The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process

Maria Sebastian-Valverde, Giulio M Pasinetti, Maria Sebastian-Valverde, Giulio M Pasinetti

Abstract

As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.

Keywords: NLRP3; age-related diseases; inflammaging; innate immunity.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Age-related modifications in the cells from the innate immune system.
Figure 2
Figure 2
Mechanisms involved in inflammaging. (A) Molecular and cellular mechanisms that lead to low-grade chronic inflammation, or inflammaging. (B) Priming and activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome by danger molecules generated through mechanisms involved in inflammaging. All the mechanisms interact among them, establishing an inflammatory vicious cycle. Molecules that act as danger-associated molecular patterns (DAMPs) and trigger the transcriptional priming of the inflammasome are indicated with *, and molecules that serve as second stimuli for NLRP3 activation are highlighted in red.

References

    1. Bonilla F.A., Oettgen H.C. Adaptive immunity. J. Allergy Clin. Immunol. 2010;125:S33–S40. doi: 10.1016/j.jaci.2009.09.017.
    1. Weiskopf D., Weinberger B., Grubeck-Loebenstein B. The aging of the immune system. Transpl. Int. 2009;22:1041–1050. doi: 10.1111/j.1432-2277.2009.00927.x.
    1. Ferrando-Martínez S., Ruiz-Mateos E., Hernandez A., Gutiérrez E., Rodríguez-Méndez M.D.M., Ordóñez-Fernández A., Leal M. Age-related deregulation of naive T cell homeostasis in elderly humans. AGE. 2010;33:197–207. doi: 10.1007/s11357-010-9170-8.
    1. Weng N.-P. Aging of the Immune System: How Much Can the Adaptive Immune System Adapt? Immunity. 2006;24:495–499. doi: 10.1016/j.immuni.2006.05.001.
    1. Medzhitov R., Janeway C. Innate Immunity. N. Engl. J. Med. 2000;343:338–344. doi: 10.1056/NEJM200008033430506.
    1. Mortensen R.F. C-Reactive Protein, Inflammation, and Innate Immunity. Immunol. Res. 2001;24:163–176. doi: 10.1385/IR:24:2:163.
    1. Summers C., Rankin S.M., Condliffe A.M., Singh N., Peters A.M., Chilvers E.R. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31:318–324. doi: 10.1016/j.it.2010.05.006.
    1. Nguyen G.T., Green E.R., Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Microbiol. 2017;7:373. doi: 10.3389/fcimb.2017.00373.
    1. Tortorella C., Piazzolla G., Spaccavento F., Jirillo E., Antonaci S. Age-related effects of oxidative metabolism and cyclic AMP signaling on neutrophil apoptosis. Mech. Ageing Dev. 1999;110:195–205. doi: 10.1016/S0047-6374(99)00055-X.
    1. Fülöp T., Larbi A., Douziech N., Fortin C., Guérard K.-P., Lesur O., Khalil A., Dupuis G. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3:217–226. doi: 10.1111/j.1474-9728.2004.00110.x.
    1. Ito Y., Kajkenova O., Feuers R.J., Udupa K.B., Desai V.G., Epstein J., Hart R.W., Lipschitz D.A. Impaired glutathione peroxidase activity accounts for the age-related accumulation of hydrogen peroxide in activated human neutrophils. J. Gerontol. Ser. A Biol. Sci. Med Sci. 1998;53:M169–M175. doi: 10.1093/gerona/53A.3.M169.
    1. Wenisch C., Patruta S., Daxböck F., Krause R., Hörl W. Effect of age on human neutrophil function. J. Leukoc. Biol. 2000;67:40–45. doi: 10.1002/jlb.67.1.40.
    1. Steinman R.M., Hemmi H. Current Topics in Microbiology and Immunology. Vol. 311. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2006. Dendritic cells: Translating innate to adaptive immunity; pp. 17–58.
    1. Müller L., Fülöp T., Pawelec G. Immunosenescence in vertebrates and invertebrates. Immun. Ageing. 2013;10:12. doi: 10.1186/1742-4933-10-12.
    1. Corberand J., Ngyen F., Laharrague P., Fontanilles A.M., Gleyzes B., Gyrard E., Senegas C. Polymorphonuclear Functions and Aging in Humans. J. Am. Geriatr. Soc. 1981;29:391–397. doi: 10.1111/j.1532-5415.1981.tb02376.x.
    1. Agrawal A., Agrawal S., Cao J.-N., Su H., Osann K., Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: A role of phosphoinositide 3-kinase-signaling pathway. J. Immunol. 2007;178:6912–6922. doi: 10.4049/jimmunol.178.11.6912.
    1. Wu X., Molinaro C., Johnson N., Casiano C.A. Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens: Implications for systemic autoimmunity. Arthritis Rheum. 2001;44:2642–2652. doi: 10.1002/1529-0131(200111)44:11<2642::AID-ART444>;2-8.
    1. Solana R., Tarazona R., Gayoso I., Lesur O., Dupuis G., Fülöp T. Innate immunosenescence: Effect of aging on cells and receptors of the innate immune system in humans. Semin. Immunol. 2012;24:331–341. doi: 10.1016/j.smim.2012.04.008.
    1. Locati M., Mantovani A., Sica A. Advances in Immunology. Vol. 120. Elsevier BV; Amsterdam, The Netherlands: 2013. Macrophage Activation and Polarization as an Adaptive Component of Innate Immunity; pp. 163–184.
    1. Bowdish D.M.E., Loffredo M., Mukhopadhyay S., Mantovani A., Gordon S. Macrophage receptors implicated in the “adaptive” form of innate immunity. Microbes Infect. 2007;9:1680–1687. doi: 10.1016/j.micinf.2007.09.002.
    1. Keller R. The macrophage response to infectious agents: Mechanisms of macrophage activation and tumour cell killing. Res. Immunol. 1993;144:271–273. doi: 10.1016/0923-2494(93)80105-8.
    1. Duque G.A., Descoteaux A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014;5 doi: 10.3389/fimmu.2014.00491.
    1. Lloberas J., Tur J., Vico T., Celada A. Handbook of Immunosenescence. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2019. Molecular and Cellular Aspects of Macrophage Aging; pp. 1631–1663.
    1. Takahashi R., Totsuka S., Ishigami A., Kobayashi Y., Nagata K. Attenuated phagocytosis of secondary necrotic neutrophils by macrophages in aged and SMP30 knockout mice. Geriatr. Gerontol. Int. 2015;16:135–142. doi: 10.1111/ggi.12436.
    1. Solana R., Villanueva J., Pena J., de la Fuente M. Cell mediated immunity in ageing. Comp. Biochem. Physiol. Part A Physiol. 1991;99:1–4. doi: 10.1016/0300-9629(91)90224-Z.
    1. Herrero C., Marqués L., Lloberas J., Celada A. IFN-γ–dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J. Clin. Investig. 2001;107:485–493. doi: 10.1172/JCI11696.
    1. Mahbub S., Deburghgraeve C.R., Kovacs E.J. Advanced Age Impairs Macrophage Polarization. J. Interf. Cytokine Res. 2012;32:18–26. doi: 10.1089/jir.2011.0058.
    1. Shaw A.C., Goldstein D.R., Montgomery R.R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 2013;13:875–887. doi: 10.1038/nri3547.
    1. Lumeng C.N., Liu J., Geletka L., Delaney C.E., del Proposto J., Desai A., Oatmen K., Martinez-Santibanez G., Julius A., Garg S., et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol. 2011;187:6208–6216. doi: 10.4049/jimmunol.1102188.
    1. Cao J.J., Wronski T.J., Iwaniec U., Phleger L., Kurimoto P., Boudignon B., Halloran B.P. Aging Increases Stromal/Osteoblastic Cell-Induced Osteoclastogenesis and Alters the Osteoclast Precursor Pool in the Mouse. J. Bone Miner. Res. 2005;20:1659–1668. doi: 10.1359/JBMR.050503.
    1. Frei K., Siepl C., Groscurth P., Bodmer S., Schwerdel C., Fontana A. Antigen presentation and tumor cytotoxicity by interferon-γ-treated microglial cells. Eur. J. Immunol. 1987;17:1271–1278. doi: 10.1002/eji.1830170909.
    1. Shrikant P., Benveniste E.N. The central nervous system as an immunocompetent organ: Role of glial cells in antigen presentation. J. Immunol. 1996;157:157.
    1. Damani M.R., Zhao L., Fontainhas A.M., Amaral J., Fariss R.N., Wong W.T. Age-related alterations in the dynamic behavior of microglia. Aging Cell. 2010;10:263–276. doi: 10.1111/j.1474-9726.2010.00660.x.
    1. Floden A.M., Combs C.K. Microglia Demonstrate Age-Dependent Interaction with Amyloid-β Fibrils. JAD. 2011;25:279–293. doi: 10.3233/JAD-2011-101014.
    1. Njie E.G., Boelen E., Stassen F.R., Steinbusch H.W., Borchelt D.R., Streit W.J. Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol. Aging. 2010;33:195. doi: 10.1016/j.neurobiolaging.2010.05.008.
    1. Perry V.H., Holmes C. Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 2014;10:217–224. doi: 10.1038/nrneurol.2014.38.
    1. Michell-Robinson M.A., Touil H., Healy L., Owen D.R., Durafourt B.A., Bar-Or A., Antel J.P., Moore C. Roles of microglia in brain development, tissue maintenance and repair. Brain. 2015;138:1138–1159. doi: 10.1093/brain/awv066.
    1. Roubenoff R., Harris T.B., Abad L.W., Wilson P.W.F., Dallal G.E., Dinarello C.A. Monocyte cytokine production in an elderly population: Effect of age and inflammation. J. Gerontol. Ser. A Biol. Sci. Med Sci. 1998;53:M20–M26. doi: 10.1093/gerona/53A.1.M20.
    1. Brüünsgaard H., Pedersen B.K. Age-related inflammatory cytokines, and disease. Immunol. Allergy Clin. North Am. 2003;23:15–39. doi: 10.1016/S0889-8561(02)00056-5.
    1. Ferrucci L., Corsi A., Lauretani F., Bandinelli S., Bartali B., Taub D.D., Guralnik J., Longo D.L. The origins of age-related proinflammatory state. Blood. 2005;105:2294–2299. doi: 10.1182/blood-2004-07-2599.
    1. Franceschi C., Bonafè M., Valensin S., Olivieri F., de Luca M., Ottaviani E., de Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. New York Acad. Sci. 2000;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Roubenoff R., Parise H., Payette H.A., Abad L.W., D’Agostino R., Jacques P.F., Wilson P.W.F., Dinarello C.A., Harris T.B. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: The Framingham Heart Study. Am. J. Med. 2003;115:429–435. doi: 10.1016/j.amjmed.2003.05.001.
    1. Pawelec G., Goldeck D., Derhovanessian E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 2014;29:23–28. doi: 10.1016/j.coi.2014.03.007.
    1. Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018;14:576–590. doi: 10.1038/s41574-018-0059-4.
    1. Strowig T., Henao-Mejia J., Elinav E., Flavell R. Inflammasomes in health and disease. Nature. 2012;481:278–286. doi: 10.1038/nature10759.
    1. Guo H., Callaway J.B., Ting J.P.-Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893.
    1. Platnich J.M., Muruve D.A. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways. Arch. Biochem. Biophys. 2019;670:4–14. doi: 10.1016/j.abb.2019.02.008.
    1. Liu L., Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res. Rev. 2014;15:6–15. doi: 10.1016/j.arr.2013.12.007.
    1. Soares J.L., de Oliveira E.M.L., Pontillo A. Variants in NLRP3 and NLRC4 inflammasome associate with susceptibility and severity of multiple sclerosis. Mult. Scler. Relat. Disord. 2019;29:26–34. doi: 10.1016/j.msard.2019.01.023.
    1. Fan Z., Pan Y.-T., Zhang Z.-Y., Yang H., Yu S.-Y., Zheng Y., Ma J.-H., Wang X.-M. Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J. Neuroinflamm. 2020;17:11. doi: 10.1186/s12974-019-1670-6.
    1. Aganna E., Martinon F., Hawkins P.N., Ross J.B., Swan D., Booth D., Lachmann H.J., Gaudet R., Woo P., Feighery C., et al. Association of mutations in theNALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum. 2002;46:2445–2452. doi: 10.1002/art.10509.
    1. Yin J., Zhao F., Chojnacki J., Fulp J., Klein W.L., Zhang S., Zhu X. NLRP3 Inflammasome Inhibitor Ameliorates Amyloid Pathology in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2017;55:1977–1987. doi: 10.1007/s12035-017-0467-9.
    1. Feldman N., Rotter-Maskowitz A., Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res. Rev. 2015;24:29–39. doi: 10.1016/j.arr.2015.01.003.
    1. Savage C.D., Lopez-Castejon G., Denes A., Brough D. NLRP3-Inflammasome Activating DAMPs Stimulate an Inflammatory Response in Glia in the Absence of Priming Which Contributes to Brain Inflammation after Injury. Front. Immunol. 2012;3 doi: 10.3389/fimmu.2012.00288.
    1. Piva R., Belardo G., Santoro M.G. NF-κB: A Stress-Regulated Switch for Cell Survival. Antioxid. Redox Signal. 2006;8:478–486. doi: 10.1089/ars.2006.8.478.
    1. Salminen A., Huuskonen J., Ojala J., Kauppinen A., Kaarniranta K., Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev. 2008;7:83–105. doi: 10.1016/j.arr.2007.09.002.
    1. Kayagaki N., Stowe I.B., Lee B.L., O’Rourke K., Anderson K., Warming S., Cuellar T.L., Haley B., Roose-Girma M., Phung Q., et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–671. doi: 10.1038/nature15541.
    1. Shi J., Zhao Y., Wang K., Shi X., Wang Y., Huang H., Zhuang Y., Cai T., Wang F., Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–665. doi: 10.1038/nature15514.
    1. Petrilli V., Papin S., Dostert C., Mayor A., Martinon F., Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14:1583–1589. doi: 10.1038/sj.cdd.4402195.
    1. Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2009;11:136–140. doi: 10.1038/ni.1831.
    1. Niemi K., Teirilä L., Lappalainen J., Rajamäki K., Baumann M., Öörni K., Wolff H., Kovanen P.T., Matikainen S., Eklund K.K. Serum Amyloid A Activates the NLRP3 Inflammasome via P2X7 Receptor and a Cathepsin B-Sensitive Pathway. J. Immunol. 2011;186:6119–6128. doi: 10.4049/jimmunol.1002843.
    1. Rajamäki K., Lappalainen J., Öörni K., Välimäki E., Matikainen S., Kovanen P.T., Eklund K.K. Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation. PLoS ONE. 2010;5:e11765. doi: 10.1371/journal.pone.0011765.
    1. Hayflick L., Moorhead P. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961;25:585–621. doi: 10.1016/0014-4827(61)90192-6.
    1. Campisi J., di Fagagna F.D. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007;8:729–740. doi: 10.1038/nrm2233.
    1. Sharpless N.E., Sherr C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer. 2015;15:397–408. doi: 10.1038/nrc3960.
    1. Johnson S.C., Dong X., Vijg J., Suh Y. Genetic evidence for common pathways in human age-related diseases. Aging Cell. 2015;14:809–817. doi: 10.1111/acel.12362.
    1. Jeck W.R., Siebold A.P., Sharpless N.E. Review: A meta-analysis of GWAS and age-associated diseases. Aging Cell. 2012;11:727–731. doi: 10.1111/j.1474-9726.2012.00871.x.
    1. Van Deursen J. The role of senescent cells in ageing. Nature. 2014;509:439–446. doi: 10.1038/nature13193.
    1. Ferrucci L., Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018;15:505–522. doi: 10.1038/s41569-018-0064-2.
    1. Borodkina A.V., Deryabin P.I., Giukova А.А., Nikolsky N.N. “Social Life” of Senescent Cells: What Is SASP and Why Study It? Acta Nat. 2018;10:4–14. doi: 10.32607/20758251-2018-10-1-4-14.
    1. Goronzy J.J., Weyand C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 2013;14:428–436. doi: 10.1038/ni.2588.
    1. De Veale B., Brummel T., Seroude L. Immunity and aging: The enemy within? Aging Cell. 2004;3:195–208. doi: 10.1111/j.1474-9728.2004.00106.x.
    1. Arnold C.R., Wolf J., Brunner S., Herndler-Brandstetter D., Grubeck-Loebenstein B. Gain and Loss of T Cell Subsets in Old Age—Age-Related Reshaping of the T Cell Repertoire. J. Clin. Immunol. 2011;31:137–146. doi: 10.1007/s10875-010-9499-x.
    1. Nikolich-Žugich J., Li G., Uhrlaub J., Renkema K.R., Smithey M. Age-related changes in CD8 T cell homeostasis and immunity to infection. Semin. Immunol. 2012;24:356–364. doi: 10.1016/j.smim.2012.04.009.
    1. Fülöp T., Larbi A., Pawelec G. Human T Cell Aging and the Impact of Persistent Viral Infections. Front. Immunol. 2013;4 doi: 10.3389/fimmu.2013.00271.
    1. Sidler C., Woycicki R., Ilnytskyy Y., Metz G.A.S., Kovalchuk I., Kovalchuk O. Immunosenescence is associated with altered gene expression and epigenetic regulation in primary and secondary immune organs. Front. Genet. 2013;4 doi: 10.3389/fgene.2013.00211.
    1. Malaquin N., Carrier-Leclerc A., Dessureault M., Rodier F. DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front. Genet. 2015;6 doi: 10.3389/fgene.2015.00094.
    1. Von Zglinicki T., Saretzki G., Ladhoff J., di Fagagna F.D., Jackson S.P. Human cell senescence as a DNA damage response. Mech. Ageing Dev. 2005;126:111–117. doi: 10.1016/j.mad.2004.09.034.
    1. Xu Y. DNA damage: A trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat. Rev. Immunol. 2006;6:261–270. doi: 10.1038/nri1804.
    1. Liu Z.-G., Baskaran R., Lea-Chou E.T., Wood L.D., Chen Y., Karin M., Wang J.Y.J. Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature. 1996;384:273–276. doi: 10.1038/384273a0.
    1. González S., López-Soto A., Suárez-Álvarez B., López-Vázquez A., López-Soto A., Gonzalez S. NKG2D ligands: Key targets of the immune response. Trends Immunol. 2008;29:397–403. doi: 10.1016/j.it.2008.04.007.
    1. Kuilman T., Peeper D.S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer. 2009;9:81–94. doi: 10.1038/nrc2560.
    1. Frontini M., Vijayakumar M., Garvin A., Clarke N. A ChIP-chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response. Nucleic Acids Res. 2009;37:1073–1085. doi: 10.1093/nar/gkn1051.
    1. Hayden M., Ghosh S. Shared Principles in NF-κB Signaling. Cell. 2008;132:344–362. doi: 10.1016/j.cell.2008.01.020.
    1. Bonafe M., Storci G., Franceschi C. Inflamm-aging of the stem cell niche: Breast cancer as a paradigmatic example. Bioessays. 2011;34:40–49. doi: 10.1002/bies.201100104.
    1. Karakasilioti I., Kamileri I., Chatzinikolaou G., Kosteas T., Vergadi E., Robinson A.R., Tsamardinos I., Rozgaja T.A., Siakouli S., Tsatsanis C., et al. DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria. Cell Metab. 2013;18:403–415. doi: 10.1016/j.cmet.2013.08.011.
    1. Pateras I.S., Havaki S., Nikitopoulou X., Vougas K., Townsend P.A., Panayiotidis M.I., Georgakilas A.G., Gorgoulis V.G. The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol. Ther. 2015;154:36–56. doi: 10.1016/j.pharmthera.2015.06.011.
    1. Mena N.P., Urrutia P.J., Lourido F., Carrasco C.M., Nuñez M.T. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion. 2015;21:92–105. doi: 10.1016/j.mito.2015.02.001.
    1. Napier I., Ponka P., Richardson D.R. Iron trafficking in the mitochondrion: Novel pathways revealed by disease. Blood. 2005;105:1867–1874. doi: 10.1182/blood-2004-10-3856.
    1. Rossier M. T channels and steroid biosynthesis: In search of a link with mitochondria. Cell Calcium. 2006;40:155–164. doi: 10.1016/j.ceca.2006.04.020.
    1. Hajnóczky G., Csordás G., das S., Garcia-Perez C., Saotome M., Roy S.S., Yi M. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40:553–560. doi: 10.1016/j.ceca.2006.08.016.
    1. Santulli G., Marks A.R. Essential Roles of Intracellular Calcium Release Channels in Muscle, Brain, Metabolism, and Aging. Curr. Mol. Pharmacol. 2015;8:206–222. doi: 10.2174/1874467208666150507105105.
    1. Harman D. Aging: A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298.
    1. Larsson N.-G. Somatic Mitochondrial DNA Mutations in Mammalian Aging. Annu. Rev. Biochem. 2010;79:683–706. doi: 10.1146/annurev-biochem-060408-093701.
    1. Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The Hallmarks of Aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Newgard C.B., Pessin J.E. Recent progress in metabolic signaling pathways regulating aging and life span. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2014;69:S21–S27. doi: 10.1093/gerona/glu058.
    1. Sevini F., Giuliani C., Vianello D., Giampieri E., Santoro A., Biondi F., Garagnani P., Passarino G., Luiselli D., Capri M., et al. mtDNA mutations in human aging and longevity: Controversies and new perspectives opened by high-throughput technologies. Exp. Gerontol. 2014;56:234–244. doi: 10.1016/j.exger.2014.03.022.
    1. Zamzami N., Hirsch T., Dallaporta B., Petit P.X., Kroemer G. Mitochondrial implication in accidental and programmed cell death: Apoptosis and necrosis. J. Bioenerg. Biomembr. 1997;29:185–193. doi: 10.1023/A:1022694131572.
    1. Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–107. doi: 10.1038/nature08780.
    1. Shintani Y., Kapoor A., Kaneko M., Smolenski R.T., D’Acquisto F., Coppen S.R., Harada-Shoji N., Lee H.J., Thiemermann C., Takashima S., et al. TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc. Natl. Acad. Sci USA. 2013;110:5109–5114. doi: 10.1073/pnas.1219243110.
    1. Zhang J.-Z., Liu Z., Liu J., Ren J.-X., Sun T. Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue. Int. J. Mol. Med. 2014;33:817–824. doi: 10.3892/ijmm.2014.1650.
    1. Liu T., Zhang L., Joo D., Sun S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23.
    1. Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., Ramanujan V.K., Wolf A.J., Vergnes L., Ojcius D.M., et al. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity. 2012;36:401–414. doi: 10.1016/j.immuni.2012.01.009.
    1. West A.P., Shadel G.S., Ghosh S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 2011;11:389–402. doi: 10.1038/nri2975.
    1. West A.P., Khoury-Hanold W., Staron M., Tal M.C., Pineda C.M., Lang S.M., Bestwick M., Duguay B.A., Raimundo N., MacDuff N.A., et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553–557. doi: 10.1038/nature14156.
    1. Subramanian N., Natarajan K., Clatworthy M.R., Wang Z., Germain R.N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 2013;153:348–361. doi: 10.1016/j.cell.2013.02.054.
    1. Ravikumar B., Sarkar S., Davies J.E., Futter M., Garcia-Arencibia M., Green-Thompson Z.W., Jimenez-Sanchez M., Korolchuk V.I., Lichtenberg M., Luo S., et al. Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiol. Rev. 2010;90:1383–1435. doi: 10.1152/physrev.00030.2009.
    1. Klionsky D.J., Abdelmohsen K., Abe A., Abedin J., Abeliovich H., Acevedo-Arozena A., Adachi H., Adams C., Adams P.D., Adeli K., et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) Autophagy. 2016;12:1–222. doi: 10.1080/15548627.2015.1100356.
    1. Levine B., Mizushima N., Virgin H.W. Autophagy in immunity and inflammation. Nature. 2011;469:323–335. doi: 10.1038/nature09782.
    1. Choi A.J.S., Ryter S.W. Autophagy in Inflammatory Diseases. Int. J. Cell Biol. 2011;2011:1–11. doi: 10.1155/2011/732798.
    1. Yang S., Imamura Y., Jenkins R.W., Cañadas I., Kitajima S., Aref A.R., Brannon A.L., Oki E., Castoreno A., Zhu Z., et al. Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation. Cancer Immunol. Res. 2016;4:520–530. doi: 10.1158/2326-6066.CIR-15-0235.
    1. Liu T. Advances in Experimental Medicine and Biology. Vol. 1209. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2019. Regulation of Inflammasome by Autophagy; pp. 109–123.
    1. Kee B.P., Ng J.G., Ng C.C., Hilmi I., Goh K., Chua K.H. Genetic polymorphisms of ATG16L1 and IRGM genes in Malaysian patients with Crohn’s disease. J. Dig. Dis. 2019;21:29–37. doi: 10.1111/1751-2980.12829.
    1. Hsieh C.-H., Pai P.-Y., Hsueh H.-W., Yuan S.-S., Hsieh Y.-C. Complete Induction of Autophagy Is Essential for Cardioprotection in Sepsis. Ann. Surg. 2011;253:1190–1200. doi: 10.1097/SLA.0b013e318214b67e.
    1. Simonsen A., Cumming R.C., Brech A., Isakson P., Schubert D.R., Finley K.D. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2007;4:176–184. doi: 10.4161/auto.5269.
    1. Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–395. doi: 10.1038/nature08221.
    1. Pyo J.-O., Yoo S.-M., Ahn H.-H., Nah J., Hong S.-H., Kam T.-I., Jung S., Jung Y. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 2013;4:2300. doi: 10.1038/ncomms3300.
    1. Pantano C., Reynaert N., van der Vliet A., Janssen–Heininger Y.M.W. Redox-Sensitive Kinases of the Nuclear Factor-κB Signaling Pathway. Antioxid. Redox Signal. 2006;8:1791–1806. doi: 10.1089/ars.2006.8.1791.
    1. Morgan M.J., Liu Z.-G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2010;21:103–115. doi: 10.1038/cr.2010.178.
    1. Ko J.H., Yoon S.-O., Lee H.J., Oh J.Y. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget. 2017;8:40817–40831. doi: 10.18632/oncotarget.17256.
    1. Niida M., Tanaka M., Kamitani T. Downregulation of active IKKβ by Ro52-mediated autophagy. Mol. Immunol. 2010;47:2378–2387. doi: 10.1016/j.molimm.2010.05.004.
    1. Shi C.-S., Shenderov K., Huang N.-N., Kabat J., Abu-Asab M.S., Fitzgerald K.A., Sher A., Kehrl J.H. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 2012;13:255–263. doi: 10.1038/ni.2215.
    1. Jessop F., Hamilton R.F., Rhoderick J.F., Shaw P.K., Holian A. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol. Appl. Pharmacol. 2016;309:101–110. doi: 10.1016/j.taap.2016.08.029.
    1. Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Landskron G., de la Fuente M., Thuwajit P., Thuwajit C., Hermoso M.A. Chronic Inflammation and Cytokines in the Tumor Microenvironment. J. Immunol. Res. 2014;2014:1–19. doi: 10.1155/2014/149185.
    1. Sosa V., Moliné T., Somoza R., Paciucci R., Kondoh H., Lleonart M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev. 2013;12:376–390. doi: 10.1016/j.arr.2012.10.004.
    1. Saha S.K., Bin-Lee S., Won J., Choi H.Y., Kim K., Yang G.-M., Dayem A.A., Cho S.-G. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. Int. J. Mol. Sci. 2017;18:1544. doi: 10.3390/ijms18071544.
    1. Naik E., Dixit V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 2011;208:417–420. doi: 10.1084/jem.20110367.
    1. Kamp D.W., Shacter E., A Weitzman S. Chronic inflammation, and cancer: The role of the mitochondria. Oncol. 2011;25:400.
    1. Schieber M., Chandel N. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034.
    1. Moloney J.N., Cotter T. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018;80:50–64. doi: 10.1016/j.semcdb.2017.05.023.
    1. Kim M.K., Song Y.S. Inflammation, Advancing Age and Nutrition. Elsevier BV; Amsterdam, The Netherlands: 2014. Stress Response, Inflammaging, and Cancer; pp. 49–53.
    1. De Simone V., Franzè E., Ronchetti G., Colantoni A., Fantini M.C., di Fusco D., Sica G.S., Sileri P., Macdonald T.T., Pallone F., et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2014;34:3493–3503. doi: 10.1038/onc.2014.286.
    1. Civenni G., Shinde D., Zoma M., Albino D., Costales P., Moris F., Carbone G., Catapano C. The multi-kinase inhibitor EC-70124 delivers a double-hit to prostate cancer stem cells interfering with both STAT3 and NF-kB signaling. Eur. Urol. Suppl. 2017;16:e1294. doi: 10.1016/S1569-9056(17)30803-5.
    1. Kreuz S., Siegmund D., Scheurich P., Wajant H. NF-κB Inducers Upregulate cFLIP, a Cycloheximide-Sensitive Inhibitor of Death Receptor Signaling. Mol. Cell. Biol. 2001;21:3964–3973. doi: 10.1128/MCB.21.12.3964-3973.2001.
    1. Irmler M., Thome M., Hahne M., Schneider P., Hofmann K., Steiner V., Bodmer J.-L., Schröter M., Burns K., Mattmann C., et al. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388:190–195. doi: 10.1038/40657.
    1. Bullani R.R., Huard B., Viard-Leveugle I., Saurat J.-H., French L., Byers H.R., Irmler M., Tschopp J. Selective Expression of FLIP in Malignant Melanocytic Skin Lesions. J. Investig. Dermatol. 2001;117:360–364. doi: 10.1046/j.0022-202x.2001.01418.x.
    1. Humphreys L., Espona-Fiedler M., Longley D.B. FLIP as a therapeutic target in cancer. FEBS J. 2018;285:4104–4123. doi: 10.1111/febs.14523.
    1. Lee J.-U., Hosotani R., Wada M., Doi R., Kosiba T., Fujimoto K., Miyamoto Y., Tsuji S., Nakajima S., Nishimura Y., et al. Role of Bcl-2 family proteins (Bax, Bcl-2 and Bcl-X) on cellular susceptibility to radiation in pancreatic cancer cells. Eur. J. Cancer. 1999;35:1374–1380. doi: 10.1016/S0959-8049(99)00134-3.
    1. Campbell K.J., Tait S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018;8:180002. doi: 10.1098/rsob.180002.
    1. la Rosa F.A., Pierce J.W., Sonenshein G.E. Differential regulation of the c-myc oncogene promoter by the NF-kappa B rel family of transcription factors. Mol. Cell. Biol. 1994;14:1039–1044. doi: 10.1128/MCB.14.2.1039.
    1. Guttridge D.C., Albanese C., Reuther J.Y., Pestell R.G., Baldwin A.S. NF-κB Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin D1. Mol. Cell. Biol. 1999;19:5785–5799. doi: 10.1128/MCB.19.8.5785.
    1. Chen F., Castranova V., Shi X. New Insights into the Role of Nuclear Factor-κB in Cell Growth Regulation. Am. J. Pathol. 2001;159:387–397. doi: 10.1016/S0002-9440(10)61708-7.
    1. Biliran H., Banerjee S., Thakur A., Sarkar F.H., Bollig-Fischer A., Ahmed F., Wu J., Sun Y., Liao J.D. c-Myc Induced Chemosensitization Is Mediated by Suppression of Cyclin D1 Expression and Nuclear Factor—B Activity in Pancreatic Cancer Cells. Clin. Cancer Res. 2007;13:2811–2821. doi: 10.1158/1078-0432.CCR-06-1844.
    1. Dahlman J.M., Wang D., Bakkar N., Guttridge D.C. The RelA/p65 subunit of NF-κB specifically regulates cyclin D1 protein stability: Implications for cell cycle withdrawal and skeletal myogenesis. J. Cell. Biochem. 2009;106:42–51. doi: 10.1002/jcb.21976.
    1. Brücher B.L., Lang F., Jamall I.S. NF-κB signaling and crosstalk during carcinogenesis. 4open. 2019;2:13. doi: 10.1051/fopen/2019010.
    1. Levy D.E., Darnell J.E. STATs: Transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 2002;3:651–662. doi: 10.1038/nrm909.
    1. Furth P.A. STAT signaling in different breast cancer sub-types. Mol. Cell. Endocrinol. 2013;382:612–615. doi: 10.1016/j.mce.2013.03.023.
    1. Avalle L., Camporeale A., Camperi A., Poli V. STAT3 in cancer: A double edged sword. Cytokine. 2017;98:42–50. doi: 10.1016/j.cyto.2017.03.018.
    1. Yu H., Pardoll E., Jove R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer. 2009;9:798–809. doi: 10.1038/nrc2734.
    1. Reed J.C. Mechanisms of apoptosis avoidance in cancer. Curr. Opin. Oncol. 1999;11:68. doi: 10.1097/00001622-199901000-00014.
    1. Clohessy J.G., Zhuang J., de Boer J., Gil-Gómez G., Brady H.J.M. Mcl-1 Interacts with Truncated Bid, and Inhibits Its Induction of Cytochromec Release and Its Role in Receptor-mediated Apoptosis. J. Biol. Chem. 2005;281:5750–5759. doi: 10.1074/jbc.M505688200.
    1. Welcker M., Lukas J., Strauss M., Bartek J. Enhanced protein stability: A novel mechanism of D-type cyclin over-abundance identified in human sarcoma cells. Oncogene. 1996;13:419–425.
    1. Niu G., Wright K.L., Huang M., Song L., Haura E., Turkson J., Zhang S., Wang T., Sinibaldi D., Coppola D., et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 2002;21:2000–2008. doi: 10.1038/sj.onc.1205260.
    1. Wei D., Le X., Zheng L., Wang L., Frey J.A., Gao A.C., Peng Z., Huang S., Xiong H.Q., Abbruzzese J.L., et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 2003;22:319–329. doi: 10.1038/sj.onc.1206122.
    1. Dechow T.N., Pedranzini L., Leitch A., Leslie K., Gerald W.L., Linkov I., Bromberg J.F. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc. Natl. Acad. Sci. USA. 2004;101:10602–10607. doi: 10.1073/pnas.0404100101.
    1. Petrilli V., Bodnar M., Guey B., Hacot S., Lantuejoul S. Abstract 2038: A novel role for the NLRP3 inflammasome in lung cancer. Mol. Cellul. Biol. 2015;75:2038. doi: 10.1158/1538-7445.am2015-2038.
    1. Pontillo A., Bricher P., Leal V.N.C., Lima S., de Souza P.R.E., Crovella S. Role of inflammasome genetics in susceptibility to HPV infection and cervical cancer development. J. Med Virol. 2016;88:1646–1651. doi: 10.1002/jmv.24514.
    1. Wang Y., Kong H., Zeng X., Liu W., Wang Z., Yan X., Wang H., Xie W. Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells. Oncol. Rep. 2016;35:2053–2064. doi: 10.3892/or.2016.4569.
    1. Ahmad I., Muneer K.M., Tamimi I.A., Chang M.E., Ata M.O., Yusuf N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol. Appl. Pharmacol. 2013;270:70–76. doi: 10.1016/j.taap.2013.03.027.
    1. Latz E., Duewell P. NLRP3 inflammasome activation in inflammaging. Semin. Immunol. 2018;40:61–73. doi: 10.1016/j.smim.2018.09.001.
    1. Hotamisligil G., Shargill N., Spiegelman B. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science. 1993;259:87–91. doi: 10.1126/science.7678183.
    1. Weisberg S., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003;112:1796–1808. doi: 10.1172/JCI200319246.
    1. Mohammadi M., Gozashti M.H., Aghadavood M., Mehdizadeh M.R., Hayatbakhsh M.M. Clinical Significance of Serum IL-6 and TNF-α Levels in Patients with Metabolic Syndrome. Rep. Biochem. Mol. Biol. 2017;6:74–79.
    1. Di Dalmazi G., Pagotto U., Pasquali R., Vicennati V. Glucocorticoids and Type 2 Diabetes: From Physiology to Pathology. J. Nutr. Metab. 2012;2012:1–9. doi: 10.1155/2012/525093.
    1. Donath M.Y. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov. 2014;13:465–476. doi: 10.1038/nrd4275.
    1. Reddy M.A., Zhang E., Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2014;58:443–455. doi: 10.1007/s00125-014-3462-y.
    1. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485.
    1. Leong A., Porneala B., Dupuis J., Florez J.C., Meigs J.B. Type 2 Diabetes Genetic Predisposition, Obesity, and All-Cause Mortality Risk in the U.S.: A Multiethnic Analysis. Diabetes Care. 2016;39:539–546. doi: 10.2337/dc15-2080.
    1. Hotamisligil G.S., Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 2008;8:923–934. doi: 10.1038/nri2449.
    1. Hotamisligil G.K.S., Péraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M., Morrell V. IRS-1-Mediated Inhibition of Insulin Receptor Tyrosine Kinase Activity in TNF-alpha- and Obesity-Induced Insulin Resistance. Science. 1996;271:665–670. doi: 10.1126/science.271.5249.665.
    1. Kahn C.R., White M.F. The insulin receptor and the molecular mechanism of insulin action. J. Clin. Investig. 1988;82:1151–1156. doi: 10.1172/JCI113711.
    1. Van Greevenbroek M.M.J., Schalkwijk C.G., A Stehouwer C.D. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: Causes and consequences. Neth. J. Med. 2013;71:174–187.
    1. Ehses J.A., Perren A., Eppler E., Ribaux P., Pospisilik J.A., Maor-Cahn R., Gueripel X., Ellingsgaard H., Schneider M.K., Biollaz G., et al. Increased Number of Islet-Associated Macrophages in Type 2 Diabetes. Diabetes. 2007;56:2356–2370. doi: 10.2337/db06-1650.
    1. Johnson A.R., Milner J.J., Makowski L. The inflammation highway: Metabolism accelerates inflammatory traffic in obesity. Immunol. Rev. 2012;249:218–238. doi: 10.1111/j.1600-065X.2012.01151.x.
    1. Calder P.C., Dimitriadis G., Newsholme P. Glucose metabolism in lymphoid and inflammatory cells and tissues. Curr. Opin. Clin. Nutr. Metab. Care. 2007;10:531–540. doi: 10.1097/MCO.0b013e3281e72ad4.
    1. Moon J.-S., Hisata S., Park M.-A., de Nicola G.M., Ryter S.W., Nakahira K., Choi A.M. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation. Cell Rep. 2015;12:102–115. doi: 10.1016/j.celrep.2015.05.046.
    1. Xie M., Yu Y., Kang R., Zhu S., Yang L., Zeng L., Sun X., Yang M., Billiar T.R., Wang H., et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 2016;7:13280. doi: 10.1038/ncomms13280.
    1. Paneni F., Costantino S., Cosentino F. Molecular mechanisms of vascular dysfunction and cardiovascular biomarkers in type 2 diabetes. Cardiovasc. Diagn. Ther. 2014;4:324–332.
    1. Prattichizzo F., Giuliani A., Ceka A., Rippo M.R., Bonfigli A.R., Testa I., Procopio A.D., Olivieri F. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin. Epigenetics. 2015;7:56. doi: 10.1186/s13148-015-0090-4.
    1. Szic K.S.V., Declerck K., Vidaković M., Berghe W.V. From inflammaging to healthy aging by dietary lifestyle choices: Is epigenetics the key to personalized nutrition? Clin. Epigenet. 2015;7:33. doi: 10.1186/s13148-015-0068-2.
    1. Pirola L., Balcerczyk A., Okabe J., El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat. Rev. Endocrinol. 2010;6:665–675. doi: 10.1038/nrendo.2010.188.
    1. Bonfigli A.R., Spazzafumo L., Prattichizzo F., Bonafè M., Mensà E., Micolucci L., Giuliani A., Fabbietti P., Testa R., Boemi M., et al. Leukocyte telomere length and mortality risk in patients with type 2 diabetes. Oncotarget. 2016;7:50835–50844. doi: 10.18632/oncotarget.10615.
    1. Shalev A., Pise-Masison C.A., Radonovich M., Hoffmann S.C., Hirshberg B., Brady J.N., Harlan D.M. Oligonucleotide Microarray Analysis of Intact Human Pancreatic Islets: Identification of Glucose-Responsive Genes and a Highly Regulated TGFβ Signaling Pathway. Endocrinology. 2002;143:3695–3698. doi: 10.1210/en.2002-220564.
    1. Guilherme A., Virbasius J., Puri V., Czech M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008;9:367–377. doi: 10.1038/nrm2391.
    1. Kwon H., Pessin J.E. Adipokines Mediate Inflammation and Insulin Resistance. Front. Endocrinol. 2013;4 doi: 10.3389/fendo.2013.00071.
    1. Yiannikouris F., Gupte M., Putnam K., Cassis L.A. Adipokines, and blood pressure control. Curr. Opin. Nephrol. Hypertens. 2010;19:195–200. doi: 10.1097/MNH.0b013e3283366cd0.
    1. Yadav A., Kataria M.A., Saini V., Yadav A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta. 2013;417:80–84. doi: 10.1016/j.cca.2012.12.007.
    1. Stienstra R., van Diepen J.A., Tack C.J., Zaki H., van de Veerdonk F.L., Perera D., Neale G.A., Hooiveld G.J., Hijmans A., Vroegrijk I., et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. 2011;108:15324–15329. doi: 10.1073/pnas.1100255108.
    1. Jager J., Grémeaux T., Cormont M., le Marchand-Brustel Y., Tanti J.-F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology. 2006;148:241–251. doi: 10.1210/en.2006-0692.
    1. Ahmad R., Thomas R., Kochumon S., Sindhu R.T.S. Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity. Immun. Inflamm. Dis. 2017;5:318–335. doi: 10.1002/iid3.170.
    1. Vandanmagsar B., Youm Y.-H., Ravussin A., Galgani J.E., Stadler K., Mynatt R.L., Ravussin E., Stephens J.M., Dixit V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011;17:179–188. doi: 10.1038/nm.2279.
    1. Wen H., Gris D., Lei Y.L., Jha S., Zhang L., Huang M.T.-H., Brickey W.J., Ting J.P.-Y. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011;12:408–415. doi: 10.1038/ni.2022.
    1. Grant R.W., Dixit V.D. Mechanisms of disease: Inflammasome activation and the development of type 2 diabetes. Front. Immunol. 2013;4 doi: 10.3389/fimmu.2013.00050.
    1. Netea M.G., Joosten L.A., Lewis E., Jensen D.R., Voshol P.J., Kullberg B.J., Tack C.J., van Krieken H., Kim S.-H., Stalenhoef A.F., et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat. Med. 2006;12:650–656. doi: 10.1038/nm1415.
    1. Kalaria R.N., Maestre G.E., Arizaga R., Friedland R.P., Galasko U., Hall K., Luchsinger J., Ogunniyi A., Perry E.K., Potocnik F., et al. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008;7:812–826. doi: 10.1016/S1474-4422(08)70169-8.
    1. Neumann H. Control of glial immune function by neurons. Glia. 2001;36:191–199. doi: 10.1002/glia.1108.
    1. Wolf S.A., Gimsa U., Bechmann I., Nitsch R. Differential expression of costimulatory molecules B7-1 and B7-2 on microglial cells induced by Th1 and Th2 cells in organotypic brain tissue. Glia. 2001;36:414–420. doi: 10.1002/glia.1127.
    1. Prolla T.A. DNA microarray analysis of the aging brain. Chem. Senses. 2002;27:299–306. doi: 10.1093/chemse/27.3.299.
    1. Godbout J.P., Moreau M., Lestage J., Chen J., Sparkman N.L., Connor J.O., Castanon N., Kelley K.W., Dantzer R., Johnson R. Aging Exacerbates Depressive-like Behavior in Mice in Response to Activation of the Peripheral Innate Immune System. Neuropsychopharmacology. 2007;33:2341–2351. doi: 10.1038/sj.npp.1301649.
    1. Godbout J.P., Chen J., Abraham J., Richwine A.F., Berg B.M., Kelley K.W., Johnson R. Exaggerated neuroinflammation and sickness behavior in aged mice after activation of the peripheral innate immune system. FASEB J. 2005;19:1329–1331. doi: 10.1096/fj.05-3776fje.
    1. Alzheimer’s Association 2019 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2019;15:321–387. doi: 10.1016/j.jalz.2019.01.010.
    1. Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer’s disease. Lancet. 2011;377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9.
    1. Lane C., Hardy J., Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2017;25:59–70. doi: 10.1111/ene.13439.
    1. Luchsinger J., Gustafson D.R. Adiposity, Type 2 Diabetes, and Alzheimer’s Disease. JAD. 2009;16:693–704. doi: 10.3233/JAD-2009-1022.
    1. Profenno L.A., Porsteinsson A.P., Faraone S.V. Meta-Analysis of Alzheimer’s Disease Risk with Obesity, Diabetes, and Related Disorders. Biol. Psychiatry. 2010;67:505–512. doi: 10.1016/j.biopsych.2009.02.013.
    1. Young-Pearse T.L., Bai J., Chang R., Zheng J.B., Lo-Turco J.J., Selkoe D. A Critical Function for β-Amyloid Precursor Protein in Neuronal Migration Revealed by In Utero RNA Interference. J. Neurosci. 2007;27:14459–14469. doi: 10.1523/JNEUROSCI.4701-07.2007.
    1. O’Brien R.J., Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011;34:185–204. doi: 10.1146/annurev-neuro-061010-113613.
    1. Mendelsohn A.R., Larrick J. Sleep Facilitates Clearance of Metabolites from the Brain: Glymphatic Function in Aging and Neurodegenerative Diseases. Rejuvenat. Res. 2013;16:518–523. doi: 10.1089/rej.2013.1530.
    1. Ellwardt E., Walsh J.T., Kipnis J., Zipp F. Understanding the Role of T Cells in CNS Homeostasis. Trends Immunol. 2016;37:154–165. doi: 10.1016/j.it.2015.12.008.
    1. Blasko I., Wagner M., Whitaker N., Grubeck-Loebenstein B., Jansen-Durr P. The amyloid β peptide Aβ (25-35) induces apoptosis independent of p53. FEBS Lett. 2000;470:221–225. doi: 10.1016/S0014-5793(00)01323-5.
    1. Mudher A., Lovestone S. Alzheimer’s disease—Do tauists and baptists finally shake hands? Trends Neurosci. 2002;25:22–26. doi: 10.1016/S0166-2236(00)02031-2.
    1. Di Carlo M., Giacomazza D., Biagio P.L.S. Alzheimer’s disease: Biological aspects, therapeutic perspectives, and diagnostic tools. J. Physics Condens. Matter. 2012;24:244102. doi: 10.1088/0953-8984/24/24/244102.
    1. Liu Z., Ren Z., Zhang J., Chuang C.-C., Kandaswamy E., Zhou T., Zuo L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018;9:477. doi: 10.3389/fphys.2018.00477.
    1. Ando K., Uemura K., Kuzuya A., Maesako M., Asada-Utsugi M., Kubota M., Aoyagi N., Yoshioka K., Okawa K., Inoue H., et al. N-cadherin Regulates p38 MAPK Signaling via Association with JNK-associated Leucine Zipper Protein. J. Biol. Chem. 2010;286:7619–7628. doi: 10.1074/jbc.M110.158477.
    1. Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017;2017:1–11. doi: 10.1155/2017/2525967.
    1. Venegas C., Heneka M.T. Danger-associated molecular patterns in Alzheimer’s disease. J. Leukoc. Biol. 2016;101:87–98. doi: 10.1189/jlb.3MR0416-204R.
    1. Bisht K., Sharma K., Tremblay M.-E. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol. Stress. 2018;9:9–21. doi: 10.1016/j.ynstr.2018.05.003.
    1. Gutierrez E.R., Muñoz-Arenas G., Treviño S., Espinosa B., Chavez R., Rojas K., Flores G., Diaz A., Guevara J. Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse. 2017;71:e21990. doi: 10.1002/syn.21990.
    1. Halle A., Hornung V., Petzold G.C., Stewart C.R., Monks B.G., Reinheckel T., Fitzgerald K.A., Latz E., Moore K.J., Golenbock D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 2008;9:857–865. doi: 10.1038/ni.1636.
    1. Lian D., Lai J., Wu Y., Wang L., Chen Y., Zhang Y., Boini K.M., Huang Y., Chen Y. Cathepsin B-Mediated NLRP3 Inflammasome Formation and Activation in Angiotensin II -Induced Hypertensive Mice: Role of Macrophage Digestion Dysfunction. Cell. Physiol. Biochem. 2018;50:1585–1600. doi: 10.1159/000494656.
    1. Heid M.E., Keyel P.A., Kamga C., Shiva S., Watkins S.C., Salter R.D. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 2013;191:5230–5238. doi: 10.4049/jimmunol.1301490.
    1. Hornung V., Latz E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur. J. Immunol. 2010;40:620–623. doi: 10.1002/eji.200940185.
    1. Heneka M.T., Kummer M., Stutz A., Delekate A., Schwartz S., Vieira-Saecker A., Griep A., Axt D., Remus A., Tzeng T.-C., et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2012;493:674–678. doi: 10.1038/nature11729.
    1. Ising C., Venegas C., Zhang S., Scheiblich H., Schmidt S.V., Vieira-Saecker A., Schwartz S., Albasset S., McManus R.M., Tejera D., et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575:669–673. doi: 10.1038/s41586-019-1769-z.
    1. Stutz A., Horvath G.L., Monks B.G., Latz E. Advanced Structural Safety Studies. Vol. 1040. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2013. ASC Speck Formation as a Readout for Inflammasome Activation; pp. 91–101.
    1. Franklin B.S., Bossaller L., de Nardo D., Ratter J.M., Stutz A., Engels G., Brenker C., Nordhoff M., Mirandola S.R., Al-Amoudi A., et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 2014;15:727–737. doi: 10.1038/ni.2913.
    1. Venegas C., Kumar S., Franklin B.S., Dierkes T., Brinkschulte R., Tejera D., Vieira-Saecker A., Schwartz S., Santarelli F., Kummer M., et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature. 2017;552:355–361. doi: 10.1038/nature25158.
    1. Kalia L.V., Lang A.E. Parkinson’s disease. Lancet. 2015;386:896–912. doi: 10.1016/S0140-6736(14)61393-3.
    1. Tysnes O.-B., Storstein A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017;124:901–905. doi: 10.1007/s00702-017-1686-y.
    1. Braak H., del Tredici K., Rüb U., de Vos R.A., Steur E.N.J., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 2003;24:197–211. doi: 10.1016/S0197-4580(02)00065-9.
    1. Kluss J.H., Mamais A., Cookson M.R. LRRK2 links genetic and sporadic Parkinson’s disease. Biochem. Soc. Trans. 2019;47:651–661. doi: 10.1042/BST20180462.
    1. Haque E., Akther M., Jakaria Kim I., Azam S., Choi D. Targeting the Microglial NLRP3 Inflammasome and Its Role in Parkinson’s Disease. Mov. Disord. 2019;35:20–33. doi: 10.1002/mds.27874.
    1. Kim M.-J., Yoon J.-H., Ryu J.-H. Mitophagy: A balance regulator of NLRP3 inflammasome activation. BMB Rep. 2016;49:529–535. doi: 10.5483/BMBRep.2016.49.10.115.
    1. Luo Y., Hoffer A., Hoffer B., Qi X. Mitochondria: A Therapeutic Target for Parkinson’s Disease? Int. J. Mol. Sci. 2015;16:20704–20730. doi: 10.3390/ijms160920704.
    1. Tschopp J., Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 2010;10:210–215. doi: 10.1038/nri2725.
    1. Abais J.M., Xia M., Zhang Y., Boini K.M., Li P.-L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal. 2015;22:1111–1129. doi: 10.1089/ars.2014.5994.
    1. Zecca L., Tampellini D., Gerlach M., Riederer P., Fariello R.G., Sulzer D. Substantia nigra neuromelanin: Structure, synthesis, and molecular behaviour. Mol. Pathol. 2001;54:414–418.
    1. Carballo-Carbajal I., Laguna A., Romero-Giménez J., Cuadros T., Bové J., Martínez-Vicente M., Parent A., Sepúlveda M.G., Peñuelas N., Torra A., et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis. Nat. Commun. 2019;10:973. doi: 10.1038/s41467-019-08858-y.
    1. Pinho B.R., Reis S., Hartley R.C., Murphy M.P., Oliveira J.M. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free. Radic. Biol. Med. 2018;130:318–327. doi: 10.1016/j.freeradbiomed.2018.10.446.
    1. Raza C., Anjum R., Shakeel N.U.A. Parkinson’s disease: Mechanisms, translational models, and management strategies. Life Sci. 2019;226:77–90. doi: 10.1016/j.lfs.2019.03.057.
    1. Lin M.T., Beal M.F. Mitochondrial dysfunction, and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795. doi: 10.1038/nature05292.
    1. Jellinger K.A. Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts. Mov. Disord. 2011;27:8–30. doi: 10.1002/mds.23795.
    1. Rocha N.P., de Miranda A.S., Teixeira A.L. Insights into Neuroinflammation in Parkinson’s Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BioMed Res. Int. 2015;2015:1–12. doi: 10.1155/2015/628192.
    1. Gordon R., Albornoz E.A., Christie D.C., Langley M.R., Kumar V., Mantovani S., Robertson A.A., Butler M.S., Rowe D.B., O’Neill L.A., et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 2018;10:eaah4066. doi: 10.1126/scitranslmed.aah4066.
    1. Beraud D., Twomey M., Bloom B., Mittereder A., Ton V., Neitzke K., Chasovskikh S., Mhyre T.R., Maguire-Zeiss K. α-Synuclein Alters Toll-Like Receptor Expression. Front. Mol. Neurosci. 2011;5 doi: 10.3389/fnins.2011.00080.
    1. Li X., Dong C., Hoffmann M., Garen C.R., Cortez L.M., Petersen N.O., Woodside M.T. Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Sci. Rep. 2019;9:1734. doi: 10.1038/s41598-018-37584-6.
    1. Codolo G., Plotegher N., Pozzobon T., Brucale M., Tessari I., Bubacco L., de Bernard M. Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in Synucleinopathies. PLoS ONE. 2013;8:e55375. doi: 10.1371/journal.pone.0055375.
    1. Riggs B.L., Wahner H.W., Mazess R.B., Seeman E., Offord K.P., Dunn W.L., Johnson K.A., Melton L.J. Changes in Bone Mineral Density of the Proximal Femur and Spine with Aging. J. Clin. Investig. 1982;70:716–723. doi: 10.1172/JCI110667.
    1. Greco E.A., Pietschmann P., Savastano S. Osteoporosis and Sarcopenia Increase Frailty Syndrome in the Elderly. Front. Endocrinol. 2019;10:255. doi: 10.3389/fendo.2019.00255.
    1. Colón-Emeric C.S. Recent Advances: Osteoporosis in the “Oldest Old”. Curr. Osteoporos. Rep. 2013;11:270–275. doi: 10.1007/s11914-013-0158-z.
    1. Al-Saedi A., Stupka N., Duque G. Drug Delivery. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2020. Pathogenesis of Osteoporosis; pp. 1–15.
    1. Teitelbaum S. Bone Resorption by Osteoclasts. Science. 2000;289:1504–1508. doi: 10.1126/science.289.5484.1504.
    1. Udagawa N. The mechanism of osteoclast differentiation from macrophages: Possible roles of T lymphocytes in osteoclastogenesis. J. Bone Miner. Metab. 2003;21:337–343. doi: 10.1007/s00774-003-0439-1.
    1. Khosla S., Oursler M.J., Monroe D.G. Estrogen, and the skeleton. Trends Endocrinol. Metab. 2012;23:576–581. doi: 10.1016/j.tem.2012.03.008.
    1. Park J.H., Lee N.K., Lee S.Y. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol. Cells. 2017;40:706–713. doi: 10.14348/molcells.2017.0225.
    1. Hill S.C., Namde M., Dwyer A., Poznanski A., Canna S.W., Goldbach-Mansky R. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA) Pediatr. Radiol. 2006;37:145–152. doi: 10.1007/s00247-006-0358-0.
    1. Bonar S.L., Brydges S.D., Mueller J.L., McGeough M.D., Pena C., Chen D., Grimston S.K., Hickman-Brecks C.L., Ravindran S., McAlinden A., et al. Constitutively Activated NLRP3 Inflammasome Causes Inflammation and Abnormal Skeletal Development in Mice. PLoS ONE. 2012;7:e35979. doi: 10.1371/journal.pone.0035979.
    1. Miller R.A., Kreider J., Galecki A., Goldstein S.A. Preservation of femoral bone thickness in middle age predicts survival in genetically heterogeneous mice. Aging Cell. 2011;10:383–391. doi: 10.1111/j.1474-9726.2011.00671.x.
    1. Youm Y.-H., Grant R.W., McCabe L.R., Albarado D.C., Nguyen K.Y., Ravussin A., Pistell P., Newman S., Carter R., Laque A., et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 2013;18:519–532. doi: 10.1016/j.cmet.2013.09.010.
    1. Van de Sande M.G.H., de Hair M.J.H., Schuller Y., van de Sande G.P.M., Wijbrandts C.A., Dinant H.J., Gerlag D.M., Tak P.-P. The Features of the Synovium in Early Rheumatoid Arthritis According to the 2010 ACR/EULAR Classification Criteria. PLoS ONE. 2012;7:e36668. doi: 10.1371/journal.pone.0036668.
    1. Nalbant S., Birlik A.M. New Developments in the Pathogenesis of Rheumatoid Arthritis. IntechOpen; London, UK: 2017. Cytokines in Rheumatoid Arthritis (RA)
    1. Noack M., Miossec P. Selected cytokine pathways in rheumatoid arthritis. Semin. Immunopathol. 2017;39:365–383. doi: 10.1007/s00281-017-0619-z.
    1. Mathews R.J., Robinson J.I., Battellino M., Wong C., Taylor J., Eyre S., Churchman S., Wilson A.G., Isaacs J.D., Hyrich K.L., et al. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann. Rheum. Dis. 2013;73:1202–1210. doi: 10.1136/annrheumdis-2013-203276.
    1. Choulaki C., Papadaki G., Repa A., Kampouraki E., Kambas K., Ritis K., Bertsias G., Boumpas D.T., Sidiropoulos P. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res. 2015;17:257. doi: 10.1186/s13075-015-0775-2.
    1. Xie Q., Wei M., Zhang B., Kang X., Liu D., Zheng W., Pan X., Quan Y., Liao D., Shen J. MicroRNA-33 regulates the NLRP3 inflammasome signaling pathway in macrophages. Mol. Med. Rep. 2017;17:3318–3327. doi: 10.3892/mmr.2017.8224.
    1. Ruscitti P., Cipriani P., di Benedetto P., Liakouli V., Berardicurti O., Carubbi F., Ciccia F., Alvaro S., Triolo G., Giacomelli R. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1β via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: A pos. Clin. Exp. Immunol. 2015;182:35–44. doi: 10.1111/cei.12667.
    1. Kolly L., Busso N., Palmer G., Talabot-Ayer D., Chobaz V., So A. Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology. 2010;129:178–185. doi: 10.1111/j.1365-2567.2009.03174.x.
    1. Ab-Joosten L., Radstake T.R., Lubberts E., Bersselaar L.A.M.V.D., van Riel P.L.C.M., van Lent P.L.E.M., Barrera P., Berg W.B.V.D. Association of interleukin-18 expression with enhanced levels of both interleukin-1? And tumor necrosis factor? In knee synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 2003;48:339–347. doi: 10.1002/art.10814.
    1. Cai L.-P., Zhou L.-J., Lu S.-Y., Liang Y.-E., Chen X.-Y., Liu L., Lin J. Association of IL-18 promoter gene polymorphisms with rheumatoid arthritis: A meta-analysis. Mol. Biol. Rep. 2014;41:8211–8217. doi: 10.1007/s11033-014-3723-3.
    1. Chalan P., Berg A.V.D., Kroesen B.-J., Brouwer L., Boots A. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Curr. Aging Sci. 2015;8:131–146. doi: 10.2174/1874609808666150727110744.
    1. Bruijn R.F.A.G.D., Ikram M.A. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med. 2014;12:130. doi: 10.1186/s12916-014-0130-5.
    1. Dhingra R., Vasan R.S. Age as a Risk Factor. Med Clin. North Am. 2011;96:87–91. doi: 10.1016/j.mcna.2011.11.003.
    1. North B.J., Sinclair D.A. The intersection between aging and cardiovascular disease. Circ. Res. 2012;110:1097–1098. doi: 10.1161/CIRCRESAHA.111.246876.
    1. Moslehi J., Depinho R.A., Sahin E. Telomeres and mitochondria in the aging heart. Circ. Res. 2012;110:1226–1237. doi: 10.1161/CIRCRESAHA.111.246868.
    1. Sasaki Y., Ikeda Y., Iwabayashi M., Akasaki Y., Ohishi M. The Impact of Autophagy on Cardiovascular Senescence and Diseases. Int. Hear. J. 2017;58:666–673. doi: 10.1536/ihj.17-246.
    1. Pirillo A., Norata G.D., Catapano A.L. LOX-1, OxLDL, and Atherosclerosis. Mediat. Inflamm. 2013:1–12. doi: 10.1155/2013/152786.
    1. Garcia K.C., Llanas-Cornejo D., Husi H. CVD and Oxidative Stress. J. Clin. Med. 2017;6:22. doi: 10.3390/jcm6020022.

Source: PubMed

3
購読する