Embryonic and early postnatal cranial bone volume and tissue mineral density values for C57BL/6J laboratory mice

Kate M Lesciotto, Lauren Tomlinson, Steven Leonard, Joan T Richtsmeier, Kate M Lesciotto, Lauren Tomlinson, Steven Leonard, Joan T Richtsmeier

Abstract

Background: Laboratory mice are routinely used in craniofacial research based on the relatively close genetic relationship and conservation of developmental pathways between humans and mice. Since genetic perturbations and disease states may have localized effects, data from individual cranial bones are valuable for the interpretation of experimental assays. We employ high-resolution microcomputed tomography to characterize cranial bones of C57BL/6J mice at embryonic day (E) 15.5 and E17.5, day of birth (P0), and postnatal day 7 (P7) and provide estimates of individual bone volume and tissue mineral density (TMD).

Results: Average volume and TMD values are reported for individual bones. Significant differences in volume and TMD during embryonic ages likely reflect early mineralization of cranial neural crest-derived and intramembranously forming bones. Although bones of the face and vault had higher TMD values during embryonic ages, bones of the braincase floor had significantly higher TMD values by P7.

Conclusions: These ontogenetic data on cranial bone volume and TMD serve as a reference standard for future studies using mice bred on a C57BL/6J genetic background. Our findings also highlight the importance of differentiating "control" data from mice that are presented as "unaffected" littermates, particularly when carrying a single copy of a cre-recombinase gene.

Keywords: bone mineralization; bone structure; cranial ossification centers; development.

© 2022 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy.

Figures

FIGURE 1
FIGURE 1
Presence/absence of each cranial bone by age. Points are randomly jittered (falsely separated) along the x‐axis at the represented age group to enable visualization of the value for each specimen, with six individuals represented in each age group
FIGURE 2
FIGURE 2
Average volume by age for each examined cranial bone. When an ossification center was not present, volume was recorded as 0. Y‐axis values are separately specified for each bone due to the wide variance in upper values (ranging from 0.12 mm3 for the zygomatic bone to over 3.5 mm3 for the mandible)
FIGURE 3
FIGURE 3
Average TMD by age for each examined cranial bone. When an ossification center was not present, TMD was recorded as 0. Y‐axis values are separately specified for each bone due to the wide variance in upper values (ranging from less than 250 mg/cm3 for the squamous occipital and nasal bones to over 400 mg/cm3 for the tympanic ring and zygomatic bones)
FIGURE 4
FIGURE 4
Heatmaps of average bone volume across chronological age, with bones grouped by tissue origin (mesoderm v. CNCC), ossification process (endochondral v. intramembranous), and cranial module (face, braincase floor, and vault). *P < .05; **P < .01
FIGURE 5
FIGURE 5
Heatmaps of average TMD across chronological age, with bones grouped by tissue origin (mesoderm v. CNCC), ossification process (endochondral v. intramembranous), and cranial module (face, braincase floor, and vault). *P < .05; **P < .01
FIGURE 6
FIGURE 6
Illustration of cranial bones analyzed for this study at each age group. Top row: left lateral view, with the rostrum facing left. Bottom row: superior endocranial view, with the rostrum facing left and the superior portion of the cranial vault removed. Bones that cross the midline were fully segmented. For bilaterally occurring bones, only bones of the left side of the skull were segmented. Bones appearing in gray were not segmented

References

    1. Lieberman DE, Hallgrímsson B, Liu W, Parsons TE, Jamniczky HA. Spatial packing, cranial base angulation, and craniofacial shape variation in the mammalian skull: testing a new model using mice. J Anat. 2008;212(6):720‐735. doi:10.1111/j.1469-7580.2008.00900
    1. Hallgrímsson B, Lieberman DE. Mouse models and the evolutionary developmental biology of the skull. Integr Comp Biol. 2008;48(3):373‐384. doi:10.1093/icb/icn076
    1. Karpel ME, Boutwell CL, Allen TM. BLT humanized mice as a small animal model of HIV infection. Curr Opin Virol. 2015;13:75‐80. doi:10.1016/j.coviro.2015.05.002
    1. Yang T, Moore M, He F. Pten regulates neural crest proliferation and differentiation during mouse craniofacial development. Dev Dyn. 2018;247(2):304‐314. doi:10.1002/dvdy.24605
    1. Llewellyn GN, Seclén E, Wietgrefe S, et al. Humanized mouse model of HIV‐1 latency with enrichment of latent virus in PD‐1+ and TIGIT+ CD4 T cells. J Virol. 2019;93(10):e02086‐e02018. doi:10.1128/JVI.02086-18
    1. Yant SR, Mulato A, Hansen D, et al. A highly potent long‐acting small‐molecule HIV‐1 capsid inhibitor with efficacy in a humanized mouse model. Nat Med. 2019;25(9):1377‐1384. doi:10.1038/s41591-019-0560-x
    1. Murphy W, Eizirik E, O'Brien S, et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science. 2001;194:2348‐2351. doi:10.1126/science.1067179
    1. Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J. Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol. 2006;4(4):e91. doi:10.1371/journal.pbio.0040091
    1. Hallgrímsson B, Willmore K, Dorval C, Cooper DML. Craniofacial variability and modularity in macaques and mice. J Exp Zoolog B Mol Dev Evol. 2004;302B(3):207‐225. doi:10.1002/jez.b.21002
    1. Martínez‐Abadías N, Mitteroecker P, Parsons TE, et al. The developmental basis of quantitative craniofacial variation in humans and mice. Evol Biol. 2012;39(4):554‐567. doi:10.1007/s11692-012-9210-7
    1. Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Health. 2016;2016(1):170‐176. doi:10.1093/emph/eow014
    1. Motch Perrine SM, Stecko T, Neuberger T, Jabs EW, Ryan TM, Richtsmeier JT. Integration of brain and skull in prenatal mouse models of Apert and Crouzon syndromes. Front Hum Neurosci. 2017;11:369. doi:10.3389/fnhum.2017.00369
    1. Cibi DM, Mia MM, Shekeran SG, et al. Neural crest‐specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. Elife. 2019;8:8e45418. doi:10.7554/eLife.45418
    1. Richtsmeier JT, Baxter LL, Reeves RH. Parallels of craniofacial maldevelopment in down syndrome and Ts65Dn mice. Dev Dyn. 2000;217:137‐145. doi:10.1002/(SICI)1097-0177(200002)217:2<137::AID-DVDY1>;2-N
    1. Richtsmeier JT, Flaherty K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol (Berl). 2013;125(4):469‐489. doi:10.1007/s00401-013-1104-y
    1. Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WIREs Dev Biol. 2016;5(4):429‐459. doi:10.1002/wdev.227
    1. López EKN, Stock SR, Taketo MM, Chenn A, Ravosa MJ. A novel transgenic mouse model of fetal encephalization and craniofacial development. Integr Comp Biol. 2008;48(3):360‐372. doi:10.1093/icb/icn047
    1. López EKN, Stock SR, Taketo MM, Chenn A, Ravosa MJ. MicroCT and microMRI imaging of a prenatal mouse model of increased brain size. Proc Int Soc Opt Eng. 2008;70781T:0781T‐1–7‐781T‐12. doi:10.1117/12.793842
    1. Holmes G, Basilico C. Mesodermal expression of Fgfr2 S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev Biol. 2012;368(2):283‐293. doi:10.1016/j.ydbio.2012.05.026
    1. Heuzé Y, Singh N, Basilico C, Jabs EW, Holmes G, Richtsmeier JT. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest‐ or mesoderm‐derived tissues. Bone. 2014;63:101‐109. doi:10.1016/j.bone.2014.03.003
    1. Filvaroff EH, Guillet S, Zlot C, et al. Stanniocalcin 1 alters muscle and bone structure and function in transgenic mice. Endocrinology. 2002;143(9):3681‐3690. doi:10.1210/en.2001-211424
    1. Wang Y, Wan C, Deng L, et al. The hypoxia‐inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117(6):1616‐1626. doi:10.1172/JCI31581
    1. Liang C, Oest ME, Jones JC, Prater MR. Gestational high saturated fat diet alters C57BL/6 mouse perinatal skeletal formation. Birth Defects Res B Dev Reprod Toxicol. 2009;86(5):362‐369. doi:10.1002/bdrb.20204
    1. Luo J, Zhou W, Zhou X, et al. Regulation of bone formation and remodeling by G‐protein‐coupled receptor 48. Development. 2009;136(16):2747‐2756. doi:10.1242/dev.033571
    1. Powell WF, Barry KJ, Tulum I, et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J Endocrinol. 2011;209(1):21‐32. doi:10.1530/JOE-10-0308
    1. Davey RA, Clarke MV, Sastra S, et al. Decreased body weight in young Osterix‐Cre transgenic mice results in delayed cortical bone expansion and accrual. Transgenic Res. 2012;21(4):885‐893. doi:10.1007/s11248-011-9581-z
    1. Ho TV, Iwata J, Ho HA, et al. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development. Dev Biol. 2015;400(2):180‐190. doi:10.1016/j.ydbio.2015.02.010
    1. Gou Y, Li J, Wu J, et al. Prmt1 regulates craniofacial bone formation upstream of Msx1. Mech Dev. 2018;152:13‐20. doi:10.1016/j.mod.2018.05.001
    1. Kawaguchi J, Azuma Y, Hoshi K, et al. Targeted disruption of cadherin‐11 leads to a reduction in bone density in calvaria and long bone metaphyses. J Bone Miner Res. 2001;16(7):1265‐1271. doi:10.1359/jbmr.2001.16.7.1265
    1. Deckelbaum RA, Majithia A, Booker T, Henderson JE, Loomis CA. The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling. Development. 2006;133(1):63‐74. doi:10.1242/dev.02171
    1. Benson MD, Opperman LA, Westerlund J, et al. Ephrin‐B stimulation of calvarial bone formation. Dev Dyn. 2012;241(12):1901‐1910. doi:10.1002/dvdy.23874
    1. Shen L, Ai H, Liang Y, et al. Effect of prenatal alcohol exposure on bony craniofacial development: a mouse MicroCT study. Alcohol. 2013;47(5):405‐415. doi:10.1016/j.alcohol.2013.04.005
    1. Liu J, Nam HK, Campbell C, da Silva Gasque KC, Millán JL, Hatch NE. Tissue‐nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl −/− mouse model of infantile hypophosphatasia. Bone. 2014;67:81‐94. doi:10.1016/j.bone.2014.06.040
    1. Liu J, Campbell C, Nam HK, et al. Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia. Bone. 2015;78:203‐211. doi:10.1016/j.bone.2015.05.005
    1. Vora SR, Camci ED, Cox TC. Postnatal ontogeny of the cranial base and craniofacial skeleton in male C57BL/6J mice: a reference standard for quantitative analysis. Front Physiol. 2016;6:1‐14. doi:10.3389/fphys.2015.00417
    1. Wei X, Thomas N, Hatch NE, Hu M, Liu F. Postnatal craniofacial skeletal development of female C57BL/6NCrl mice. Front Physiol. 2017;8:1‐18. doi:10.3389/fphys.2017.00697
    1. Thompson J, Mendoza F, Tan E, et al. A cleft lip and palate gene, Irf6, is involved in osteoblast differentiation of craniofacial bone. Dev Dyn. 2019;248(3):221‐232. doi:10.1002/dvdy.13
    1. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27‐38. doi:10.1038/nrm3254
    1. Kawasaki K, Richtsmeier JT. Association of the chondrocranium and dermatocranium in early skull formation. In: Percival CJ, Richtsmeier JT, eds. Building Bones: Bone Formation and Development in Anthropology. Cambridge, United Kingdom: Cambridge University Press; 2017:52‐78.
    1. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18(5):397‐403. doi:10.1016/8756-3282(96)00047-6
    1. Sheng MH‐C, Baylink DJ, Beamer WG, et al. Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high‐density) than C57BL/6J (low‐density) mice during growth. Bone. 1999;25(4):421‐429. doi:10.1016/S8756-.3282(99)00184-2
    1. Kang SK, Hawkins NA, Kearney JA. C57BL/6J and C57BL/6N substrains differentially influence phenotype severity in the Scn1a +/− mouse model of Dravet syndrome. Epilepsia Open. 2018;4(1):164‐169. doi:10.1002/epi4.12287
    1. Flaherty K, Richtsmeier J. It's about time: ossification center formation in C57BL/6 mice from E12–E16. J Dev Biol. 2018;6(4):31.
    1. Musy M, Flaherty K, Raspopovic J, Robert‐Moreno A, Richtsmeier JT, Sharpe J. A quantitative method for staging mouse embryos based on limb morphometry. Development. 2018;145(7):dev154856. doi:10.1242/dev.154856
    1. Liu J, Nam HK, Wang E, Hatch NE. Further analysis of the Crouzon mouse: effects of the FGFR2 C342Y mutation are cranial bone–dependent. Calcif Tissue Int. 2013;92(5):451‐466. doi:10.1007/s00223-013-9701-2
    1. Motch Perrine SM, Wu M, Stephens NB, et al. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2‐related craniosynostosis mice. Dis Model Mech. 2019;12(5):mm038513. doi:10.1242/dmm.038513
    1. Percival CJ, Huang Y, Jabs EW, Li R, Richtsmeier JT. Embryonic craniofacial bone volume and bone mineral density in Fgfr2 +/P253R and nonmutant mice. Dev Dyn. 2014;243(4):541‐551. doi:10.1002/dvdy.24095
    1. Percival CJ, Wang Y, Zhou X, Jabs EW, Richtsmeier JT. The effect of a Beare‐Stevenson syndrome Fgfr2 Y394C mutation on early craniofacial bone volume and relative bone mineral density in mice. J Anat. 2012;221(5):434‐442. doi:10.1111/j.1469-7580.2012.01555
    1. Matthaei KI. Genetically manipulated mice: a powerful tool with unsuspected caveats. J Physiol. 2007;582(2):481‐488. doi:10.1113/jphysiol.2007.134908
    1. Jeannotte L, Aubin J, Bourque S, Lemieux M, Montaron S, Provencher S‐PA. Unsuspected effects of a lung‐specific cre deleter mouse line. Genesis. 2011;49(3):152‐159. doi:10.1002/dvg.20720
    1. Harno E, Cottrell EC, White A. Metabolic pitfalls of CNS cre‐based technology. Cell Metab. 2013;18(1):21‐28. doi:10.1016/j.cmet.2013.05.019
    1. Dorà NJ, Collinson JM, Hill RE, West JD. Hemizygous Le‐Cre transgenic mice have severe eye abnormalities on some genetic backgrounds in the absence of loxP sites. PLoS ONE. 2014;9(10):e109193. doi:10.1371/journal.pone.0109193
    1. Song AJ, Palmiter RD. Detecting and avoiding problems when using the Cre–lox system. Trends Genet. 2018;34(5):333‐340. doi:10.1016/j.tig.2017.12.008
    1. Pitirri MK, Kawasaki K, Richtsmeier JT. It takes two: building the vertebrate skull from chondrocranium and dermatocranium. Vertebr Zool. 2020;70(4):587‐600.
    1. Quarto N, Wan DC, Kwan MD, Panetta NJ, Li S, Longaker MT. Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones. J Bone Miner Res. 2009;091123192917092‐42:1680‐1694. doi:10.1359/jbmr.091116
    1. Quarto N, Behr B, Li S, Longaker MT. Differential FGF ligands and FGF receptors expression pattern in frontal and parietal calvarial bones. Cells Tissues Organs. 2009;190(3):158‐169. doi:10.1159/000202789
    1. Li S, Quarto N, Longaker MT. Activation of FGF signaling mediates proliferative and osteogenic differences between neural crest derived frontal and mesoderm parietal derived bone. PLoS ONE. 2010;5(11):e14033. doi:10.1371/journal.pone.0014033
    1. Li S, Meyer NP, Quarto N, Longaker MT. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest‐derived and mesoderm‐derived osteoblasts. PLoS ONE. 2013;8(3):e58610. doi:10.1371/journal.pone.0058610
    1. Martínez‐Abadías N, Heuzé Y, Wang Y, Jabs EW, Aldridge K, Richtsmeier JT. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models. PLoS ONE. 2011;6(10):e26425. doi:10.1371/journal.pone.0026425
    1. Motch Perrine SM, Cole TM, Martínez‐Abadías N, Aldridge K, Jabs EW, Richtsmeier JT. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice. BMC Dev Biol. 2014;14(1):1‐17. doi:10.1186/1471-213X-14-8
    1. Gross JB, Hanken J. Review of fate‐mapping studies of osteogenic cranial neural crest in vertebrates. Dev Biol. 2008;317(2):389‐100. doi:10.1016/j.ydbio.2008.02.046
    1. Jiang X, Iseki S, Maxon RE, Sucov HM, Morriss‐Kay GM. Tissue origins and interactions in the mammalian skull vault. Dev Biol. 2002;241(1):106‐116. doi:10.1006/dbio.2001.0487

Source: PubMed

3
購読する