The Effects of Over-Ground Robot-Assisted Gait Training for Children with Ataxic Cerebral Palsy: A Case Report

Myungeun Yoo, Jeong Hyeon Ahn, Eun Sook Park, Myungeun Yoo, Jeong Hyeon Ahn, Eun Sook Park

Abstract

Poor balance and ataxic gait are major impediments to independent living in ataxic cerebral palsy (CP). Robot assisted-gait training (RAGT) has been shown to improve the postural balance and gait function in children with CP. However, there is no report on the application of RAGT for children with ataxic CP. Here, we report two cases of children with ataxic CP who underwent over-ground RAGT along with conventional therapy for 4 weeks. Outcome measures including the gross motor function measure (GMFM), pediatric balance scale, pediatric reach scale, one-minute walk test, and Timed Up and Go test were assessed before and after the 4-week intervention. Both cases were well adapted to the RAGT system without any significant adverse event. Improvements in the GMFM after RAGT, compared with that in the GMFM, after intensive conventional therapy have been reported previously. It is noteworthy that over-ground RAGT improved areas of the GMFM that did not improve with conventional therapy. In addition, over-ground RAGT with conventional therapy led to improvements in functional balance and walking capacity. These findings suggest that over-ground RAGT is feasible and may be a potential option for enhancing balance and functional walking capacity in children with ataxic CP.

Keywords: ataxic; cerebral palsy; gait; over-ground; postural balance; robotic training.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Untethered exoskeleton used in this study. (a) shoulder strap, (b) back strap, (c) thigh band, (d) calf band, (e) outsole, (f) battery cover, (g) handles held by an assistant to prevent side-to-side sway and assist weight-shift during training, (h) tablet used to control the starting or stopping of the robot, (i) actuator for the hip joint, (j) actuator for the knee joint, (k) ankle band.

References

    1. Howard J., Soo B., Graham H.K., Boyd R.N., Reid S., Lanigan A., Wolfe R., Reddihough D.S. Cerebral palsy in Victoria: Motor types, topography and gross motor function. J. Paediatr. Child Health. 2005;41:479–483. doi: 10.1111/j.1440-1754.2005.00687.x.
    1. Andersen G.L., Romundstad P., Cruz J.D.L., Himmelmann K., Sellier E., Cans C., Kurinczuk J.J., Vik T. Cerebral palsy among children born moderately preterm or at moderately low birthweight between 1980 and 1998: A European register-based study. Dev. Med. Child Neurol. 2011;53:913–919. doi: 10.1111/j.1469-8749.2011.04079.x.
    1. Sanger T.D., Delgado M.R., Gaebler-Spira D., Hallett M., Mink J.W. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111:e89–e97. doi: 10.1542/peds.111.1.e89.
    1. Beckung E., Hagberg G., Uldall P., Cans C. Probability of walking in children with cerebral palsy in Europe. Pediatrics. 2008;121:e187–e192. doi: 10.1542/peds.2007-0068.
    1. Lefmann S., Russo R., Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review. J. Neuroeng. Rehabil. 2017;14:1–10. doi: 10.1186/s12984-016-0214-x.
    1. Esquenazi A., Talaty M. Robotics for lower limb rehabilitation. Phys. Med. Rehabil. Clin. 2019;30:385–397. doi: 10.1016/j.pmr.2018.12.012.
    1. Israel J.F., Campbell D.D., Kahn J.H., Hornby T.G. Metabolic costs and muscle activity patterns during robotic-and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys. Ther. 2006;86:1466–1478. doi: 10.2522/ptj.20050266.
    1. Wall A., Borg J., Palmcrantz S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training—A systematic review. Front. Syst. Neurosci. 2015;9:48. doi: 10.3389/fnsys.2015.00048.
    1. Kressler J., Thomas C.K., Field-Fote E.C., Sanchez J., Widerström-Noga E., Cilien D.C., Gant K., Ginnety K., Gonzalez H., Martinez A. Understanding therapeutic benefits of overground bionic ambulation: Exploratory case series in persons with chronic, complete spinal cord injury. Arch. Phys. Med. Rehabil. 2014;95:1878–1887.e1874. doi: 10.1016/j.apmr.2014.04.026.
    1. Nilsson A., Vreede K.S., Häglund V., Kawamoto H., Sankai Y., Borg J. Gait training early after stroke with a new exoskeleton–the hybrid assistive limb: A study of safety and feasibility. J. Neuroeng. Rehabil. 2014;11:1–11. doi: 10.1186/1743-0003-11-92.
    1. Alias N.A., Huq M.S., Ibrahim B., Omar R. The efficacy of state of the art overground gait rehabilitation robotics: A bird’s eye view. Procedia Comput. Sci. 2017;105:365–370. doi: 10.1016/j.procs.2017.01.235.
    1. Kim S.K., Park D., Yoo B., Shim D., Choi J.-O., Choi T.Y., Park E.S. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy. Sensors. 2021;21:2087. doi: 10.3390/s21062087.
    1. Oeffinger D., Bagley A., Rogers S., Gorton G., Kryscio R., Abel M., Damiano D., Barnes D., Tylkowski C. Outcome tools used for ambulatory children with cerebral palsy: Responsiveness and minimum clinically important differences. Dev. Med. Child Neurol. 2008;50:918–925. doi: 10.1111/j.1469-8749.2008.03150.x.
    1. Russell D.J., Rosenbaum P.L., Cadman D.T., Gowland C., Hardy S., Jarvis S. The gross motor function measure: A means to evaluate the effects of physical therapy. Dev. Med. Child Neurol. 1989;31:341–352. doi: 10.1111/j.1469-8749.1989.tb04003.x.
    1. Pavao S.L., Barbosa K.A.F., de Oliveira Sato T., Rocha N.A.C.F. Functional balance and gross motor function in children with cerebral palsy. Res. Dev. Disabil. 2014;35:2278–2283. doi: 10.1016/j.ridd.2014.05.024.
    1. Bartlett D., Birmingham T. Validity and reliability of a pediatric reach test. Pediatric Phys. Ther. 2003;15:84–92. doi: 10.1097/01.PEP.0000067885.63909.5C.
    1. Randall K.E., Bartlett D.J., McCoy S.W. Measuring postural stability in young children with cerebral palsy: A comparison of 2 instruments. Pediatric Phys. Ther. 2014;26:332–337. doi: 10.1097/PEP.0000000000000062.
    1. Podsiadlo D., Richardson S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148.
    1. Nicolini-Panisson R.D.A., Donadio M.V.F. Timed “Up & Go” test in children and adolescents. Rev. Paul. Pediatr. 2013;31:377–383.
    1. Hassani S., Krzak J.J., Johnson B., Flanagan A., Gorton G., III, Bagley A., Õunpuu S., Romness M., Tylkowski C., Oeffinger D. One-Minute Walk and modified Timed Up and Go tests in children with cerebral palsy: Performance and minimum clinically important differences. Dev. Med. Child Neurol. 2014;56:482–489. doi: 10.1111/dmcn.12325.
    1. Martakis K., Stark C., Rehberg M., Semler O., Duran I., Schoenau E. One-minute walk test in children with cerebral palsy GMFCS level 1 and 2: Reference values to identify therapeutic effects after rehabilitation. Dev. Neurorehabilit. 2020;23:201–209. doi: 10.1080/17518423.2019.1625981.
    1. Chen C.-L., Shen I.-H., Chen C.-Y., Wu C.-Y., Liu W.-Y., Chung C.-Y. Validity, responsiveness, minimal detectable change, and minimal clinically important change of Pediatric Balance Scale in children with cerebral palsy. Res. Dev. Disabil. 2013;34:916–922. doi: 10.1016/j.ridd.2012.11.006.
    1. Matsuda M., Iwasaki N., Mataki Y., Mutsuzaki H., Yoshikawa K., Takahashi K., Enomoto K., Sano K., Kubota A., Nakayama T. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Brain Dev. 2018;40:642–648. doi: 10.1016/j.braindev.2018.04.004.
    1. Nakagawa S., Mutsuzaki H., Mataki Y., Endo Y., Kamada H., Yamazaki M. Improvement and sustainability of walking ability with hybrid assistive limb training in a patient with cerebral palsy after puberty: A case report. J. Phys. Ther. Sci. 2019;31:633–637. doi: 10.1589/jpts.31.633.
    1. Ueno T., Watanabe H., Kawamoto H., Shimizu Y., Endo A., Shimizu T., Ishikawa K., Kadone H., Ohto T., Kamada H. Feasibility and safety of Robot Suit HAL treatment for adolescents and adults with cerebral palsy. J. Clin. Neurosci. 2019;68:101–104. doi: 10.1016/j.jocn.2019.07.026.
    1. Kawasaki S., Ohata K., Yoshida T., Yokoyama A., Yamada S. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: A pilot randomized controlled trial. J. Neuroeng. Rehabil. 2020;17:1–8. doi: 10.1186/s12984-020-00712-3.
    1. Tsukahara A., Yoshida K., Matsushima A., Ajima K., Kuroda C., Mizukami N., Hashimoto M. Evaluation of walking smoothness using wearable robotic system curara® for spinocerebellar degeneration patients; Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR); London, UK. 17–20 July 2017; pp. 1494–1499.
    1. Tsukahara A., Yoshida K., Matsushima A., Ajima K., Kuroda C., Mizukami N., Hashimoto M. Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control. J. Neuroeng. Rehabil. 2018;15:1–12. doi: 10.1186/s12984-018-0425-4.
    1. Matsushima A., Maruyama Y., Mizukami N., Tetsuya M., Hashimoto M., Yoshida K. Gait training with a wearable curara® robot for cerebellar ataxia: A single-arm study. Biomed. Eng. Online. 2021;20:90. doi: 10.1186/s12938-021-00929-w.
    1. Kim S.-H., Han J.-Y., Song M.-K., Choi I.-S., Park H.-K. Effectiveness of Robotic Exoskeleton-Assisted Gait Training in Spinocerebellar Ataxia: A Case Report. Sensors. 2021;21:4874. doi: 10.3390/s21144874.
    1. Wallard L., Dietrich G., Kerlirzin Y., Bredin J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur. J. Paediatr. Neurol. 2017;21:557–564. doi: 10.1016/j.ejpn.2017.01.012.
    1. Borggraefe I., Schaefer J.S., Klaiber M., Dabrowski E., Ammann-Reiffer C., Knecht B., Berweck S., Heinen F., Meyer-Heim A. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur. J. Paediatr. Neurol. 2010;14:496–502. doi: 10.1016/j.ejpn.2010.01.002.
    1. Meyer-Heim A., Ammann-Reiffer C., Schmartz A., Schaefer J., Sennhauser F.H., Heinen F., Knecht B., Dabrowski E., Borggraefe I. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch. Dis. Child. 2009;94:615–620. doi: 10.1136/adc.2008.145458.

Source: PubMed

3
購読する