The effects of 405 nm light on bacterial membrane integrity determined by salt and bile tolerance assays, leakage of UV-absorbing material and SYTOX green labelling

Karen McKenzie, Michelle Maclean, M Helen Grant, Praveen Ramakrishnan, Scott J MacGregor, John G Anderson, Karen McKenzie, Michelle Maclean, M Helen Grant, Praveen Ramakrishnan, Scott J MacGregor, John G Anderson

Abstract

Bacterial inactivation by 405 nm light is accredited to the photoexcitation of intracellular porphyrin molecules resulting in energy transfer and the generation of reactive oxygen species that impart cellular oxidative damage. The specific mechanism of cellular damage, however, is not fully understood. Previous work has suggested that destruction of nucleic acids may be responsible for inactivation; however, microscopic imaging has suggested membrane damage as a major constituent of cellular inactivation. This study investigates the membrane integrity of Escherichia coli and Staphylococcus aureus exposed to 405 nm light. Results indicated membrane damage to both species, with loss of salt and bile tolerance by S. aureus and E. coli, respectively, consistent with reduced membrane integrity. Increased nucleic acid release was also demonstrated in 405 nm light-exposed cells, with up to 50 % increase in DNA concentration into the extracellular media in the case of both organisms. SYTOX green fluorometric analysis, however, demonstrated contradictory results between the two test species. With E. coli, increasing permeation of SYTOX green was observed following increased exposure, with >500 % increase in fluorescence, whereas no increase was observed with S. aureus. Overall, this study has provided good evidence that 405 nm light exposure causes loss of bacterial membrane integrity in E. coli, but the results with S. aureus are more difficult to explain. Further work is required to gain greater understanding of the inactivation mechanism in different bacterial species, as there are likely to be other targets within the cell that are also impaired by the oxidative damage from photo-generated reactive oxygen species.

Figures

Fig. 1.
Fig. 1.
Inactivation kinetics of E. coli and S. aureus with exposure to 405 nm light, with an irradiance of 65 mW cm−2. (a and b) E. coli at 107 and 109 c.f.u. ml−1, respectively; (c and d) S. aureus at 107 and 109 c.f.u. ml−1, respectively. Non-exposed control samples showed no significant change. An asterisk (*) represents significant bacterial inactivation, when compared to associated non-exposed control (P≤0.05). Each data point is a mean value±sem (n≥6).
Fig. 2.
Fig. 2.
Demonstration of lethal and sub-lethal damage of (a) E. coli and (b) S. aureus exposed to 405 nm light by comparison of post-exposure survivors plated on non-selective and selective media. Bacterial populations were exposed to an irradiance of 65 mW cm−2. VRBA and MSA were selected for use due to their high bile and salt concentrations, respectively, to provide selective pressures which discourage growth of bacteria with reduced membrane integrity. NA was used as the non-selective growth medium. An asterisk (*) represents significant bacterial inactivation on selective agar, when compared to associated non-selective counts (P≤0.05). Each data point is a mean value±sem (n≥6).
Fig. 3.
Fig. 3.
Absorbance measurements of (a) E. coli and (b) S. aureus cell supernatants at 260 nm following 405 nm light exposure (65 mW cm−2). An asterisk (*) represents a significant increase in absorbance reading when compared to the equivalent non-exposed control samples (P≤0.05). Each data point is a mean value±sem (n≥3).
Fig. 4.
Fig. 4.
SYTOX green fluorescence at 523 nm of (a) E. coli and (b) S. aureus cells following increasing doses of 405 nm light exposure (65 mW cm−2), using an excitation wavelength of 490 nm. Results are measured as the percentage increase compared to non-exposed control samples. An asterisk (*) represents a significant increase in fluorescence when compared to non-exposed control samples (P≤0.05). Each data point is a mean value±sem (n≥3).
Fig. 5.
Fig. 5.
Fluorescence microscopy of SYTOX green stain labelled bacteria. Cells were exposed to a dose of 234 and 117 J cm−2, for E. coli and S. aureus, respectively (first data point in inactivation curve Fig. 1). Cells were stained with 5 mM SYTOX green and brightness in fluorescence between exposed and non-exposed samples was compared visually using an epifluorescent microscope. Images (a) and (b) represent MosaiX images (8×8) of non-exposed and 405 nm exposed E. coli. Images (c) and (d) represent non-exposed and 405 nm exposed S. aureus. Excitation and emission were 490 nm and >520 nm, respectively, for all samples.

References

    1. Bache S. E., Maclean M., MacGregor S. J., Anderson J. G., Gettinby G., Coia J. E., Taggart I.(2012). Clinical studies of the HINS-light environmental decontamination system for continuous disinfection in the burn unit inpatient and outpatient settings. Burns 38 69–76.10.1016/j.burns.2011.03.008
    1. Bolton J. R., Linden K. G.(2003). Standardization of methods for fluence (UV dose) determination in bench scale UV experiments ent settings. J Environ Eng 129 209–215.10.1061/(ASCE)0733-9372(2003)129:3(209)
    1. Breeuwer P., Abee T.(2000). Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55 193–200.10.1016/S0168-1605(00)00163-X
    1. Carson C. F., Mee B. J., Riley T. V.(2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46 1914–1920.10.1128/AAC.46.6.1914-1920.2002
    1. Clauditz A., Resch A., Wieland K. P., Peschel A., Götz F.(2006). Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74 4950–4953.10.1128/IAI.00204-06
    1. Dai T., Gupta A., Murray C. K., Vrahas M. S., Tegos G. P., Hamblin M. R.(2012). Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 15 223–236.10.1016/j.drup.2012.07.001
    1. Dai T., Gupta A., Huang Y.-Y., Sherwood M. E., Murray C. K., Vrahas M. S., Kielian T., Hamblin M. R.(2013a). Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg 31 531–538.10.1089/pho.2012.3365
    1. Dai T., Gupta A., Huang Y.-Y., Yin R., Murray C. K., Vrahas M. S., Sherwood M. E., Tegos G. P., Hamblin M. R.(2013b). Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 57 1238–1245.10.1128/AAC.01652-12
    1. Dancer S. J.(2014). Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev 27 665–690.10.1128/CMR.00020-14
    1. Demidova T. N., Hamblin M. R.(2004). Photodynamic therapy targeted to pathogens. Int J Immunopath Pharmacol 17 245–254.
    1. Endarko E., Maclean M., Timoshkin I. V., MacGregor S. J., Anderson J. G.(2012). High-intensity 405 nm light inactivation of Listeria monocytogenes. Photochem Photobiol 88 1280–1286.10.1111/j.1751-1097.2012.01173.x
    1. Enwemeka C. S., Williams D., Hollosi S., Yens D., Enwemeka S. K.(2008). Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40 734–737.10.1002/lsm.20724
    1. Gilbert P.(1984). The revival of microorganisms sublethally injured by chemical inhibitors. The Revival of Injured Microbes 175–197. Edited by Andrews M. H. E., Russell A. D. London, UK: Academic Press.
    1. Guffey J. S., Wilborn J.(2006). In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg 24 684–688.10.1089/pho.2006.24.684
    1. Hamblin M. R., Hasan T.(2004). Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3 436–450.10.1039/b311900a
    1. Hugo W. B., Longworth R.(1964). Some aspects of the mode of action of chlorhexidine. J Pharm Pharmacol 16 655–662.10.1111/j.2042-7158.1964.tb07384.x
    1. Lebaron P., Catala P., Parthuisot N.(1998). Effectiveness of SYTOX green stain for bacterial viability assessment. Appl Environ Microbiol 64 2697–2700.
    1. Luksiene Z.(2009). Photosensitisation for food safety. Chemine Technologija 53 62–65.
    1. Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. A.(2008). The role of oxygen in the visible light inactivation and wavelength sensitivity of Staphylococcus aureus. J Photochem Photobiol B 92 180–184.
    1. Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. A.(2009). Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 75 1932–1937.10.1128/AEM.01892-08
    1. Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. A., Coia J. E., Hamilton K., Taggart I., Watson S. B., Thakker B., Gettinby G.(2010). Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. J Hosp Infect 76 247–251.10.1016/j.jhin.2010.07.010
    1. Maclean M., Murdoch L. E., MacGregor S. J., Anderson J. G.(2013). Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol 89 120–126.10.1111/j.1751-1097.2012.01202.x
    1. Maclean M., McKenzie K., Anderson J. G., Gettinby G., MacGregor S. J.(2015). 405 nm Light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect 88 1–11.10.1016/j.jhin.2014.06.004
    1. Malik Z., Ladan H., Nitzan Y.(1992). Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B 14 262–266.10.1016/1011-1344(92)85104-3
    1. McDonald R., Macgregor S. J., Anderson J. G., Maclean M., Grant M. H.(2011). Effect of 405-nm high-intensity narrow-spectrum light on fibroblast-populated collagen lattices: an in vitro model of wound healing. J Biomed Opt 16 048003.10.1117/1.3561903
    1. McKenzie K., Maclean M., Timoshkin I. V., Endarko E., MacGregor S. J., Anderson J. G.(2013). Photoinactivation of bacteria attached to glass and acrylic surfaces by 405 nm light: potential application for biofilm decontamination. Photochem Photobiol 89 927–935.10.1111/php.12077
    1. McKenzie K., Maclean M., Timoshkin I. V., MacGregor S. J., Anderson J. G.(2014). Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions. Int J Food Microbiol 170 91–98.10.1016/j.ijfoodmicro.2013.10.016
    1. Murdoch L. E., Maclean M., Endarko E., MacGregor S. J., Anderson J. G.(2012). Bactericidal effects of 405-nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria and Mycobacterium species in liquid suspensions and on exposed surfaces. Scientific World Journal 2012 137805.
    1. Nair S., Finkel S. E.(2004). Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186 4192–4198.10.1128/JB.186.13.4192-4198.2004
    1. Nitzan Y., Salmon-Divon M., Shporen E., Malik Z.(2004). ALA induced photodynamic effects on Gram positive and negative bacteria. Photochem Photobiol Sci 3 430–435.10.1039/b315633h
    1. Pelle E., Mammone T., Marenus K., Maes D.(2003). Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger. J Invest Dermatol 121 177–183.10.1046/j.1523-1747.2003.12330.x
    1. Pelz A., Wieland K. P., Putzbach K., Hentschel P., Albert K., Götz F.(2005). Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280 32493–32498.10.1074/jbc.M505070200
    1. Ramakrishnan P., Maclean M., MacGregor S. J., Anderson J. G., Grant M. H.(2016). Cytotoxic responses to 405 nm light exposure in mammalian and bacterial cells: involvement of reactive oxygen species. Toxicol In Vitro 33 54–62.10.1016/j.tiv.2016.02.011
    1. Roth B. L., Poot M., Yue S. T., Millard P. J.(1997). Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63 2421–2431.
    1. Sakai K., Koyama N., Fukuda T., Mori Y., Onaka H., Tomoda H.(2012). Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 35 48–53.10.1248/bpb.35.48
    1. Tashyreva D., Elster J., Billi D.(2013). A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes. PLoS One 8 e55283.10.1371/journal.pone.0055283
    1. Ukuku D. O., Yamamoto K., Bari M., Mukhopadaya S., Juneja V., Kawamoto S.(2013). Membrane damage and viability loss of E. coli and Salmonella in apple juice treated with high hydrostatic pressure and thermal time disks. J Food Proc Tech 54 1–6.
    1. Weichart D., McDougald D., Jacobs D., Kjelleberg S.(1997). In situ analysis of nucleic acids in cold-induced nonculturable Vibrio vulnificus. Appl Environ Microbiol 63 2754–2758.
    1. Zhang Y., Zhu Y., Gupta A., Huang Y., Murray C. K., Vrahas M. A., Sherwood M. E., Baer D. G., Hamblin M. R., Dai T.(2014). Antimicrobial blue light therapy for multi-drug resistant Acinetobacter baumanni infection in mice: implications for prophylaxis and treatment of combat related infection. J Infect Dis 17 122–127.

Source: PubMed

3
購読する