Renal Replacement Therapy in the Critical Care Setting

Adeel Rafi Ahmed, Ayanfeoluwa Obilana, David Lappin, Adeel Rafi Ahmed, Ayanfeoluwa Obilana, David Lappin

Abstract

Renal replacement therapy (RRT) is frequently required to manage critically ill patients with acute kidney injury (AKI). There is limited evidence to support the current practice of RRT in intensive care units (ICUs). Recently published randomized control trials (RCTs) have further questioned our understanding of RRT in critical care. The optimal timing and dosing continues to be debatable; however, current evidence suggests delayed strategy with less intensive dosing when utilising RRT. Various modes of RRT are complementary to each other with no definite benefits to mortality or renal function preservation. Choice of anticoagulation remains regional citrate anticoagulation in continuous renal replacement therapy (CRRT) with lower bleeding risk when compared with heparin. RRT can be used to support resistant cardiac failure, but evolving therapies such as haemoperfusion are currently not recommended in sepsis.

Conflict of interest statement

The authors declare no potential conflicts of interest.

Figures

Figure 1
Figure 1
Summary of evidence investigating CRRT dosing(ml/kg/hr). Red box: supporting high effluent flow rate. Green box: supporting lower effluent flow rate.

References

    1. Chertow G. M., Burdick E., Honour M., Bonventre J. V., Bates D. W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. Journal of the American Society of Nephrology. 2005;16(11):3365–3370. doi: 10.1681/asn.2004090740.
    1. Ronco C., Zanella M., Brendolan A., et al. Management of severe acute renal failure in critically ill patients: an international survey in 345 centres. Nephrology Dialysis Transplantation. 2001;16(2):230–237. doi: 10.1093/ndt/16.2.230.
    1. Mehta R. L. Renal-replacement therapy in the critically ill - does timing matter? New England Journal of Medicine. 2016;375(2):175–176. doi: 10.1056/nejme1606125.
    1. Bagshaw S. M., Wald R., Barton J., et al. Clinical factors associated with initiation of renal replacement therapy in critically ill patients with acute kidney injury-a prospective multicenter observational study. Journal of Critical Care. 2012;27(3):268–275. doi: 10.1016/j.jcrc.2011.06.003.
    1. Clark E., Wald R., Adeera L., et al. Timing the initiation of renal replacement therapy for acute kidney injury in Canadian intensive care units: a multicentre observational study. Canadian Journal of Anesthesia/Journal Canadien D’anesthésie. 2012;59(9):861–870. doi: 10.1007/s12630-012-9750-4.
    1. Seabra V. F., Balk E. M., Liangos O., Sosa M. A., Cendoroglo M., Jaber B. L. Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. American Journal of Kidney Diseases. 2008;52(2):272–284. doi: 10.1053/j.ajkd.2008.02.371.
    1. Bagshaw S. M., Uchino S., Bellomo R., et al. Timing of renal replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury. Journal of Critical Care. 2009;24(1):129–140. doi: 10.1016/j.jcrc.2007.12.017.
    1. Nascimento G. V. R. D., Balbi A. L., Ponce D., Abrão J. M. G. Early initiation of dialysis: mortality and renal function recovery in acute kidney injury patient. Journal Brasileiro de Nefrologia. 2012;34(4):337–342. doi: 10.5935/0101-2800.20120022.
    1. Gettings L. G., Reynolds H. N., Scalea T. Outcome in post-traumatic acute renal failure when continuous renal replacement therapy is applied early vs. late. Intensive Care Medicine. 1999;25(8):805–813. doi: 10.1007/s001340050956.
    1. Elahi M., Lim M. Y., Joseph R. N., Dhannapuneni R. R., Spyt T. J. Early haemofiltration improves survival in post-cardiotomy patients with acute renal failure. European Journal of Cardio-Thoracic Surgery. 2004;26(5):1027–1031. doi: 10.1016/j.ejcts.2004.07.039.
    1. Liu K. D., Himmelfarb J., Paganini E., et al. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clinical Journal of the American Society of Nephrology. 2006;1(5):915–919. doi: 10.2215/cjn.01430406.
    1. Demirkilic U., Kuralay E., Yenicesu M., et al. Timing of replacement therapy for acute renal failure after cardiac surgery. Journal of Cardiac Surgery. 2004;19(1):17–20. doi: 10.1111/j.0886-0440.2004.04004.x.
    1. Bouchard J., Soroko S. B., Chertow G. M., et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney International. 2009;76(4):422–427. doi: 10.1038/ki.2009.159.
    1. Carl D. E., Grossman C., Behnke M., Sessler C. N., Gehr T. W. B. Effect of timing of dialysis on mortality in critically ill, septic patients with acute renal failure. Haemodialysis International. 2010;14(1):11–17. doi: 10.1111/j.1542-4758.2009.00407.x.
    1. Bent P., Tan H. K., Bellomo R., et al. Early and intensive continuous haemofiltration for severe renal failure after cardiac surgery. Annals of Thoracic Surgery. 2001;71(3):832–837. doi: 10.1016/s0003-4975(00)02177-9.
    1. Vaara S. T., Reinikainen M., Wald R., Bagshaw S. M., Pettilä V., The FINNAKI Study Group Timing of RRT based on the presence of conventional indications. Clinical Journal of the American Society of Nephrology. 2014;9(9):1577–1585. doi: 10.2215/cjn.12691213.
    1. Vats H. S., Dart R. A., Okon T. R., Liang H., Paganini E. P. Does early initiation of continuous renal replacement therapy affect outcome: experience in a tertiary care center. Renal Failure. 2011;33(7):698–706. doi: 10.3109/0886022x.2011.589945.
    1. Durmaz I., Yagdi T., Calkavur T., et al. Prophylactic dialysis in patients with renal dysfunction undergoing on-pump coronary artery bypass surgery. Annals of Thoracic Surgery. 2003;75(3):859–864. doi: 10.1016/s0003-4975(02)04635-0.
    1. Sugahara S., Suzuki H. Early start on continuous hemodialysis therapy improves survival rate in patients with acute renal failure following coronary bypass surgery. Hemodialysis International. 2004;8(4):320–325. doi: 10.1111/j.1492-7535.2004.80404.x.
    1. Bouman C. S. C., Oudemans-van Straaten H. M., Tijssen J. G. P., Zandstra D. F., Kesecioglu J. Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Critical Care Medicine. 2002;30(10):2205–2211. doi: 10.1097/00003246-200210000-00005.
    1. Jamale T. E., Hase N. K., Kulkarni M., et al. Earlier-start versus usual-start dialysis in patients with community-acquired acute kidney injury: a randomized controlled trial. American Journal of Kidney Diseases. 2013;62(6):1116–1121. doi: 10.1053/j.ajkd.2013.06.012.
    1. Wald R., Adhikari N. K. J., Smith O. M., et al. Comparison of standard and accelerated initiation of renal replacement therapy in acute kidney injury. Kidney International. 2015;88(4):897–904. doi: 10.1038/ki.2015.184.
    1. Zarbock A., Kellum J. A., Schmidt C., et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury. Jama. 2016;315(20):2190–2199. doi: 10.1001/jama.2016.5828.
    1. Gaudry S., Hajage D., Schortgen F., et al. Initiation strategies for renal-replacement therapy in the intensive care unit. New England Journal of Medicine. 2016;375(2):122–133. doi: 10.1056/nejmoa1603017.
    1. Barbar S. D., Clere-Jehl R., Bourredjem A., et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. New England Journal of Medicine. 2018;379(15):1431–1442. doi: 10.1056/nejmoa1803213.
    1. Gaudry S., Hajage D., Schortgen F., et al. Timing of renal support and outcome of septic shock and acute respiratory distress syndrome. A post hoc analysis of the AKIKI randomized clinical trial. American Journal of Respiratory and Critical Care Medicine. 2018;198(1):58–66. doi: 10.1164/rccm.201706-1255oc.
    1. Smith O. M., Wald R., Adhikari N. K., et al. Standard versus accelerated initiation of renal replacement therapy in acute kidney injury (STARRT-AKI): study protocol for a randomized controlled trial. Trials. 2013;14(1):p. 320. doi: 10.1186/1745-6215-14-320.
    1. Libório A. B., Leite T. T., Neves F. M. D. O., Teles F., Bezerra C. T. D. M. AKI complications in critically ill patients: association with mortality rates and RRT. Clinical Journal of the American Society of Nephrology. 2015;10(1):21–28. doi: 10.2215/cjn.04750514.
    1. Chung K. K., Lundy J. B., Matson J. R., et al. Continuous venovenous hemofiltration in severely burned patients with acute kidney injury: a cohort study. Critical Care. 2009;13(3):p. R62. doi: 10.1186/cc7801.
    1. Lumlertgul N., Peerapornratana S., Trakarnvanich T., et al. Early versus standard initiation of renal replacement therapy in furosemide stress test non-responsive acute kidney injury patients (the FST trial) Critical Care (London, England) 2018;22(1):p. 101. doi: 10.1186/s13054-018-2021-1.
    1. Chawla L. S., Davison D. L., Brasha-Mitchell E., et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Critical Care. 2013;17(5):p. R207. doi: 10.1186/cc13015.
    1. Ostermann M., Joannidis M., Pani A., et al. Patient selection and timing of continuous renal replacement therapy. Blood Purification. 2016;42(3):224–237. doi: 10.1159/000448506.
    1. Cole L., Bellomo R., Journois D., Davenport P., Baldwin I., Tipping P. High-volume haemofiltration in human septic shock. Intensive Care Medicine. 2001;27(6):978–986. doi: 10.1007/s001340100963.
    1. Ghani R. A., Zainudin S., Ctkong N., et al. Serum IL-6 and IL-1-ra with sequential organ failure assessment scores in septic patients receiving high-volume haemofiltration and continuous venovenous haemofiltration. Nephrology. 2006;11(5):386–393. doi: 10.1111/j.1440-1797.2006.00600.x.
    1. Boussekey N., Chiche A., Faure K., et al. A pilot randomized study comparing high and low volume hemofiltration on vasopressor use in septic shock. Intensive Care Medicine. 2008;34(9):1646–1653. doi: 10.1007/s00134-008-1127-3.
    1. Ronco C., Bellomo R., Homel P., et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. The Lancet. 2000;356(9223):26–30. doi: 10.1016/s0140-6736(00)02430-2.
    1. Saudan P., Niederberger M., De Seigneux S., et al. Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney International. 2006;70(7):1312–1317. doi: 10.1038/sj.ki.5001705.
    1. Joannes-Boyau O., Honoré P. M., Perez P., et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Medicine. 2013;39(9):1535–1546. doi: 10.1007/s00134-013-2967-z.
    1. Borthwick E. M. J., Hill C. J., Rabindranath K. S., Maxwell A. P., McAuley D. F., Blackwood B. High-volume haemofiltration for sepsis in adults. Cochrane Database of Systematic Reviews. 2017;1(1) doi: 10.1002/14651858.cd008075.pub3.
    1. Palevsky P. M., Palevsky P. M., Zhang J. H, et al. Intensity of renal support in critically ill patients with acute kidney injury. New England Journal of Medicine. 2008;359(1):7–20. doi: 10.1056/NEJMoa0802639.
    1. Bellomo R., Bellomo R., Cass A, et al. Intensity of continuous renal-replacement therapy in critically ill patients. New England Journal of Medicine. 2009;361(17):1627–1638. doi: 10.1056/NEJMoa0902413.
    1. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron. 2012;120(4):c179–c184. doi: 10.1159/000339789.
    1. Nash D. M., Przech S., Wald R., O’Reilly D. Systematic review and meta-analysis of renal replacement therapy modalities for acute kidney injury in the intensive care unit. Journal of Critical Care. 2017;41:138–144. doi: 10.1016/j.jcrc.2017.05.002.
    1. Rabindranath K., Adams J., Macleod A. M., Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database of Systematic Reviews. 2007;18(3) doi: 10.1002/14651858.CD003773.pub3.CD003773
    1. Bagshaw S. M., Berthiaume L. R., Delaney A., Bellomo R. Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Critical Care Medicine. 2008;36(2):610–617. doi: 10.1097/01.ccm.0b013e3181611f552.
    1. Clark W. R., Mueller B. A., Alaka K. J., Macias W. L. A comparison of metabolic control by continuous and intermittent therapies in acute renal failure. Journal of the American Society of Nephrology: JASN. 1994;4(7):1413–1420.
    1. Kramer P., Wigger W., Rieger J., Matthaei D., Scheler F. Arteriovenous haemofiltration: a new and simple method for treatment of over-hydrated patients resistant to diuretics. Klinische Wochenschrift. 1977;55(22):1121–1122. doi: 10.1007/bf01477940.
    1. Kovacs B., Sullivan K. J., Hiremath S., Patel R. V. Effect of sustained low efficient dialysisversuscontinuous renal replacement therapy on renal recovery after acute kidney injury in the intensive care unit: a systematic review and meta-analysis. Nephrology. 2017;22(5):343–353. doi: 10.1111/nep.13009.
    1. Davenport A., Will E. J., Davison A. M. Effect of renal replacement therapy on patients with combined acute renal and fulminant hepatic failure. Kidney international. Supplement. 1993;41:S245–S251.
    1. Davenport A., Will E. J., Davidson A. M. Improved cardiovascular stability during continuous modes of renal replacement therapy in critically ill patients with acute hepatic and renal failure. Critical Care Medicine. 1993;21(3):328–338. doi: 10.1097/00003246-199303000-00007.
    1. Davenport A. Renal replacement therapy in the patient with acute brain injury. American Journal of Kidney Diseases. 2001;37(3):457–466. doi: 10.1016/s0272-6386(01)80001-9.
    1. Brochard L., Abroug F., Brenner M., et al. An official ATS/ERS/ESICM/SCCM/SRLF statement: prevention and management of acute renal failure in the ICU patient. American Journal of Respiratory and Critical Care Medicine. 2010;181(10):1128–1155. doi: 10.1164/rccm.200711-1664st.
    1. Kellum J. A., Song M., Venkataraman R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-κB DNA binding, and improves short-term survival in lethal endotoxemia. Critical Care Medicine. 2004;32(3):801–805. doi: 10.1097/01.ccm.0000114997.39857.69.
    1. De Vriese A. S., Colardyn F. A., Philippé J. J., Vanholder R. C., De Sutter J. H., Lameire N. H. Cytokine removal during continuous hemofiltration in septic patients. Journal of the American Society of Nephrology: JASN. 1999;10(4):846–853.
    1. Villa G., Chelazzi C., Morettini E., et al. Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: a prospective observational study. PLoS One. 2017;12(2) doi: 10.1371/journal.pone.0172039.e0172039
    1. Villa G., Zaragoza J. J., Sharma A., Neri M., De Gaudio A. R., Ronco C. Cytokine removal with high cut-off membrane: review of literature. Blood Purification. 2014;38(3-4):167–173. doi: 10.1159/000369155.
    1. Dellinger R. P., Bagshaw S. M., Antonelli M., et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level. JAMA. 2018;320(14):1455–1463. doi: 10.1001/jama.2018.14618.
    1. Costanzo M. R., Guglin M. E., Saltzberg M. T., et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. Journal of the American College of Cardiology. 2007;49(6):675–683. doi: 10.1016/j.jacc.2006.07.073.
    1. Bart B. A., Goldsmith S. R., Lee K. L., et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. New England Journal of Medicine. 2012;367(24):2296–2304. doi: 10.1056/nejmoa1210357.
    1. Marenzi G., Muratori M., Cosentino E. R., et al. Continuous ultrafiltration for congestive heart failure: the CUORE trial. Journal of Cardiac Failure. 2014;20(1):9–17. doi: 10.1016/j.cardfail.2013.11.004.
    1. Felker G. M., Mentz R. J. Diuretics and ultrafiltration in acute decompensated heart failure. Journal of the American College of Cardiology. 2012;59(24):2145–2153. doi: 10.1016/j.jacc.2011.10.910.
    1. Estenssoro E., Dubin A., Laffaire E., et al. Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. Critical Care Medicine. 2002;30(11):2450–2456. doi: 10.1097/00003246-200211000-00008.
    1. Wiedemann H. P., Wheeler A. P., Bernard G. R., Thompson B. T., Hayden D., deBoisblanc B. Comparison of two fluid-management strategies in acute lung injury. New England Journal of Medicine. 2006;354(24):2564–2575. doi: 10.1097/ccm.0b013e318228234b.
    1. Liu K. D., Thompson B. T., Ancukiewicz M., et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Critical Care Medicine. 2011;39(12):2665–2671. doi: 10.1097/ccm.0b013e318228234b.
    1. Han F., Sun R., Ni Y., et al. Early initiation of continuous renal replacement therapy improves clinical outcomes in patients with acute respiratory distress syndrome. American Journal of the Medical Sciences. 2015;349(3):199–205. doi: 10.1097/maj.0000000000000379.
    1. Garzia F., Todor R., Scalea T. Continuous arteriovenous hemofiltration countercurrent dialysis (CAVH-D) in acute respiratory failure (ARDS) Journal of Trauma: Injury, Infection, and Critical Care. 1991;31(9):1277–1285. doi: 10.1097/00005373-199109000-00013. discussion 84-5.
    1. Mitzner S., Stange J., Klammt S., et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis mars: results of a prospective, randomized, controlled clinical trial. Liver Transplantation. 2000;6(3):277–286. doi: 10.1053/lv.2000.6355.
    1. Ash S. R. Powdered sorbent liver dialysis and pheresis in treatment of hepatic failure. Therapeutic Apheresis and Dialysis. 2001;5(5):404–416. doi: 10.1046/j.1526-0968.2001.00384.x.
    1. Allegretti A. S., Parada X. V., Eneanya N. D., et al. Prognosis of patients with cirrhosis and AKI who initiate RRT. Clinical Journal of the American Society of Nephrology. 2018;13(1):16–25. doi: 10.2215/cjn.03610417.
    1. Baldwin I., Bellomo R., Koch B. Blood flow reductions during continuous renal replacement therapy and circuit life. Intensive Care Medicine. 2004;30(11):2074–2079. doi: 10.1007/s00134-004-2440-0.
    1. Joannidis M., Oudemans-van Straaten H. M. Clinical review: patency of the circuit in continuous renal replacement therapy. Critical Care. 2007;11(4):p. 218. doi: 10.1186/cc5937.
    1. Kutsogiannis D. J., Gibney R. T. N., Stollery D., Gao J. Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney International. 2005;67(6):2361–2367. doi: 10.1111/j.1523-1755.2005.00342.x.
    1. Zhang Z., Hongying N. Efficacy and safety of regional citrate anticoagulation in critically ill patients undergoing continuous renal replacement therapy. Intensive Care Medicine. 2012;38(1):20–28. doi: 10.1007/s00134-011-2438-3.
    1. Stucker F., Ponte B., Tataw J., et al. Efficacy and safety of citrate-based anticoagulation compared to heparin in patients with acute kidney injury requiring continuous renal replacement therapy: a randomized controlled trial. Critical Care. 2015;19(1):p. 91. doi: 10.1186/s13054-015-0822-z.
    1. Morabito S., Pistolesi V., Tritapepe L., Fiaccadori E. Regional citrate anticoagulation for RRTs in critically ill patients with AKI. Clinical Journal of the American Society of Nephrology. 2014;9(12):2173–2188. doi: 10.2215/cjn.01280214.
    1. Gattas D. J., Rajbhandari D., Bradford C., Buhr H., Lo S., Bellomo R. A randomized controlled trial of regional citrate versus regional heparin anticoagulation for continuous renal replacement therapy in critically ill adults. Critical Care Medicine. 2015;43(8):1622–1629. doi: 10.1097/ccm.0000000000001004.
    1. Uchino S., Bellomo R., Morimatsu H., et al. Continuous renal replacement therapy: a worldwide practice survey. Intensive Care Medicine. 2007;33(9):1563–1570. doi: 10.1007/s00134-007-0754-4.
    1. Karakala N., Tolwani A. We use heparin as the anticoagulant for CRRT. Seminars in Dialysis. 2016;29(4):272–274. doi: 10.1111/sdi.12503.
    1. van de Wetering J., Westendorp R. G., van der Hoeven J. G., Stolk B., Feuth J. D., Chang P. C. Heparin use in continuous renal replacement procedures: the struggle between filter coagulation and patient hemorrhage. Journal of the American Society of Nephrology. 1996;7(1):145–150.
    1. Oudemans-van Straaten H. M., Bosman R. J., Koopmans M., et al. Citrate anticoagulation for continuous venovenous hemofiltration. Critical Care Medicine. 2009;37(2):545–552. doi: 10.1097/ccm.0b013e3181953c5e.
    1. Joannidis M., Kountchev J., Rauchenzauner M., et al. Enoxaparin vs. unfractionated heparin for anticoagulation during continuous veno-venous hemofiltration: a randomized controlled crossover study. Intensive Care Medicine. 2007;33(9):1571–1579. doi: 10.1007/s00134-007-0719-7.
    1. Gajra A., Vajpayee N., Smith A., Poiesz B. J., Narsipur S. Lepirudin for anticoagulation in patients with heparin-induced thrombocytopenia treated with continuous renal replacement therapy. American Journal of Hematology. 2007;82(5):391–393. doi: 10.1002/ajh.20820.
    1. Link A., Girndt M., Selejan S., Mathes A., Böhm M., Rensing H. Argatroban for anticoagulation in continuous renal replacement therapy. Critical Care Medicine. 2009;37(1):105–110. doi: 10.1097/ccm.0b013e3181932394.
    1. Klingele M., Bomberg H., Lerner-Gräber A., et al. Use of argatroban: experiences in continuous renal replacement therapy in critically ill patients after cardiac surgery. Journal of Thoracic and Cardiovascular Surgery. 2014;147(6):1918–1924. doi: 10.1016/j.jtcvs.2013.11.051.
    1. Lindhoff-Last E., Betz C., Bauersachs R. Use of a low-molecular-weight heparinoid (danaparoid sodium) for continuous renal replacement therapy in intensive care patients. Clinical and Applied Thrombosis/Hemostasis. 2001;7(4):300–304. doi: 10.1177/107602960100700409.
    1. de Pont A.-C. J., Hofstra J.-J. H., Pik D. R., Meijers J. C., Schultz M. J. Pharmacokinetics and pharmacodynamics of danaparoid during continuous venovenous hemofiltration: a pilot study. Critical Care. 2007;11(5):p. R102. doi: 10.1186/cc6119.
    1. Fiaccadori E., Maggiore U., Rotelli C., et al. Continuous haemofiltration in acute renal failure with prostacyclin as the sole anti-haemostatic agent. Intensive Care Medicine. 2002;28(5):586–593. doi: 10.1007/s00134-002-1249-y.
    1. Davenport A., Will E. J., Davison A. M. The effect of prostacyclin on intracranial pressure in patients with acute hepatic and renal failure. Clinical Nephrology. 1991;35(4):151–157.
    1. Kozek-Langenecker S. A., Spiss C. K., Gamsjager T., Domenig C., Zimpfer M. Anticoagulation with prostaglandins and unfractionated heparin during continuous venovenous haemofiltration: a randomized controlled trial. Wiener Klinische Wochenschrift. 2002;114(3):96–101.

Source: PubMed

3
購読する