaire with the Horne-Östberg's Morningness-Eveningness Score. Chronobiol Int 2005;22(2):267–78.
    1. Kitamura S, Hida A, Aritake S, Higuchi S, Enomoto M, Kato M, Vetter C, Roenneberg T, Mishima K. Validity of the Japanese version of the Munich ChronoType Questionnaire. Chronobiol Int 2014;31(7):845–50.
    1. Turco M, Corrias M, Chiaromanni F, Bano M, Salamanca M, Caccin L, Merkel C, Amodio P, Romualdi C, De Pitta C et al. . The self-morningness/eveningness (Self-ME): an extremely concise and totally subjective assessment of diurnal preference. Chronobiol Int 2015;32(9):1192–200.
    1. von Schantz M. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J Genet 2008;87(5):513–19.
    1. Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptacek LJ. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 1999;5(9):1062–5.
    1. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001;291(5506):1040–3.
    1. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005;434(7033):640–4.
    1. Hu Y, Shmygelska A, Tran D, Eriksson N, Tung JY, Hinds DA. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat Commun 2016;7:10448.
    1. Allebrandt KV, Teder-Laving M, Akyol M, Pichler I, Muller-Myhsok B, Pramstaller P, Merrow M, Meitinger T, Metspalu A, Roenneberg T. CLOCK gene variants associate with sleep duration in two independent populations. Biol Psychiatry 2010;67(11):1040–7.
    1. Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, Yaghootkar H, Hu Y, Teder-Laving M, Hayward C et al. . Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet 2016;12(8):e1006125.
    1. Lane JM, Vlasac I, Anderson SG, Kyle SD, Dixon WG, Bechtold DA, Gill S, Little MA, Luik A, Loudon A et al. . Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat Commun 2016;7:10889.
    1. Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. Prog Mol Biol Transl Sci 2013;119:155–90.
    1. Smith MR, Burgess HJ, Fogg LF, Eastman CI. Racial differences in the human endogenous circadian period. PLoS One 2009;4(6):e6014.
    1. Malone SK, Patterson F, Lu Y, Lozano A, Hanlon A. Ethnic differences in sleep duration and morning-evening type in a population sample. Chronobiol Int 2016;33(1):10–21.
    1. Jackson CL, Hu FB, Redline S, Williams DR, Mattei J, Kawachi I. Racial/ethnic disparities in short sleep duration by occupation: the contribution of immigrant status. Soc Sci Med 2014;118:71–9.
    1. Lehnkering H, Siegmund R. Influence of chronotype, season, and sex of subject on sleep behavior of young adults. Chronobiol Int 2007;24(5):875–88.
    1. Leonhard C, Randler C. In sync with the family: children and partners influence the sleep-wake circadian rhythm and social habits of women. Chronobiol Int 2009;26(3):510–25.
    1. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol 2012;22(10):939–43.
    1. Jankowski KS. Composite Scale of Morningness: psychometric properties, validity with Munich ChronoType Questionnaire and age/sex differences in Poland. Eur Psychiatry 2015;30(1):166–71.
    1. Carrier J, Monk TH, Buysse DJ, Kupfer DJ. Sleep and morningness-eveningness in the ‘middle’ years of life (20-59 y). J Sleep Res 1997;6(4):230–7.
    1. Takeuchi H, Inoue M, Watanabe N, Yamashita Y, Hamada M, Kadota G, Harada T. Parental enforcement of bedtime during childhood modulates preference of Japanese junior high school students for eveningness chronotype. Chronobiol Int 2001;18(5):823–9.
    1. Chen C-Y, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E, McClung CA. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci USA 2016;113(1):206–11.
    1. Miguel M, Oliveira VC, Pereira D, Pedrazzoli M. Detecting chronotype differences associated to latitude: a comparison between Horne–Östberg and Munich Chronotype questionnaires. Ann Hum Biol 2014;41(2):105–8.
    1. Randler C. Morningness-eveningness comparison in adolescents from different countries around the world. Chronobiol Int 2008;25(6):1017–28.
    1. Randler C, Prokop P, Sahu S, Haldar P. Cross-cultural comparison of seven morningness and sleep-wake measures from Germany, India and Slovakia. Int J Psychol 2015;50(4):279–87.
    1. Horzum MB, Randler C, Masal E, Besoluk S, Onder I, Vollmer C. Morningness–eveningness and the environment hypothesis – a cross-cultural comparison of Turkish and German adolescents. Chronobiol Int 2015;32(6):814–21.
    1. Louzada PR, Sebollela A, Scaramello ME, Ferreira ST. Predissociated dimers and molten globule monomers in the equilibrium unfolding of yeast glutathione reductase. Biophys J 2003;85(5):3255–61.
    1. Louzada F, Inacio AM, Souza FH, Moreno CR. Exposure to light versus way of life: effects on sleep patterns of a teenager—case report. Chronobiol Int 2004;21(3):497–9.
    1. von Schantz M, Taporoski TP, Horimoto AR, Duarte NE, Vallada H, Krieger JE, Pedrazzoli M, Negrão AB, Pereira AC. Distribution and heritability of diurnal preference (chronotype) in a rural Brazilian family-based cohort, the Baependi study. Sci Rep 2015;5:9214.
    1. Nag C, Pradhan RK. Impact of lifestyle on circadian orientation and sleep behaviour. Sleep Biol Rhythms 2012;10(2):94–9.
    1. Evans DS, Snitker S, Wu SH, Mody A, Njajou OT, Perlis ML, Gehrman PR, Shuldiner AR, Hsueh WC. Habitual sleep/wake patterns in the Old Order Amish: heritability and association with non-genetic factors. Sleep 2011;34(5):661–9.
    1. Levandovski R, Dantas G, Fernandes LC, Caumo W, Torres I, Roenneberg T, Hidalgo MP, Allebrandt KV. Depression scores associate with chronotype and social jetlag in a rural population. Chronobiol Int 2011;28(9):771–8.
    1. Carvalho FG, Hidalgo MP, Levandovski R. Differences in circadian patterns between rural and urban populations: an epidemiological study in countryside. Chronobiol Int 2014;31(3):442–9.
    1. Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 2003;18(1):80–90.
    1. Hale L, Do DP. Racial differences in self-reports of sleep duration in a population-based study. Sleep 2007;30(9):1096–103.
    1. Yadav A, Singh S. Relationship of chronotype to sleep pattern in a cohort of college students during work days and vacation days. Indian J Exp Biol 2014;52(5):569–74.
    1. Kabrita CS, Hajjar-Muca TA, Duffy JF. Predictors of poor sleep quality among Lebanese university students: association between evening typology, lifestyle behaviors, and sleep habits. Nat Sci Sleep 2014;6:11–18.
    1. Giannotti F, Cortesi F, Sebastiani T, Ottaviano S. Circadian preference, sleep and daytime behaviour in adolescence. J Sleep Res 2002;11(3):191–9.
    1. Paine S-J, Gander PH, Travier N. The epidemiology of morningness/eveningness: influence of age, gender, ethnicity, and socioeconomic factors in adults (30-49 years). J Biol Rhythms 2006;21(1):68–76.
    1. Mirkka M, Noora K, Timo P, Erkki K, Heli T, Jukka K, Satu M. Chronotype differences in timing of energy and macronutrient intakes: a population‐based study in adults. Obesity 2017;25(3):608–15.
    1. Maukonen M, Kanerva N, Partonen T, Kronholm E, Konttinen H, Wennman H, Mannisto S. The associations between chronotype, a healthy diet and obesity. Chronobiol Int 2016;33(8):972–81.
    1. Mota MC, Waterhouse J, De-Souza DA, Rossato LT, Silva CM, Araujo MB, Tufik S, de Mello MT, Crispim CA. Association between chronotype, food intake and physical activity in medical residents. Chronobiol Int 2016;33(6):730–9.
    1. Patterson F, Malone SK, Lozano A, Grandner MA, Hanlon AL. Smoking, screen-based sedentary behavior, and diet associated with habitual sleep duration and chronotype: data from the UK Biobank. Ann Behav Med 2016;50(5):715–26.
    1. Silva CM, Mota MC, Miranda MT, Paim SL, Waterhouse J, Crispim CA. Chronotype, social jetlag and sleep debt are associated with dietary intake among Brazilian undergraduate students. Chronobiol Int 2016;33(6):740–8.
    1. Suh S, Yang HC, Kim N, Yu JH, Choi S, Yun CH, Shin C. Chronotype differences in health behaviors and health-related quality of life: a population-based study among aged and older adults. Behav Sleep Med 2016;15(5):1–16.
    1. Tran J, Lertmaharit S, Lohsoonthorn V, Pensuksan WC, Rattananupong T, Tadesse MG, Gelaye B, Williams MA. Daytime sleepiness, circadian preference, caffeine consumption and use of other stimulants among Thai college students. J Public Health Epidemiol 2014;8(6):202–10.
    1. Whittier A, Sanchez S, Castaneda B, Sanchez E, Gelaye B, Yanez D, Williams MA. Eveningness chronotype, daytime sleepiness, caffeine consumption, and use of other stimulants among Peruvian university students. J Caffeine Res 2014;4(1):21–7.
    1. Kanerva N, Kronholm E, Partonen T, Ovaskainen M-L, Kaartinen NE, Konttinen H, Broms U, Männistö S. Tendency toward eveningness is associated with unhealthy dietary habits. Chronobiol Int 2012;29(7):920–7.
    1. Sato-Mito N, Sasaki S, Murakami K, Okubo H, Takahashi Y, Shibata S, Yamada K, Sato K; Freshmen in Dietetic Courses Study II Group . The midpoint of sleep is associated with dietary intake and dietary behavior among young Japanese women. Sleep Med 2011;12(3):289–94.
    1. Sato-Mito N, Shibata S, Sasaki S, Sato K. Dietary intake is associated with human chronotype as assessed by both morningness-eveningness score and preferred midpoint of sleep in young Japanese women. Int J Food Sci Nutr 2011;62(5):525–32.
    1. Fleig D, Randler C. Association between chronotype and diet in adolescents based on food logs. Eat Behav 2009;10(2):115–18.
    1. Nakade M, Takeuchi H, Kurotani M, Harada T. Effects of meal habits and alcohol/cigarette consumption on morningness-eveningness preference and sleep habits by Japanese female students aged 18–29. J Physiol Anthropol 2009;28(2):83–90.
    1. Monk TH, Buysse DJ, Potts JM, DeGrazia JM, Kupfer DJ. Morningness-eveningness and lifestyle regularity. Chronobiol Int 2004;21(3):435–43.
    1. Adan A. Chronotype and personality factors in the daily consumption of alcohol and psychostimulants. Addiction 1994;89(4):455–62.
    1. Serón-Ferré M, Richter HG, Valenzuela GJ, Torres-Farfan C. Circadian rhythms in the fetus and newborn: significance of interactions with maternal physiology and the environment. In: Walker DW, editor. Prenatal and postnatal determinants of development. Neuromethods, vol 109 Berlin: Springer; 2016. p. 147–65.
    1. Nishihara K, Horiuchi S, Eto H, Uchida S. The development of infants’ circadian rest–activity rhythm and mothers’ rhythm. Physiol Behav 2002;77(1):91–8.
    1. Davis FC. Melatonin: role in development. J Biol Rhythms 1997;12(6):498–508.
    1. Sánchez CL, Cubero J, Sánchez J, Franco L, Rodríguez AB, Rivero M, Barriga C. Evolution of the circadian profile of human milk amino acids during breastfeeding. J Appl Biomed 2013;11(2):59–70.
    1. Lubetzky R, Littner Y, Mimouni FB, Dollberg S, Mandel D. Circadian variations in fat content of expressed breast milk from mothers of preterm infants. J Am Coll Nutr 2006;25(2):151–4.
    1. Schneider N, Mutungi G, Cubero J. Diet and nutrients in the modulation of infant sleep: a review of the literature. Nutr Neurosci 2018;21(3):151–61.
    1. Morais TC, Honorio-França AC, Silva RR, Fujimori M, Fagundes DLG, França EL. Temporal fluctuations of cytokine concentrations in human milk. Biol Rhythm Res 2015;46(6):811–21.
    1. Simpkin CT, Jenni OG, Carskadon MA, Wright KP, Akacem LD, Garlo KG, LeBourgeois MK. Chronotype is associated with the timing of the circadian clock and sleep in toddlers. J Sleep Res 2014;23(4):397–405.
    1. Werner H, LeBourgeois MK, Geiger A, Jenni OG. Assessment of chronotype in four- to eleven-year-old children: reliability and validity of the Children's Chronotype Questionnaire (CCTQ). Chronobiol Int 2009;26(5):992–1014.
    1. Wickersham L. Time-of-day preference for preschool-aged children. Chrestomathy 2006;5:259–68.
    1. Randler C, Fontius I, Vollmer C. Delayed weekend sleep pattern in German infants and children aged 0–6 years. Biol Rhythm Res 2012;43(3):225–34.
    1. Harada T, Hirotani M, Maeda M, Nomura H, Takeuchi H. Correlation between breakfast tryptophan content and morningness-eveningness in Japanese infants and students aged 0–15 yrs. J Physiol Anthropol 2007;26(2):201–7.
    1. Kawada T, Takeuchi H, Nakade M, Tsuji F, Krejci M, Noji T, Taniwaki N, Harada T. Questionnaire and intervention study on effects of drinking cows’ milk at breakfast on the circadian typology and mental health of Japanese infants aged 1 - 6 years. Nat Sci 2016;8(9):381.
    1. Diederichs T, Perrar I, Roßbach S, Alexy U, Buyken AE. In adolescence a higher ‘eveningness in ene rgy intake’ is associated with higher total daily energy intake. Appetite 2018;128:159–66.
    1. Leech RM, McNaughton SA, Timperio A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act 2014;11(1):1–9.
    1. Matthews KA, Pantesco EJM. Sleep characteristics and cardiovascular risk in children and adolescents: an enumerative review. Sleep Med 2016;18:36–49.
    1. Pot GK, Almoosawi S, Stephen AM. Meal irregularity and cardiometabolic consequences: results from observational and intervention studies. Proc Nutr Soc 2016;75(4):475–86.
    1. Beebe DW, Zhou A, Rausch J, Noe O, Simon SL. The impact of early bedtimes on adolescent caloric intake varies by chronotype. J Adolesc Health 2015;57(1):120–2.
    1. Shechter A, St-Onge MP. Delayed sleep timing is associated with low levels of free-living physical activity in normal sleeping adults. Sleep Med 2014;15(12):1586–9.
    1. Corder K, van Sluijs E, Steele R, Stephen A, Dunn V, Bamber D, Goodyer I, Griffin S, Ekelund U. Breakfast consumption and physical activity in British adolescents. Br J Nutr 2011;105(2):316–21.
    1. Anderson KN, Catt M, Collerton J, Davies K, von Zglinicki T, Kirkwood TB, Jagger C. Assessment of sleep and circadian rhythm disorders in the very old: the Newcastle 85+ cohort study. Age Ageing 2014;43(1):57–63.
    1. Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry 2014;26(2):139–54.
    1. Canuto R, Garcez AS, Olinto MT. Metabolic syndrome and shift work: a systematic review. Sleep Med Rev 2013;17(6):425–31.
    1. Moran-Ramos S, Baez-Ruiz A, Buijs RM, Escobar C. When to eat? The influence of circadian rhythms on metabolic health: are animal studies providing the evidence? Nutr Res Rev 2016;1(2):1–14.
    1. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009;106(11):4453–8.
    1. Leproult R, Holmbäck U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 2014;63(6):1860–9.
    1. Roenneberg T, Kantermann T, Juda M, Vetter C, Allebrandt KV. Light and the human circadian clock. In: Kramer A, Merrow M, editors. Handbook of experimental pharmacology, vol. 217 Berlin: Springer; 2013. p. 311–31.
    1. Kirchberger I, Wolf K, Heier M, Kuch B, von Scheidt W, Peters A, Meisinger C. Are daylight saving time transitions associated with changes in myocardial infarction incidence? Results from the German MONICA/KORA Myocardial Infarction Registry. BMC Public Health 2015;15:778.
    1. Schneider A-M, Randler C. Daytime sleepiness during transition into daylight saving time in adolescents: are owls higher at risk? Sleep Med 2009;10(9):1047–50.
    1. Manfredini R, Boari B, Smolensky MH, Salmi R, la Cecilia O, Maria Malagoni A, Haus E, Manfredini F. Circadian variation in stroke onset: identical temporal pattern in ischemic and hemorrhagic events. Chronobiol Int 2005;22(3):417–53.
    1. Roeser K, Obergfell F, Meule A, Vogele C, Schlarb AA, Kubler A. Of larks and hearts—morningness/eveningness, heart rate variability and cardiovascular stress response at different times of day. Physiol Behav 2012;106(2):151–7.
    1. Wong PM, Hasler BP, Kamarck TW, Muldoon MF, Manuck SB. Social jetlag, chronotype, and cardiometabolic risk. J Clin Endocrinol Metab 2015;100(12):4612–20.
    1. Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation 1. Endocr Rev 1997;18(5):716–38.
    1. Hampton SM, Morgan LM, Lawrence N, Anastasiadou T, Norris F, Deacon S, Ribeiro D, Arendt J. Postprandial hormone and metabolic responses in simulated shift work. J Endocrinol 1996;151(2):259–67.
    1. Lund J, Arendt J, Hampton SM, English J, Morgan LM. Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J Endocrinol 2001;171(3):557–64.
    1. Suwazono Y, Dochi M, Oishi M, Tanaka K, Kobayashi E, Sakata K. Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers. Chronobiol Int 2009;26(5):926–41.
    1. Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, Li L, Cao S, Dong X, Gong Y et al. . Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med 2015;72(1):72–8.
    1. Morris CJ, Yang JN, Garcia JI, Myers S, Bozzi I, Wang W, Buxton OM, Shea SA, Scheer FA. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci USA 2015;112(17):E2225–34.
    1. Nedeltcheva AV, Scheer FA. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr Opin Endocrinol Diabetes Obes 2014;21(4):293–8.
    1. Reutrakul S, Siwasaranond N, Nimitphong H, Saetung S, Chirakalwasan N, Ongphiphadhanakul B, Thakkinstian A, Hood MM, Crowley SJ. Relationships among sleep timing, sleep duration and glycemic control in type 2 diabetes in Thailand. Chronobiol Int 2015;32(10):1469–76.
    1. Rangaraj VR, Knutson KL. Association between sleep deficiency and cardiometabolic disease: implications for health disparities. Sleep Med 2016;18:19–35.
    1. Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 2015;24(3):283–307.
    1. Maiorino MI, Bellastella G, Giugliano D, Esposito K. Cooling down inflammation in type 2 diabetes: how strong is the evidence for cardiometabolic benefit? Endocrine 2017;55(2):360–5.
    1. Almoosawi S, Prynne CJ, Hardy R, Stephen AM. Time-of-day and nutrient composition of eating occasions: prospective association with the metabolic syndrome in the 1946 British birth cohort. Int J Obes (Lond) 2013;37(5):725–31.
    1. Almoosawi S, Prynne CJ, Hardy R, Stephen AM. Diurnal eating rhythms: association with long-term development of diabetes in the 1946 British birth cohort. Nutr Metab Cardiovasc Dis 2013;23(10):1025–30.
    1. Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab 2014;3(4):372–83.
    1. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL, Van Cauter E. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care 2013;36(9):2523–9.
    1. Oosterman JE, Kalsbeek A, la Fleur SE, Belsham DD. Impact of nutrients on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 2015;308(5):R337–50.
    1. Boushey CJ, Spoden M, Zhu FM, Delp EJ, Kerr DA. New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods. Proc Nutr Soc 2017;76(3):283–94.

Source: PubMed

3
購読する