The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity

Yueyuan Zhou, Yusuke Yamamoto, Zhongdang Xiao, Takahiro Ochiya, Yueyuan Zhou, Yusuke Yamamoto, Zhongdang Xiao, Takahiro Ochiya

Abstract

Mesenchymal stromal/stem cells (MSCs) exist in almost all tissues, possessing the potential to differentiate into specialized cell types and exert immunomodulatory functions. Thus, they have attracted much attention as a promising therapeutic candidate. Recent studies have demonstrated that paracrine signaling is mainly responsible for the involvement of MSCs in the modulation of immune responses and the progression of diseases. Through release of secretome consisting of a diverse range of cytokines, chemokines, and extracellular vesicles (EVs), MSCs convey regulatory messages to recipient immune cells in the microenvironment. In this review, we focus on the recent advances in how MSCs contribute to immunomodulation through the secretion of paracrine factors. The further improved understanding of the molecular mechanism underlying the interactions between MSCs and immune cells highlights the paracrine biology of MSCs in the modulation of the immune microenvironment and promotes the clinical application of MSCs in regenerative medicine and immune diseases.

Keywords: MSC; immune diseases; immune regulation; paracrine mechanism.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The regulatory function of mesenchymal stromal/stem cells (MSCs) via paracrine on immune cells.

References

    1. Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The Development of Fibroblast Colonies in Monolayer Cultures of Guinea-Pig Bone Marrow and Spleen Cells. Cell Prolif. 1970;3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x.
    1. Mcelreavey K.D., Irvine A.I., Ennis K.T., Mclean W.H.I. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem. Soc. Trans. 1991;19:29S. doi: 10.1042/bst019029s.
    1. Noort W., Scherjon S., Kleijburg-van der Keur C., Kruisselbrink A., van Bezooijen R., Beekhuizen W., Willemze R., Kanhai H., Fibbe W. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88:845–852.
    1. Gruber H.E., Deepe R., Hoelscher G.L., Ingram J.A., Norton H.J., Scannell B., Loeffler B.J., Zinchenko N., Hanley E.N., Tapp H. Human Adipose-Derived Mesenchymal Stem Cells: Direction to a Phenotype Sharing Similarities with the Disc, Gene Expression Profiling, and Coculture with Human Annulus Cells. Tissue Eng. Part A. 2010;16:2843–2860. doi: 10.1089/ten.tea.2009.0709.
    1. Ponnaiyan D., Bhat K.M., Bhat G.S. Comparison of Immuno-Phenotypes of Stem Cells from Human Dental Pulp and Periodontal Ligament. Int. J. Immunopathol. Pharmacol. 2012;25:127–134. doi: 10.1177/039463201202500115.
    1. HORWITZ E.M., Blanc K.L., Dominici M. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–395. doi: 10.1080/14653240500319234.
    1. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143.
    1. Krebsbach P.H., Kuznetsov S.A., Bianco P., Gehron Robey P. Bone Marrow Stromal Cells: Characterization and Clinical Application. Crit. Rev. Oral Biol. Med. 1999;10:165–181. doi: 10.1177/10454411990100020401.
    1. da Silva Meirelles S., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 2006;119:2204–2213. doi: 10.1242/jcs.02932.
    1. Arthur A., Zannettino A., Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J. Cell. Physiol. 2009;218:237–245. doi: 10.1002/jcp.21592.
    1. Asanuma H., Meldrum D.R., Meldrum K.K. Therapeutic Applications of Mesenchymal Stem Cells to Repair Kidney Injury. J. Urol. 2010;184:26–33. doi: 10.1016/j.juro.2010.03.050.
    1. Liang X., Ding Y., Zhang Y., Tse H.-F., Lian Q. Paracrine Mechanisms of Mesenchymal Stem Cell-Based Therapy: Current Status and Perspectives. Cell Transplant. 2014;23:1045–1059. doi: 10.3727/096368913X667709.
    1. Corcione A., Benvenuto F., Ferretti E., Giunti D., Cappiello V., Cazzanti F., Risso M., Gualandi F., Mancardi G.L., Pistoia V., et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107:367–372. doi: 10.1182/blood-2005-07-2657.
    1. Castro-Manrreza M.E., Montesinos J.J. Immunoregulation by mesenchymal stem cells: Biological aspects and clinical applications. J. Immunol. Res. 2015;2015:394917. doi: 10.1155/2015/394917.
    1. Murphy M.B., Moncivais K., Caplan A.I. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013;45:e54. doi: 10.1038/emm.2013.94.
    1. Caplan A.I. MSCs: The Sentinel and Safe-Guards of Injury. J. Cell. Physiol. 2016;231:1413–1416. doi: 10.1002/jcp.25255.
    1. Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells. 2006;24:1294–1301. doi: 10.1634/stemcells.2005-0342.
    1. Amable P.R., Teixeira M.V.T., Carias R.B.V., Granjeiro J.M., Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res. Ther. 2014;5:53. doi: 10.1186/scrt442.
    1. Gnecchi M., He H., Liang O.D., Melo L.G., Morello F., Mu H., Noiseux N., Zhang L., Pratt R.E., Ingwall J.S., et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 2005;11:367. doi: 10.1038/nm0405-367.
    1. Lin H.-T., Otsu M., Nakauchi H. Stem cell therapy: An exercise in patience and prudence. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20110334. doi: 10.1098/rstb.2011.0334.
    1. Najar M., Bouhtit F., Melki R., Afif H., Hamal A., Fahmi H., Merimi M., Lagneaux L. Mesenchymal Stromal Cell-Based Therapy: New Perspectives and Challenges. J. Clin. Med. 2019;8:626. doi: 10.3390/jcm8050626.
    1. Yip H.-K., Lee M.S., Sun C.-K., Chen K.-H., Chai H.-T., Sung P.-H., Lin K.-C., Ko S.-F., Yuen C.-M., Liu C.-F., et al. Therapeutic effects of adipose-derived mesenchymal stem cells against brain death-induced remote organ damage and post-heart transplant acute rejection. Oncotarget. 2017;8:108692–108711. doi: 10.18632/oncotarget.21433.
    1. Ringdén O., Uzunel M., Rasmusson I., Remberger M., Sundberg B., Lönnies H., Marschall H.-U., Dlugosz A., Szakos A., Hassan Z., et al. Mesenchymal Stem Cells for Treatment of Therapy-Resistant Graft-versus-Host Disease. Transplantation. 2006;81:1390–1397. doi: 10.1097/01.tp.0000214462.63943.14.
    1. Kopen G.C., Prockop D.J., Phinney D.G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA. 1999;96:10711–10716. doi: 10.1073/pnas.96.19.10711.
    1. Meier R.P.H., Müller Y.D., Morel P., Gonelle-Gispert C., Bühler L.H. Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res. 2013;11:1348–1364. doi: 10.1016/j.scr.2013.08.011.
    1. Matthay M.A., Goolaerts A., Howard J.P., Lee J.W. Mesenchymal stem cells for acute lung injury: Preclinical evidence. Crit. Care Med. 2010;38:S569–S573. doi: 10.1097/CCM.0b013e3181f1ff1d.
    1. Bhansali A., Upreti V., Khandelwal N., Marwaha N., Gupta V., Sachdeva N., Sharma R.R., Saluja K., Dutta P., Walia R., et al. Efficacy of Autologous Bone Marrow-Derived Stem Cell Transplantation in Patients with Type 2 Diabetes Mellitus. Stem Cells Dev. 2009;18:1407–1416. doi: 10.1089/scd.2009.0164.
    1. Yan X., Cen Y., Wang Q. Mesenchymal stem cells alleviate experimental rheumatoid arthritis through microRNA-regulated IκB expression. Sci. Rep. 2016;6:28915. doi: 10.1038/srep28915.
    1. Teixeira F.G., Panchalingam K.M., Assunção-Silva R., Serra S.C., Mendes-Pinheiro B., Patrício P., Jung S., Anjo S.I., Manadas B., Pinto L., et al. Modulation of the Mesenchymal Stem Cell Secretome Using Computer-Controlled Bioreactors: Impact on Neuronal Cell Proliferation, Survival and Differentiation. Sci. Rep. 2016;6:27791. doi: 10.1038/srep27791.
    1. Heathman T.R.J., Rafiq Q.A., Chan A.K.C., Coopman K., Nienow A.W., Kara B., Hewitt C.J. Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Scale-Manuf. Cell-Based Ther. IV. 2016;108:14–23. doi: 10.1016/j.bej.2015.06.018.
    1. Orlic D., Kajstura J., Chimenti S., Jakoniuk I., Anderson S.M., Li B., Pickel J., McKay R., Nadal-Ginard B., Bodine D.M., et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–705. doi: 10.1038/35070587.
    1. Strauer B.E., Brehm M., Zeus T., Köstering M., Hernandez A., Sorg R.V., Kögler G., Wernet P. Repair of Infarcted Myocardium by Autologous Intracoronary Mononuclear Bone Marrow Cell Transplantation in Humans. Circulation. 2002;106:1913–1918. doi: 10.1161/01.CIR.0000034046.87607.1C.
    1. Assmus B., Schächinger V., Teupe C., Britten M., Lehmann R., Döbert N., Grünwald F., Aicher A., Urbich C., Martin H., et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI) Circulation. 2002;106:3009–3017. doi: 10.1161/.
    1. Tögel F., Hu Z., Weiss K., Isaac J., Lange C., Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am. J. Physiol.-Ren. Physiol. 2005;289:F31–F42. doi: 10.1152/ajprenal.00007.2005.
    1. Takahashi M., Li T.-S., Suzuki R., Kobayashi T., Ito H., Ikeda Y., Matsuzaki M., Hamano K. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am. J. Physiol.-Heart Circ. Physiol. 2006;291:H886–H893. doi: 10.1152/ajpheart.00142.2006.
    1. Leiker M., Suzuki G., Iyer V.S., Canty J.M., Jr., Lee T. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant. 2008;17:911–922. doi: 10.3727/096368908786576444.
    1. Murry C.E., Soonpaa M.H., Reinecke H., Nakajima H., Nakajima H.O., Rubart M., Pasumarthi K.B.S., Ismail Virag J., Bartelmez S.H., Poppa V., et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664–668. doi: 10.1038/nature02446.
    1. Gnecchi M., He H., Noiseux N., Liang O.D., Zhang L., Morello F., Mu H., Melo L.G., Pratt R.E., Ingwall J.S., et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20:661–669. doi: 10.1096/fj.05-5211com.
    1. Lee R.H., Pulin A.A., Seo M.J., Kota D.J., Ylostalo J., Larson B.L., Semprun-Prieto L., Delafontaine P., Prockop D.J. Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6. Cell Stem Cell. 2009;5:54–63. doi: 10.1016/j.stem.2009.05.003.
    1. Shabbir A., Zisa D., Suzuki G., Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: A noninvasive therapeutic regimen. Am. J. Physiol. Heart Circ. Physiol. 2009;296:H1888–H1897. doi: 10.1152/ajpheart.00186.2009.
    1. Nakamura Y., Miyaki S., Ishitobi H., Matsuyama S., Nakasa T., Kamei N., Akimoto T., Higashi Y., Ochi M. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 2015;589:1257–1265. doi: 10.1016/j.febslet.2015.03.031.
    1. Shao L., Zhang Y., Lan B., Wang J., Zhang Z., Zhang L., Xiao P., Meng Q., Geng Y.-J., Yu X.-Y., et al. MiRNA-Sequence Indicates That Mesenchymal Stem Cells and Exosomes Have Similar Mechanism to Enhance Cardiac Repair. BioMed Res. Int. 2017;2017:4150705. doi: 10.1155/2017/4150705.
    1. Juneja H.S., Rajaraman S., Ramsey K.M., Elder F.F.B. Role of marrow stromal cells in the establishment of a transformed lymphoblastic B-cell line from a normal human subject. Leuk. Res. 1986;10:1209–1219. doi: 10.1016/0145-2126(86)90239-0.
    1. Cselenyák A., Pankotai E., Horváth E.M., Kiss L., Lacza Z. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol. 2010;11:29. doi: 10.1186/1471-2121-11-29.
    1. Gatti S., Bruno S., Deregibus M.C., Sordi A., Cantaluppi V., Tetta C., Camussi G. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia–reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 2011;26:1474–1483. doi: 10.1093/ndt/gfr015.
    1. Islam M.N., Das S.R., Emin M.T., Wei M., Sun L., Westphalen K., Rowlands D.J., Quadri S.K., Bhattacharya S., Bhattacharya J. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 2012;18:759. doi: 10.1038/nm.2736.
    1. Di Nicola M., Carlo-Stella C., Magni M., Milanesi M., Longoni P.D., Matteucci P., Grisanti S., Gianni A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843. doi: 10.1182/blood.V99.10.3838.
    1. Unanue E.R. Antigen-Presenting Function of the Macrophage. Annu. Rev. Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143.
    1. Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011;11:723. doi: 10.1038/nri3073.
    1. Wynn T.A., Chawla A., Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445. doi: 10.1038/nature12034.
    1. Németh K., Leelahavanichkul A., Yuen P.S.T., Mayer B., Parmelee A., Doi K., Robey P.G., Leelahavanichkul K., Koller B.H., Brown J.M., et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 2008;15:42. doi: 10.1038/nm.1905.
    1. Ren G., Zhao X., Wang Y., Zhang X., Chen X., Xu C., Yuan Z., Roberts A.I., Zhang L., Zheng B., et al. CCR2-Dependent Recruitment of Macrophages by Tumor-Educated Mesenchymal Stromal Cells Promotes Tumor Development and Is Mimicked by TNFα. Cell Stem Cell. 2012;11:812–824. doi: 10.1016/j.stem.2012.08.013.
    1. Cao X., Han Z.-B., Zhao H., Liu Q. Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice. Int. J. Biochem. Cell Biol. 2014;53:372–379. doi: 10.1016/j.biocel.2014.06.003.
    1. Abumaree M.H., Al Jumah M.A., Kalionis B., Jawdat D., Al Khaldi A., Abomaray F.M., Fatani A.S., Chamley L.W., Knawy B.A. Human Placental Mesenchymal Stem Cells (pMSCs) Play a Role as Immune Suppressive Cells by Shifting Macrophage Differentiation from Inflammatory M1 to Anti-inflammatory M2 Macrophages. Stem Cell Rev. Rep. 2013;9:620–641. doi: 10.1007/s12015-013-9455-2.
    1. Zhang W., Ge W., Li C., You S., Liao L., Han Q., Deng W., Zhao R.C.H. Effects of Mesenchymal Stem Cells on Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells. Stem Cells Dev. 2004;13:263–271. doi: 10.1089/154732804323099190.
    1. Nauta A.J., Kruisselbrink A.B., Lurvink E., Willemze R., Fibbe W.E. Mesenchymal Stem Cells Inhibit Generation and Function of Both CD34+-Derived and Monocyte-Derived Dendritic Cells. J. Immunol. 2006;177:2080–2087. doi: 10.4049/jimmunol.177.4.2080.
    1. Djouad F., Charbonnier L.-M., Bouffi C., Louis-Plence P., Bony C., Apparailly F., Cantos C., Jorgensen C., Noël D. Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism. Stem Cells. 2007;25:2025–2032. doi: 10.1634/stemcells.2006-0548.
    1. Liu Y., Yin Z., Zhang R., Yan K., Chen L., Chen F., Huang W., Lv B., Sun C., Jiang X. MSCs inhibit bone marrow-derived DC maturation and function through the release of TSG-6. Biochem. Biophys. Res. Commun. 2014;450:1409–1415. doi: 10.1016/j.bbrc.2014.07.001.
    1. English K., Barry F.P., Mahon B.P. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol. Lett. 2008;115:50–58. doi: 10.1016/j.imlet.2007.10.002.
    1. Chiesa S., Morbelli S., Morando S., Massollo M., Marini C., Bertoni A., Frassoni F., Bartolomé S.T., Sambuceti G., Traggiai E., et al. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc. Natl. Acad. Sci. USA. 2011;108:17384–17389. doi: 10.1073/pnas.1103650108.
    1. Mantovani A., Cassatella M.A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011;11:519. doi: 10.1038/nri3024.
    1. Raffaghello L., Bianchi G., Bertolotto M., Montecucco F., Busca A., Dallegri F., Ottonello L., Pistoia V. Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells. 2008;26:151–162. doi: 10.1634/stemcells.2007-0416.
    1. Yu P.F., Huang Y., Han Y.Y., Lin L.Y., Sun W.H., Rabson A.B., Wang Y., Shi Y.F. TNFα-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+ neutrophils. Oncogene. 2016;36:482. doi: 10.1038/onc.2016.217.
    1. Brandau S., Jakob M., Bruderek K., Bootz F., Giebel B., Radtke S., Mauel K., Jäger M., Flohé S.B., Lang S. Mesenchymal Stem Cells Augment the Anti-Bacterial Activity of Neutrophil Granulocytes. PLoS ONE. 2014;9:e106903. doi: 10.1371/journal.pone.0106903.
    1. Jiang D., Muschhammer J., Qi Y., Kügler A., de Vries J.C., Saffarzadeh M., Sindrilaru A., Beken S.V., Wlaschek M., Kluth M.A., et al. Suppression of Neutrophil-Mediated Tissue Damage—A Novel Skill of Mesenchymal Stem Cells. Stem Cells. 2016;34:2393–2406. doi: 10.1002/stem.2417.
    1. Björkström N.K., Ljunggren H.-G., Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat. Rev. Immunol. 2016;16:310. doi: 10.1038/nri.2016.34.
    1. Spaggiari G.M., Capobianco A., Becchetti S., Mingari M.C., Moretta L. Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107:1484–1490. doi: 10.1182/blood-2005-07-2775.
    1. Sotiropoulou P.A., Perez S.A., Gritzapis A.D., Baxevanis C.N., Papamichail M. Interactions Between Human Mesenchymal Stem Cells and Natural Killer Cells. Stem Cells. 2006;24:74–85. doi: 10.1634/stemcells.2004-0359.
    1. Spaggiari G.M., Capobianco A., Abdelrazik H., Becchetti F., Mingari M.C., Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111:1327–1333. doi: 10.1182/blood-2007-02-074997.
    1. Selmani Z., Naji A., Zidi I., Favier B., Gaiffe E., Obert L., Borg C., Saas P., Tiberghien P., Rouas-Freiss N., et al. Human Leukocyte Antigen-G5 Secretion by Human Mesenchymal Stem Cells Is Required to Suppress T Lymphocyte and Natural Killer Function and to Induce CD4+CD25highFOXP3+ Regulatory T Cells. Stem Cells. 2008;26:212–222. doi: 10.1634/stemcells.2007-0554.
    1. Thomas H., Jäger M., Mauel K., Brandau S., Lask S., Flohé S.B. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediators Inflamm. 2014;2014:143463. doi: 10.1155/2014/143463.
    1. Boissel L., Tuncer H.H., Betancur M., Wolfberg A., Klingemann H. Umbilical Cord Mesenchymal Stem Cells Increase Expansion of Cord Blood Natural Killer Cells. Biol. Blood Marrow Transplant. 2008;14:1031–1038. doi: 10.1016/j.bbmt.2008.06.016.
    1. Janeway C.J., Travers P., Walport M. Immunobiology: The Immune System in Health and Disease. 5th ed. Garland Science; Taylor & Francis Group; New York, NY, USA: 2008. T cell-mediated cytotoxicity.
    1. Duffy M.M., Ritter T., Ceredig R., Griffin M.D. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res. Ther. 2011;2:34. doi: 10.1186/scrt75.
    1. Meisel R., Zibert A., Laryea M., Göbel U., Däubener W., Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase–mediated tryptophan degradation. Blood. 2004;103:4619. doi: 10.1182/blood-2003-11-3909.
    1. Ryan J.M., Barry F., Murphy J.M., Mahon B.P. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin. Exp. Immunol. 2007;149:353–363. doi: 10.1111/j.1365-2249.2007.03422.x.
    1. Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815. doi: 10.1182/blood-2004-04-1559.
    1. Liotta F., Angeli R., Cosmi L., Filì L., Manuelli C., Frosali F., Mazzinghi B., Maggi L., Pasini A., Lisi V., et al. Toll-Like Receptors 3 and 4 Are Expressed by Human Bone Marrow-Derived Mesenchymal Stem Cells and Can Inhibit Their T-Cell Modulatory Activity by Impairing Notch Signaling. Stem Cells. 2008;26:279–289. doi: 10.1634/stemcells.2007-0454.
    1. Hwa Cho H., Bae Y.C., Jung J.S. Role of Toll-Like Receptors on Human Adipose-Derived Stromal Cells. Stem Cells. 2006;24:2744–2752. doi: 10.1634/stemcells.2006-0189.
    1. Pevsner-Fischer M., Morad V., Cohen-Sfady M., Rousso-Noori L., Zanin-Zhorov A., Cohen S., Cohen I.R., Zipori D. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007;109:1422. doi: 10.1182/blood-2006-06-028704.
    1. English K., Ryan J.M., Tobin L., Murphy M.J., Barry F.P., Mahon B.P. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin. Exp. Immunol. 2009;156:149–160. doi: 10.1111/j.1365-2249.2009.03874.x.
    1. Wang Y., Zhang A., Ye Z., Xie H., Zheng S. Bone Marrow-Derived Mesenchymal Stem Cells Inhibit Acute Rejection of Rat Liver Allografts in Association with Regulatory T-Cell Expansion. Transplant. Proc. 2009;41:4352–4356. doi: 10.1016/j.transproceed.2009.08.072.
    1. Rafei M., Campeau P.M., Aguilar-Mahecha A., Buchanan M., Williams P., Birman E., Yuan S., Young Y.K., Boivin M.-N., Forner K., et al. Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Inhibiting CD4 Th17 T Cells in a CC Chemokine Ligand 2-Dependent Manner. J. Immunol. 2009;182:5994–6002. doi: 10.4049/jimmunol.0803962.
    1. Tatara R., Ozaki K., Kikuchi Y., Hatanaka K., Oh I., Meguro A., Matsu H., Sato K., Ozawa K. Mesenchymal stromal cells inhibit Th17 but not regulatory T-cell differentiation. Cytotherapy. 2011;13:686–694. doi: 10.3109/14653249.2010.542456.
    1. Chiossone L., Conte R., Spaggiari G.M., Serra M., Romei C., Bellora F., Becchetti F., Andaloro A., Moretta L., Bottino C. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses. Stem Cells. 2016;34:1909–1921. doi: 10.1002/stem.2369.
    1. Liu C., Noorchashm H., Sutter J.A., Naji M., Prak E.L., Boyer J., Green T., Rickels M.R., Tomaszewski J.E., Koeberlein B., et al. B lymphocyte-directed immunotherapy promotes long-term islet allograft survival in nonhuman primates. Nat. Med. 2007;13:1295. doi: 10.1038/nm1673.
    1. Franquesa M., Hoogduijn M.J., Bestard O., Grinyó J.M. Immunomodulatory effect of mesenchymal stem cells on B cells. Front. Immunol. 2012;3:212. doi: 10.3389/fimmu.2012.00212.
    1. Crawford A., MacLeod M., Schumacher T., Corlett L., Gray D. Primary T Cell Expansion and Differentiation In Vivo Requires Antigen Presentation by B Cells. J. Immunol. 2006;176:3498–3506. doi: 10.4049/jimmunol.176.6.3498.
    1. Ng Y.-H., Oberbarnscheidt M.H., Chandramoorthy H.C.K., Hoffman R., Chalasani G. B cells help alloreactive T cells differentiate into memory T cells. Am. J. Transplant. 2010;10:1970–1980. doi: 10.1111/j.1600-6143.2010.03223.x.
    1. Healy M.E., Bergin R., Mahon B.P., English K. Mesenchymal Stromal Cells Protect Against Caspase 3-Mediated Apoptosis of CD19+ Peripheral B Cells Through Contact-Dependent Upregulation of VEGF. Stem Cells Dev. 2015;24:2391–2402. doi: 10.1089/scd.2015.0089.
    1. Barrio L., Cuevas V.D., Menta R., Mancheño-Corvo P., delaRosa O., Dalemans W., Lombardo E., Carrasco Y.R. Human adipose tissue-derived mesenchymal stromal cells promote B-cell motility and chemoattraction. Cytotherapy. 2014;16:1692–1699. doi: 10.1016/j.jcyt.2014.07.012.
    1. Tabera S., Pérez-Simón J.A., Díez-Campelo M., Sánchez-Abarca L.I., Blanco B., López A., Benito A., Ocio E., Sánchez-Guijo F.M., Cañizo C., et al. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica. 2008;93:1301–1309. doi: 10.3324/haematol.12857.
    1. Che N., Li X., Zhang L., Liu R., Chen H., Gao X., Shi S., Chen W., Sun L. Impaired B Cell Inhibition by Lupus Bone Marrow Mesenchymal Stem Cells Is Caused by Reduced CCL2 Expression. J. Immunol. 2014;193:5306–5314. doi: 10.4049/jimmunol.1400036.
    1. Ji Y.R., Yang Z.X., Han Z.-B., Meng L., Liang L., Feng X.M., Yang S.G., Chi Y., Chen D.D., Wang Y.W., et al. Mesenchymal Stem Cells Support Proliferation and Terminal Differentiation of B Cells. Cell. Physiol. Biochem. 2012;30:1526–1537. doi: 10.1159/000343340.
    1. Day R.B., Bhattacharya D., Nagasawa T., Link D.C. Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice. Blood. 2015;125:3114–3117. doi: 10.1182/blood-2015-02-629444.
    1. Colombo M., Raposo G., Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu. Rev. Cell Dev. Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326.
    1. Biancone L., Bruno S., Deregibus M.C., Tetta C., Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol. Dial. Transplant. 2012;27:3037–3042. doi: 10.1093/ndt/gfs168.
    1. Katsuda T., Kosaka N., Takeshita F., Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics. 2013;13:1637–1653. doi: 10.1002/pmic.201200373.
    1. Morrison T.J., Jackson M.V., Cunningham E.K., Kissenpfennig A., McAuley D.F., O’Kane C.M., Krasnodembskaya A.D. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am. J. Respir. Crit. Care Med. 2017;196:1275–1286. doi: 10.1164/rccm.201701-0170OC.
    1. Chamberlain C.S., Clements A.E.B., Kink J.A., Choi U., Baer G.S., Halanski M.A., Hematti P., Vanderby R. Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing. Stem Cells. 2019;37:652–662. doi: 10.1002/stem.2988.
    1. Willis G.R., Fernandez-Gonzalez A., Anastas J., Vitali S.H., Liu X., Ericsson M., Kwong A., Mitsialis S.A., Kourembanas S. Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. Am. J. Respir. Crit. Care Med. 2018;197:104–116. doi: 10.1164/rccm.201705-0925OC.
    1. Lo Sicco C., Reverberi D., Balbi C., Ulivi V., Principi E., Pascucci L., Becherini P., Bosco M.C., Varesio L., Franzin C., et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Transl. Med. 2017;6:1018–1028. doi: 10.1002/sctm.16-0363.
    1. Hyvärinen K., Holopainen M., Skirdenko V., Ruhanen H., Lehenkari P., Korhonen M., Käkelä R., Laitinen S., Kerkelä E. Mesenchymal Stromal Cells and Their Extracellular Vesicles Enhance the Anti-Inflammatory Phenotype of Regulatory Macrophages by Downregulating the Production of Interleukin (IL)-23 and IL-22. Front. Immunol. 2018;9:771. doi: 10.3389/fimmu.2018.00771.
    1. Reis M., Mavin E., Nicholson L., Green K., Dickinson A.M., Wang X.-N. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function. Front. Immunol. 2018;9:2538. doi: 10.3389/fimmu.2018.02538.
    1. Del Fattore A., Luciano R., Pascucci L., Goffredo B.M., Giorda E., Scapaticci M., Fierabracci A., Muraca M. Immunoregulatory Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles on T Lymphocytes. Cell Transplant. 2015;24:2615–2627. doi: 10.3727/096368915X687543.
    1. Budoni M., Fierabracci A., Luciano R., Petrini S., Di Ciommo V., Muraca M. The Immunosuppressive Effect of Mesenchymal Stromal Cells on B Lymphocytes is Mediated by Membrane Vesicles. Cell Transplant. 2013;22:369–379. doi: 10.3727/096368911X582769b.
    1. Zhang B., Yin Y., Lai R.C., Tan S.S., Choo A.B.H., Lim S.K. Mesenchymal Stem Cells Secrete Immunologically Active Exosomes. Stem Cells Dev. 2013;23:1233–1244. doi: 10.1089/scd.2013.0479.
    1. Wen D., Peng Y., Liu D., Weizmann Y., Mahato R.I. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation. J. Control. Release. 2016;238:166–175. doi: 10.1016/j.jconrel.2016.07.044.
    1. Tamura R., Uemoto S., Tabata Y. Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Inflamm. Regen. 2016;36:26. doi: 10.1186/s41232-016-0030-5.
    1. Wen S., Dooner M., Cheng Y., Papa E., Del Tatto M., Pereira M., Deng Y., Goldberg L., Aliotta J., Chatterjee D., et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221–2231. doi: 10.1038/leu.2016.107.
    1. Bruno S., Tapparo M., Collino F., Chiabotto G., Deregibus M.C., Soares Lindoso R., Neri F., Kholia S., Giunti S., Wen S., et al. Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Eng. Part A. 2017;23:1262–1273. doi: 10.1089/ten.tea.2017.0069.
    1. Le Blanc K., Rasmusson I., Sundberg B., Götherström C., Hassan M., Uzunel M., Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–1441. doi: 10.1016/S0140-6736(04)16104-7.
    1. Le Blanc K., Frassoni F., Ball L., Locatelli F., Roelofs H., Lewis I., Lanino E., Sundberg B., Bernardo M.E., Remberger M., et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet. 2008;371:1579–1586. doi: 10.1016/S0140-6736(08)60690-X.
    1. Prasad V.K., Lucas K.G., Kleiner G.I., Talano J.A.M., Jacobsohn D., Broadwater G., Monroy R., Kurtzberg J. Efficacy and Safety of Ex Vivo Cultured Adult Human Mesenchymal Stem Cells (ProchymalTM) in Pediatric Patients with Severe Refractory Acute Graft-Versus-Host Disease in a Compassionate Use Study. Biol. Blood Marrow Transplant. 2011;17:534–541. doi: 10.1016/j.bbmt.2010.04.014.
    1. Kurtzberg J., Prockop S., Teira P., Bittencourt H., Lewis V., Chan K.W., Horn B., Yu L., Talano J.-A., Nemecek E., et al. Allogeneic Human Mesenchymal Stem Cell Therapy (Remestemcel-L, Prochymal) as a Rescue Agent for Severe Refractory Acute Graft-versus-Host Disease in Pediatric Patients. Biol. Blood Marrow Transplant. 2014;20:229–235. doi: 10.1016/j.bbmt.2013.11.001.
    1. von Bonin M., Stölzel F., Goedecke A., Richter K., Wuschek N., Hölig K., Platzbecker U., Illmer T., Schaich M., Schetelig J., et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant. 2008;43:245. doi: 10.1038/bmt.2008.316.
    1. Lucchini G., Introna M., Dander E., Rovelli A., Balduzzi A., Bonanomi S., Salvadè A., Capelli C., Belotti D., Gaipa G., et al. Platelet-lysate-Expanded Mesenchymal Stromal Cells as a Salvage Therapy for Severe Resistant Graft-versus-Host Disease in a Pediatric Population. Biol. Blood Marrow Transplant. 2010;16:1293–1301. doi: 10.1016/j.bbmt.2010.03.017.
    1. Ciccocioppo R., Bernardo M.E., Sgarella A., Maccario R., Avanzini M.A., Ubezio C., Minelli A., Alvisi C., Vanoli A., Calliada F., et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60:788–798. doi: 10.1136/gut.2010.214841.
    1. Forbes G.M., Sturm M.J., Leong R.W., Sparrow M.P., Segarajasingam D., Cummins A.G., Phillips M., Herrmann R.P. A Phase 2 Study of Allogeneic Mesenchymal Stromal Cells for Luminal Crohn’s Disease Refractory to Biologic Therapy. Clin. Gastroenterol. Hepatol. 2014;12:64–71. doi: 10.1016/j.cgh.2013.06.021.
    1. Dhere T., Copland I., Garcia M., Chiang K.Y., Chinnadurai R., Prasad M., Galipeau J., Kugathasan S. The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease—A phase 1 trial with three doses. Aliment. Pharmacol. Ther. 2016;44:471–481. doi: 10.1111/apt.13717.
    1. Bonab M., Yazdanbakhsh S., Lotfi J., Alimoghaddom K., Talebian F., Hooshmand F., Ardeshir G., Nikbin B. Does Mesenchymal Stem Cell Therapy Help Multiple Sclerosis Patients? Report of a Pilot Study. Iran. J. Immunol. 2007;4:50–57.
    1. Yamout B., Hourani R., Salti H., Barada W., El-Hajj T., Al-Kutoubi A., Herlopian A., Baz E.K., Mahfouz R., Khalil-Hamdan R., et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: A pilot study. J. Neuroimmunol. 2010;227:185–189. doi: 10.1016/j.jneuroim.2010.07.013.
    1. Connick P., Kolappan M., Crawley C., Webber D.J., Patani R., Michell A.W., Du M.-Q., Luan S.-L., Altmann D.R., Thompson A.J., et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study. Lancet Neurol. 2012;11:150–156. doi: 10.1016/S1474-4422(11)70305-2.
    1. Mesples A., Majeed N., Zhang Y., Hu X. Early immunotherapy using autologous adult stem cells reversed the effect of anti-pancreatic islets in recently diagnosed type 1 diabetes mellitus: Preliminary results. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2013;19:852–857.
    1. Carlsson P.-O., Schwarcz E., Korsgren O., Le Blanc K. Preserved β-Cell Function in Type 1 Diabetes by Mesenchymal Stromal Cells. Diabetes. 2015;64:587–592. doi: 10.2337/db14-0656.
    1. Kim H.-S., Lee J.H., Roh K.-H., Jun H.J., Kang K.-S., Kim T.-Y. Clinical Trial of Human Umbilical Cord Blood-Derived Stem Cells for the Treatment of Moderate-to-Severe Atopic Dermatitis: Phase I/IIa Studies. Stem Cells. 2017;35:248–255. doi: 10.1002/stem.2401.
    1. Ferrara J.L.M., Levine J.E., Reddy P., Holler E. Graft-versus-host disease. Lancet Lond. Engl. 2009;373:1550–1561. doi: 10.1016/S0140-6736(09)60237-3.
    1. Lee D.K., Song S.U. Immunomodulatory mechanisms of mesenchymal stem cells and their therapeutic applications. Spec. Issue Stem Cell Immunol. 2018;326:68–76. doi: 10.1016/j.cellimm.2017.08.009.
    1. Ciccocioppo R., Gallia A., Sgarella A., Kruzliak P., Gobbi P.G., Corazza G.R. Long-Term Follow-Up of Crohn Disease Fistulas After Local Injections of Bone Marrow–Derived Mesenchymal Stem Cells. Mayo Clin. Proc. 2015;90:747–755. doi: 10.1016/j.mayocp.2015.03.023.
    1. Dulamea A. Mesenchymal stem cells in multiple sclerosis—Translation to clinical trials. J. Med. Life. 2015;8:24–27.
    1. Freitag J., Bates D., Boyd R., Shah K., Barnard A., Huguenin L., Tenen A. Mesenchymal stem cell therapy in the treatment of osteoarthritis: Reparative pathways, safety and efficacy—A review. BMC Musculoskelet. Disord. 2016;17:230. doi: 10.1186/s12891-016-1085-9.

Source: PubMed

3
購読する