Right ventricular failure in left heart disease: from pathophysiology to clinical manifestations and prognosis

Frank L Dini, Nicola Riccardo Pugliese, Pietro Ameri, Umberto Attanasio, Roberto Badagliacca, Michele Correale, Valentina Mercurio, Carlo Gabriele Tocchetti, Piergiuseppe Agostoni, Alberto Palazzuoli, Heart Failure Study Group of the Italian Society of Cardiology, Frank L Dini, Nicola Riccardo Pugliese, Pietro Ameri, Umberto Attanasio, Roberto Badagliacca, Michele Correale, Valentina Mercurio, Carlo Gabriele Tocchetti, Piergiuseppe Agostoni, Alberto Palazzuoli, Heart Failure Study Group of the Italian Society of Cardiology

Abstract

Right heart failure (RHF) is a clinical syndrome in which symptoms and signs are caused by dysfunction and/or overload of the right heart structures, predominantly the right ventricle (RV), resulting in systemic venous hypertension, peripheral oedema and finally, the impaired ability of the right heart to provide tissue perfusion. Pathogenesis of RHF includes the incompetence of the right heart to maintain systemic venous pressure sufficiently low to guarantee an optimal venous return and to preserve renal function. Virtually, all myocardial diseases involving the left heart may be responsible for RHF. This may result from coronary artery disease, hypertension, valvular heart disease, cardiomyopathies and myocarditis. The most prominent clinical signs of RHF comprise swelling of the neck veins with an elevation of jugular venous pressure and ankle oedema. As the situation worsens, fluid accumulation becomes generalised with extensive oedema of the legs, congestive hepatomegaly and eventually ascites. Diagnosis of RHF requires the presence of signs of elevated right atrial and venous pressures, including dilation of neck veins, with at least one of the following criteria: (1) compromised RV function; (2) pulmonary hypertension; (3) peripheral oedema and congestive hepatomegaly. Early recognition of RHF and identifying the underlying aetiology as well as triggering factors are crucial to treating patients and possibly reversing the clinical manifestations effectively and improving prognosis.

Keywords: Heart failure; Oedema; Pulmonary hypertension; Right ventricular dysfunction; Systemic venous pressure.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Figures

Fig. 1
Fig. 1
Modalities of fibre shortening in the right ventricular wall
Fig. 2
Fig. 2
Comparison of the right and left ventricle responses to increased afterload and volume overload
Fig. 3
Fig. 3
Strategies to optimise right ventricular preload, afterload and contractility. IV: intravenous; PAH: pulmonary arterial hypertension

References

    1. Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation. 2018;137:e578–e622. doi: 10.1161/CIR.0000000000000560.
    1. Brown LM, Chen H, Halpern S, et al. Delay in recognition of pulmonary arterial hypertension: factors identified from the REVEAL registry. Chest. 2011;140:19–26. doi: 10.1378/chest.10-1166.
    1. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit state of the art and clinical and research implications. Circulation. 2009;120:992–1007. doi: 10.1161/CIRCULATIONAHA.106.674028.
    1. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–1448. doi: 10.1161/CIRCULATIONAHA.107.653576.
    1. Faber MJ, Dalinghaus M, Lankhuizen IM, et al. Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol - Hear Circ Physiol. 2006 doi: 10.1152/ajpheart.00286.2006.
    1. KAGAN A, Dynamic responses of the right ventricle following extensive damage by cauterisation. Circulation. 1952;5:816–823. doi: 10.1161/01.CIR.5.6.816.
    1. Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129:1033–1044. doi: 10.1161/CIRCULATIONAHA.113.001375.
    1. Noordegraaf AV, Chin KM, Haddad F et al (2019) Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. In: European Respiratory Journal. European Respiratory Society
    1. Naeije R, Vanderpool R, Peacock A, Badagliacca R. The Right heart-pulmonary circulation unit: physiopathology. Heart Fail Clin. 2018;14:237–245. doi: 10.1016/j.hfc.2018.02.001.
    1. Guyton AC, Abernathy B, Langston JB, et al. Relative importance of venous and arterial resistances in controlling venous return and cardiac output. Am J Physiol. 1959;196:1008–1014. doi: 10.1152/ajplegacy.1959.196.5.1008.
    1. El Hajj MC, Viray MC, Tedford RJ. Right heart failure: a hemodynamic review. Cardiol Clin. 2020;38:161–173. doi: 10.1016/j.ccl.2020.01.001.
    1. Liao H, Chen Q, Liu L, et al. Impact of concurrent right ventricular myocardial infarction on outcomes among patients with left ventricular myocardial infarction. Sci Rep. 2020;10:1–6.
    1. Bellavia D, Iacovoni A, Scardulla C, et al. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail. 2017;19:926–946. doi: 10.1002/ejhf.733.
    1. Aquaro GD, Negri F, De Luca A, et al. Role of right ventricular involvement in acute myocarditis, assessed by cardiac magnetic resonance. Int J Cardiol. 2018;271:359–365. doi: 10.1016/j.ijcard.2018.04.087.
    1. Kagiyama N, Okura H, Tamada T, et al. Impact of right ventricular involvement on the prognosis of takotsubo cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016;17:210–216. doi: 10.1093/ehjci/jev145.
    1. Szekely Y, Lichter Y, Taieb P, et al. Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study. Circulation. 2020;142:342–353. doi: 10.1161/CIRCULATIONAHA.120.047971.
    1. Caravita S, Baratto C, Di Marco F, et al. Haemodynamic characteristics of COVID-19 patients with acute respiratory distress syndrome requiring mechanical ventilation. An invasive assessment using right heart catheterisation. Eur J Heart Fail. 2020;22:2228–2237. doi: 10.1002/ejhf.2058.
    1. Galiè N, Humbert M, Vachiery J-L, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2016;37:67–119. doi: 10.1093/eurheartj/ehv317.
    1. Simonneau G, Gatzoulis MA, Adatia I, et al (2013) Updated clinical classification of pulmonary hypertension. In: Journal of the American College of Cardiology. J Am Coll Cardiol
    1. Galiè N, Channick RN, Frantz RP et al (2019) Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J 53
    1. Thandavarayan RA, Chitturi KR, Guha A. Pathophysiology of acute and chronic right heart failure. Cardiol Clin. 2020;38:149–160. doi: 10.1016/j.ccl.2020.01.009.
    1. Harjola VP, Mebazaa A, Čelutkiene J, et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016;18:226–241. doi: 10.1002/ejhf.478.
    1. Kobayashi M, Gargani L, Palazzuoli A, et al. Association between right-sided cardiac function and ultrasound-based pulmonary congestion on acutely decompensated heart failure: findings from a pooled analysis of four cohort studies. Clin Res Cardiol. 2020
    1. Vonk-Noordegraaf A, Haddad F, Chin KM et al (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. In: Journal of the American College of Cardiology. J Am Coll Cardiol
    1. Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40:289–308. doi: 10.1016/S0033-0620(98)80049-2.
    1. Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–1891. doi: 10.1161/CIRCULATIONAHA.106.632208.
    1. Boerrigter B, Trip P, Bogaard HJ, et al. Right atrial pressure affects the interaction between lung mechanics and right ventricular function in spontaneously breathing COPD patients. PLoS ONE. 2012;7:e30208. doi: 10.1371/journal.pone.0030208.
    1. Berger D, Takala J (2018) Determinants of systemic venous return and the impact of positive pressure ventilation. Ann Transl Med 6:350–350. 10.21037/atm.2018.05.27
    1. Abel FL, Waldhausen JA. Respiratory and cardiac effects on venous return. Am Heart J. 1969;78:266–275. doi: 10.1016/0002-8703(69)90019-2.
    1. Damman K, van Deursen VM, Navis G, et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–588. doi: 10.1016/j.jacc.2008.08.080.
    1. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–596. doi: 10.1016/j.jacc.2008.05.068.
    1. Dini FL, Demmer RT, Simioniuc A, et al. Right ventricular dysfunction is associated with chronic kidney disease and predicts survival in patients with chronic systolic heart failure. Eur J Heart Fail. 2012;14:287–294. doi: 10.1093/eurjhf/hfr176.
    1. Pugliese NR, Fabiani I, Conte L, et al. Persistent congestion, renal dysfunction and inflammatory cytokines in acute heart failure: a prognosis study. J Cardiovasc Med. 2020;21:494–502. doi: 10.2459/JCM.0000000000000974.
    1. Vachiéry JL, Adir Y, Barberà JA et al (2013) Pulmonary hypertension due to left heart diseases. In: Journal of the American College of Cardiology. J Am Coll Cardiol
    1. Pugliese NR, Mazzola M, Madonna R, et al. Exercise-induced pulmonary hypertension in HFpEF and HFrEF: different pathophysiologic mechanism behind similar functional impairment. Vascul Pharmacol. 2022;144:106978. doi: 10.1016/j.vph.2022.106978.
    1. Guazzi M, Bandera F, Ozemek C, et al. Cardiopulmonary exercise testing what is its value? JACC. 2017;70:1618–1636. doi: 10.1016/j.jacc.2017.08.012.
    1. Pugliese NR, de Biase N, Balletti A, et al. Characterisation of hemodynamic and metabolic abnormalities in the heart failure spectrum: the role of combined cardiopulmonary and exercise echocardiography stress test. Minerva Cardiol Angiol. 2022;70:370–384. doi: 10.23736/S2724-5683.21.05743-4.
    1. Naeije R, Chin K. Differentiating precapillary from postcapillary pulmonary hypertension: pulmonary artery wedge pressure versus left ventricular end-diastolic pressure. Circulation. 2019;140:712–714. doi: 10.1161/CIRCULATIONAHA.119.040295.
    1. Chubuchny V, Pugliese NR, Taddei C et al (2021) A novel echocardiographic method for estimation of pulmonary artery wedge pressure and pulmonary vascular resistance. ESC Hear Fail ehf2.13183. 10.1002/ehf2.13183
    1. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126:975–990. doi: 10.1161/CIRCULATIONAHA.111.085761.
    1. Mele D, Pestelli G, Dini FL, et al. Novel echocardiographic approach to hemodynamic phenotypes predicts outcome of patients hospitalised with heart failure. Circ Cardiovasc Imaging. 2020;13:9939.
    1. Gorter TM, Hoendermis ES, van Veldhuisen DJ, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2016;18:1472–1487. doi: 10.1002/ejhf.630.
    1. Mohammed SF, Hussain I, Abou Ezzeddine OF, et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 2014;130:2310–2320. doi: 10.1161/CIRCULATIONAHA.113.008461.
    1. Fayyaz AU, Edwards WD, Maleszewski JJ, et al. Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation. 2018;137:1796–1810. doi: 10.1161/CIRCULATIONAHA.117.031608.
    1. Tedford RJ, Hassoun PM, Mathai SC, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125:289–297. doi: 10.1161/CIRCULATIONAHA.111.051540.
    1. Dini FL, Carluccio E, Simioniuc A, et al. Right ventricular recovery during follow-up is associated with improved survival in patients with chronic heart failure with reduced ejection fraction. Eur J Heart Fail. 2016;18:1462–1471. doi: 10.1002/ejhf.639.
    1. Gorter TM, van Melle JP, Rienstra M, et al. Right Heart dysfunction in heart failure with preserved ejection fraction: the impact of atrial fibrillation. J Card Fail. 2018;24:177–185. doi: 10.1016/j.cardfail.2017.11.005.
    1. Puwanant S, Priester TC, Mookadam F, et al. Right ventricular function in patients with preserved and reduced ejection fraction heart failure. Eur J Echocardiogr. 2009;10:733–737. doi: 10.1093/ejechocard/jep052.
    1. Naeije R, Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res. 2017;113:1474–1485. doi: 10.1093/cvr/cvx160.
    1. Badagliacca R, Poscia R, Pezzuto B, et al. Right ventricular remodeling in idiopathic pulmonary arterial hypertension: adaptive versus maladaptive morphology. J Hear Lung Transplant. 2015;34:395–403. doi: 10.1016/j.healun.2014.11.002.
    1. Attard MI, Dawes TJW, De Marvao A, et al. Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D analysis of cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2019;20:668–676. doi: 10.1093/ehjci/jey175.
    1. Thibodeau JT, Drazner MH. The Role of the clinical examination in patients with heart failure. JACC Hear Fail. 2018;6:543–551. doi: 10.1016/j.jchf.2018.04.005.
    1. Kholdani CA, Oudiz RJ, Fares WH. The Assessment of the right heart failure syndrome. Semin Respir Crit Care Med. 2015;36:934–942. doi: 10.1055/s-0035-1564925.
    1. Conn RD, O’Keefe JH. Simplified evaluation of the jugular venous pressure: significance of inspiratory collapse of jugular veins. Mo Med. 2012;109:150–152.
    1. Correale M, Tricarico L, Leopizzi A, et al. Liver disease and heart failure. Panminerva Med. 2020;62:26–37. doi: 10.23736/S0031-0808.19.03768-6.
    1. Gerges M, Gerges C, Pistritto AM, et al. Pulmonary hypertension in heart failure epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med. 2015;192:1234–1246. doi: 10.1164/rccm.201503-0529OC.
    1. Vieillard-Baron A, Naeije R, Haddad F, et al. Diagnostic workup, etiologies and management of acute right ventricle failure: a state-of-the-art paper. Intensive Care Med. 2018;44:774–790. doi: 10.1007/s00134-018-5172-2.
    1. Badagliacca R, Ghio S, Correale M, et al. Prognostic significance of the echocardiographic estimate of pulmonary hypertension and of right ventricular dysfunction in acute decompensated heart failure. A pilot study in HFrEF patients. Int J Cardiol. 2018;271:301–305. doi: 10.1016/j.ijcard.2018.04.069.
    1. Schmeißer A, Rauwolf T, Groscheck T, et al. Predictors and prognosis of right ventricular function in pulmonary hypertension due to heart failure with reduced ejection fraction. ESC Hear Fail. 2021;8:2968–2981. doi: 10.1002/ehf2.13386.
    1. Palazzuoli A, Ruocco G. Right heart score for predicting outcome in PAH is it all inclusive? JACC Cardiovasc. Imaging. 2016;9:628–630.
    1. Melenovsky V, Hwang SJ, Lin G, et al. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35:3452–3462. doi: 10.1093/eurheartj/ehu193.
    1. Carluccio E, Biagioli P, Lauciello R, et al. Superior prognostic value of right ventricular free wall compared to global longitudinal strain in patients with heart failure. J Am Soc Echocardiogr. 2019;32:836–844.e1. doi: 10.1016/j.echo.2019.02.011.
    1. Pellegrini P, Rossi A, Pasotti M, et al. Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest. 2014;145:1064–1070. doi: 10.1378/chest.13-1510.
    1. Ghio S, Guazzi M, Scardovi AB, et al. Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail. 2017;19:873–879. doi: 10.1002/ejhf.664.
    1. Ghio S, Gavazzi A, Campana C, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37:183–188. doi: 10.1016/S0735-1097(00)01102-5.
    1. Pugliese NR, De Biase N, Gargani L, et al. Predicting the transition to and progression of heart failure with preserved ejection fraction: a weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur J Prev Cardiol. 2021;28:1650–1661. doi: 10.1093/eurjpc/zwaa129.
    1. Testani JM, McCauley BD, Kimmel SE, Shannon RP. Characteristics of patients with improvement or worsening in renal function during treatment of acute decompensated heart failure. Am J Cardiol. 2010;106:1763–1769. doi: 10.1016/j.amjcard.2010.07.050.
    1. Arrigo M, Huber LC, Winnik S et al (2019) Right ventricular failure: pathophysiology, diagnosis and treatment. Card Fail Rev 5:140–146. 10.15420/cfr.2019.15.2

Source: PubMed

3
購読する