New Microbiological Techniques for the Diagnosis of Bacterial Infections and Sepsis in ICU Including Point of Care

Anna Maria Peri, Adam Stewart, Anna Hume, Adam Irwin, Patrick N A Harris, Anna Maria Peri, Adam Stewart, Anna Hume, Adam Irwin, Patrick N A Harris

Abstract

Purpose of review: The aim of this article is to review current and emerging microbiological techniques that support the rapid diagnosis of bacterial infections in critically ill patients, including their performance, strengths and pitfalls, as well as available data evaluating their clinical impact.

Recent findings: Bacterial infections and sepsis are responsible for significant morbidity and mortality in patients admitted to the intensive care unit and their management is further complicated by the increase in the global burden of antimicrobial resistance. In this setting, new diagnostic methods able to overcome the limits of traditional microbiology in terms of turn-around time and accuracy are highly warranted. We discuss the following broad themes: optimisation of existing culture-based methodologies, rapid antigen detection, nucleic acid detection (including multiplex PCR assays and microarrays), sepsis biomarkers, novel methods of pathogen detection (e.g. T2 magnetic resonance) and susceptibility testing (e.g. morphokinetic cellular analysis) and the application of direct metagenomics on clinical samples. The assessment of the host response through new "omics" technologies might also aid in early diagnosis of infections, as well as define non-infectious inflammatory states.

Summary: Despite being a promising field, there is still scarce evidence about the real-life impact of these assays on patient management. A common finding of available studies is that the performance of rapid diagnostic strategies highly depends on whether they are integrated within active antimicrobial stewardship programs. Assessing the impact of these emerging diagnostic methods through patient-centred clinical outcomes is a complex challenge for which large and well-designed studies are awaited.

Keywords: Antimicrobial resistance; Bloodstream infection; Critical care; Rapid diagnostics; Sepsis.

Conflict of interest statement

Conflict of InterestPNAH reports grants from Shionogi, MSD and Sandoz, as well as personal fees from Sandoz and Pfizer, outside the submitted work. All the other authors declare no conflicts of interest.

© Crown 2021.

References

    1. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, le Gall JR, Payen D, Sepsis Occurrence in Acutely Ill Patients Investigators Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Lagu T, Rothberg MB, Shieh MS, Pekow PS, Steingrub JS, Lindenauer PK. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med. 2012;40(3):754–761. doi: 10.1097/CCM.0b013e318232db65.
    1. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, EPIC II Group of Investigators International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–2329. doi: 10.1001/jama.2009.1754.
    1. Denny KJ, De Waele J, Laupland KB, Harris PNA, Lipman J. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect. 2020;26(1):35–40. doi: 10.1016/j.cmi.2019.07.007.
    1. Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev. 2006;19(4):788–802. doi: 10.1128/CMR.00062-05.
    1. Murray PR, Masur H. Current approaches to the diagnosis of bacterial and fungal bloodstream infections in the intensive care unit. Crit Care Med. 2012;40(12):3277–3282. doi: 10.1097/CCM.0b013e318270e771.
    1. Rodriguez-Sanchez B, Cercenado E, Coste AT, Greub G. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Euro Surveill. 2019;24(4):1800193. doi: 10.2807/1560-7917.ES.2019.24.4.1800193.
    1. Messacar K, Parker SK, Todd JK, Dominguez SR. Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship. Journal of clinical microbiology. 2017;55(3):715–723. doi: 10.1128/JCM.02264-16.
    1. Trotter AJ, Aydin A, Strinden MJ, O'Grady J. Recent and emerging technologies for the rapid diagnosis of infection and antimicrobial resistance. Curr Opin Microbiol. 2019;51:39–45. doi: 10.1016/j.mib.2019.03.001.
    1. Minassian AM, Newnham R, Kalimeris E, Bejon P, Atkins BL, Bowler IC. Use of an automated blood culture system (BD BACTEC) for diagnosis of prosthetic joint infections: easy and fast. BMC Infect Dis. 2014;14:233. doi: 10.1186/1471-2334-14-233.
    1. Li Z, Liu S, Chen H, Zhang X, Ling Y, Zhang N, et al. Comparative evaluation of BACTEC FX, BacT/ALERT 3D, and BacT/ALERT VIRTUO-automated blood culture systems using simulated blood cultures. Acta Clin Belg. 2020:1–8.
    1. Menchinelli G, Liotti FM, Fiori B, De Angelis G, D'Inzeo T, Giordano L, et al. In vitro Evaluation of BACT/ALERT(R) VIRTUO(R), BACT/ALERT 3D(R), and BACTEC FX automated blood culture systems for detection of microbial pathogens using simulated human blood samples. Front Microbiol. 2019;10:221. doi: 10.3389/fmicb.2019.00221.
    1. Chung Y, Kim IH, Han M, Kim HS, Kim HS, Song W, Kim JS. A comparative evaluation of BACT/ALERT FA PLUS and FN PLUS blood culture bottles and BD BACTEC Plus Aerobic and Anaerobic blood culture bottles for antimicrobial neutralization. Eur J Clin Microbiol Infect Dis. 2019;38(12):2229–2233. doi: 10.1007/s10096-019-03663-3.
    1. Somily AM, Habib HA, Torchyan AA, Sayyed SB, Absar M, Al-Aqeel R, et al. Time-to-detection of bacteria and yeast with the BACTEC FX versus BacT/Alert Virtuo blood culture systems. Ann Saudi Med. 2018;38(3):194–199. doi: 10.5144/0256-4947.2018.194.
    1. Park J, Han S, Shin S. Comparison of growth performance of the BacT/ALERT VIRTUO and BACTEC FX Blood Culture Systems under simulated bloodstream infection conditions. Clin Lab. 2017;63(1):39–46.
    1. Chen IH, Nicolau DP, Kuti JL. Effect of clinically meaningful antibiotic concentrations on recovery of Escherichia coli and Klebsiella pneumoniae isolates from anaerobic blood culture bottles with and without antibiotic binding resins. J Clin Microbiol. 2019;57(12).
    1. Chen IH, Nicolau DP, Kuti JL. Recovery of Gram-negative bacteria from aerobic blood culture bottles containing antibiotic binding resins after exposure to beta-lactam and fluoroquinolone concentrations. J Clin Microbiol. 2019;57(10).
    1. Wilson ML, Weinstein MP, Reller LB. Automated blood culture systems. Clin Lab Med. 1994;14(1):149–169. doi: 10.1016/S0272-2712(18)30401-3.
    1. Edmiston CE, Garcia R, Barnden M, DeBaun B, Johnson HB. Rapid diagnostics for bloodstream infections: a primer for infection preventionists. American journal of infection control. 2018;46(9):1060–1068. doi: 10.1016/j.ajic.2018.02.022.
    1. Smith KP, Kang AD, Kirby JE. Automated interpretation of blood culture Gram stains by use of a deep convolutional neural network. J Clin Microbiol. 2018;56(3).
    1. Qian Q, Eichelberger K, Kirby JE. Rapid identification of Staphylococcus aureus in blood cultures by use of the direct tube coagulase test. J Clin Microbiol. 2007;45(7):2267–2269. doi: 10.1128/JCM.00369-07.
    1. Ozen NS, Ogunc D, Mutlu D, Ongut G, Baysan BO, Gunseren F. Comparison of four methods for rapid identification of Staphylococcus aureus directly from BACTEC 9240 blood culture system. Indian J Med Microbiol. 2011;29(1):42–46. doi: 10.4103/0255-0857.76523.
    1. Chandrasekaran S, Abbott A, Campeau S, Zimmer BL, Weinstein M, Thrupp L, et al. Direct-from-blood-culture disk diffusion to determine antimicrobial susceptibility of Gram-negative bacteria: preliminary report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J Clin Microbiol. 2018;56(3).
    1. Jonasson E, Matuschek E, Kahlmeter G. The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J Antimicrob Chemother. 2020;75(4):968–978. doi: 10.1093/jac/dkz548.
    1. Kumar M, Shergill SPS, Tandel K, Sahai K, Gupta RM. Direct antimicrobial susceptibility testing from positive blood culture bottles in laboratories lacking automated antimicrobial susceptibility testing systems. Med J Armed Forces India. 2019;75(4):450–457. doi: 10.1016/j.mjafi.2018.08.010.
    1. Bayraktar B, Baris A, Malkocoglu G, Erdemir D, Kina N. Comparison of Carba NP-direct, carbapenem inactivation method, and beta-CARBA tests for detection of carbapenemase production in Enterobacteriaceae. Microb Drug Resist. 2019;25(1):97–102. doi: 10.1089/mdr.2017.0427.
    1. Cunningham SA, Limbago B, Traczewski M, Anderson K, Hackel M, Hindler J, Sahm D, Alyanak E, Lawsin A, Gulvik CA, de Man TJB, Mandrekar JN, Schuetz AN, Jenkins S, Humphries R, Palavecino E, Vasoo S, Patel R. Multicenter performance assessment of Carba NP Test. J Clin Microbiol. 2017;55(6):1954–1960. doi: 10.1128/JCM.00244-17.
    1. McMullen AR, Wallace MA, LaBombardi V, Hindler J, Campeau S, Humphries R, et al. Multicenter evaluation of the RAPIDEC(R) CARBA NP assay for the detection of carbapenemase production in clinical isolates of Enterobacterales and Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2020;39(11):2037–2044. doi: 10.1007/s10096-020-03937-1.
    1. Blanc DS, Poncet F, Grandbastien B, Greub G, Senn L, Nordmann P. Evaluation of the performance of rapid tests for screening carriers of acquired ESBL producers and their impact on the turnaround time. J Hosp Infect. 2020.
    1. Couturier MR, Graf EH, Griffin AT. Urine antigen tests for the diagnosis of respiratory infections: legionellosis, histoplasmosis, pneumococcal pneumonia. Clin Lab Med. 2014;34(2):219–236. doi: 10.1016/j.cll.2014.02.002.
    1. Viasus D, Calatayud L, McBrown MV, Ardanuy C, Carratala J. Urinary antigen testing in community-acquired pneumonia in adults: an update. Expert Rev Anti Infect Ther. 2019;17(2):107–115. doi: 10.1080/14787210.2019.1565994.
    1. Avni T, Bieber A, Green H, Steinmetz T, Leibovici L, Paul M. Diagnostic accuracy of PCR alone and compared to urinary antigen testing for detection of Legionella spp.: a systematic review. J Clin Microbiol. 2016;54(2):401–411. doi: 10.1128/JCM.02675-15.
    1. Baggett HC, Rhodes J, Dejsirilert S, Salika P, Wansom T, Jorakate P, Kaewpan A, Olsen SJ, Maloney SA, Peruski LF. Pneumococcal antigen testing of blood culture broth to enhance the detection of Streptococcus pneumoniae bacteremia. Eur J Clin Microbiol Infect Dis. 2012;31(5):753–756. doi: 10.1007/s10096-011-1370-3.
    1. Kassis C, Zaidi S, Kuberski T, Moran A, Gonzalez O, Hussain S, Hartmann-Manrique C, al-Jashaami L, Chebbo A, Myers RA, Wheat LJ. Role of Coccidioides antigen testing in the cerebrospinal fluid for the diagnosis of coccidioidal meningitis. Clin Infect Dis. 2015;61(10):1521–1526. doi: 10.1093/cid/civ585.
    1. Porcel JM. Biomarkers in the diagnosis of pleural diseases: a 2018 update. Ther Adv Respir Dis. 2018;12:1753466618808660. doi: 10.1177/1753466618808660.
    1. Perkins MD, Mirrett S, Reller LB. Rapid bacterial antigen detection is not clinically useful. J Clin Microbiol. 1995;33(6):1486–1491. doi: 10.1128/jcm.33.6.1486-1491.1995.
    1. Andrews D, Chetty Y, Cooper BS, Virk M, Glass SK, Letters A, Kelly PA, Sudhanva M, Jeyaratnam D. Multiplex PCR point of care testing versus routine, laboratory-based testing in the treatment of adults with respiratory tract infections: a quasi-randomised study assessing impact on length of stay and antimicrobial use. BMC Infect Dis. 2017;17(1):671. doi: 10.1186/s12879-017-2784-z.
    1. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4(6):337–348. doi: 10.1016/S1473-3099(04)01044-8.
    1. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14(1):R15. doi: 10.1186/cc8872.
    1. Cui N, Zhang H, Chen Z, Yu Z. Prognostic significance of PCT and CRP evaluation for adult ICU patients with sepsis and septic shock: retrospective analysis of 59 cases. J Int Med Res. 2019;47(4):1573–1579. doi: 10.1177/0300060518822404.
    1. Van den Bruel A, Thompson MJ, Haj-Hassan T, Stevens R, Moll H, Lakhanpaul M, et al. Diagnostic value of laboratory tests in identifying serious infections in febrile children: systematic review. BMJ. 2011;342:d3082. doi: 10.1136/bmj.d3082.
    1. Grondman I, Pirvu A, Riza A, Ioana M, Netea MG. Biomarkers of inflammation and the etiology of sepsis. Biochem Soc Trans. 2020;48(1):1–14. doi: 10.1042/BST20190029.
    1. de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, Loef BG, Dormans T, van Melsen GC, Kluiters YC, Kemperman H, van den Elsen MJ, Schouten JA, Streefkerk JO, Krabbe HG, Kieft H, Kluge GH, van Dam VC, van Pelt J, Bormans L, Otten MB, Reidinga AC, Endeman H, Twisk JW, van de Garde EMW, de Smet AMGA, Kesecioglu J, Girbes AR, Nijsten MW, de Lange DW. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16(7):819–827. doi: 10.1016/S1473-3099(16)00053-0.
    1. Stocker M, van Herk W, El Helou S, Dutta S, Fontana MS, Schuerman F, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns) Lancet. 2017;390(10097):871–881. doi: 10.1016/S0140-6736(17)31444-7.
    1. Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis. 2017;64(1):15–23. doi: 10.1093/cid/ciw649.
    1. Tansarli GS, Chapin KC. Diagnostic test accuracy of the BioFire(R) FilmArray(R) meningitis/encephalitis panel: a systematic review and meta-analysis. Clin Microbiol Infect. 2020;26(3):281–290. doi: 10.1016/j.cmi.2019.11.016.
    1. Dack K, Pankow S, Ablah E, Zackula R, Assi M. Contribution of the BioFire((R)) FilmArray((R)) meningitis/encephalitis panel: assessing antimicrobial duration and length of stay. Kans J Med. 2019;12(1):1–3. doi: 10.17161/kjm.v12i1.11695.
    1. Moffa MA, Bremmer DN, Carr D, Buchanan C, Shively NR, Elrufay R, et al. Impact of a multiplex polymerase chain reaction assay on the clinical management of adults undergoing a lumbar puncture for suspected community-onset central nervous system infections. Antibiotics (Basel). 2020;9(6).
    1. Maataoui N, Chemali L, Patrier J, Tran Dinh A, Le Fevre L, Lortat-Jacob B, et al. Impact of rapid multiplex PCR on management of antibiotic therapy in COVID-19-positive patients hospitalized in intensive care unit. Eur J Clin Microbiol Infect Dis. 2021.
    1. Vandendriessche S, Padalko E, Wollants E, Verfaillie C, Verhasselt B, Coorevits L. Evaluation of the Seegene Allplex Respiratory Panel for diagnosis of acute respiratory tract infections. Acta Clin Belg. 2019;74(6):379–385. doi: 10.1080/17843286.2018.1531605.
    1. Blaschke AJ, Heyrend C, Byington CL, Fisher MA, Barker E, Garrone NF, Thatcher SA, Pavia AT, Barney T, Alger GD, Daly JA, Ririe KM, Ota I, Poritz MA. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn Microbiol Infect Dis. 2012;74(4):349–355. doi: 10.1016/j.diagmicrobio.2012.08.013.
    1. Southern TR, VanSchooneveld TC, Bannister DL, Brown TL, Crismon AS, Buss SN, et al. Implementation and performance of the BioFire FilmArray(R) Blood Culture Identification panel with antimicrobial treatment recommendations for bloodstream infections at a midwestern academic tertiary hospital. Diagn Microbiol Infect Dis. 2015;81(2):96–101. doi: 10.1016/j.diagmicrobio.2014.11.004.
    1. Verroken A, Despas N, Rodriguez-Villalobos H, Laterre PF. The impact of a rapid molecular identification test on positive blood cultures from critically ill with bacteremia: a pre-post intervention study. PLoS One. 2019;14(9):e0223122. doi: 10.1371/journal.pone.0223122.
    1. Sansot M, Fradin E, Chenouard R, Kempf M, Kouatchet A, Lasocki S, Lemarié C, Eveillard M, Pailhoriès H. Performance of the extended use of the FilmArray((R)) BCID panel kit for bronchoalveolar lavage analysis. Mol Biol Rep. 2019;46(3):2685–2692. doi: 10.1007/s11033-019-04710-0.
    1. Spencer DH, Sellenriek P, Burnham CA. Validation and implementation of the GeneXpert MRSA/SA blood culture assay in a pediatric setting. Am J Clin Pathol. 2011;136(5):690–694. doi: 10.1309/AJCP07UGYOKBVVNC.
    1. Cointe A, Walewski V, Hobson CA, Doit C, Bidet P, Dortet L, Bonacorsi S, Birgy A. Rapid carbapenemase detection with Xpert Carba-R V2 directly on positive blood vials. Infect Drug Resist. 2019;12:3311–3316. doi: 10.2147/IDR.S204436.
    1. Mancini N, Infurnari L, Ghidoli N, Valzano G, Clementi N, Burioni R, Clementi M. Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. J Clin Microbiol. 2014;52(4):1242–1245. doi: 10.1128/JCM.00142-14.
    1. Buchan BW, Ginocchio CC, Manii R, Cavagnolo R, Pancholi P, Swyers L, Thomson RB, Anderson C, Kaul K, Ledeboer NA. Multiplex identification of gram-positive bacteria and resistance determinants directly from positive blood culture broths: evaluation of an automated microarray-based nucleic acid test. PLoS Med. 2013;10(7):e1001478. doi: 10.1371/journal.pmed.1001478.
    1. Evans SR, Tran TTT, Hujer AM, Hill CB, Hujer KM, Mediavilla JR, Manca C, Domitrovic TN, Perez F, Farmer M, Pitzer KM, Wilson BM, Kreiswirth BN, Patel R, Jacobs MR, Chen L, Fowler VG, Chambers HF, Bonomo RA, Antibacterial Resistance Leadership Group (ARLG) Rapid molecular diagnostics to inform empiric use of ceftazidime/avibactam and ceftolozane/tazobactam against Pseudomonas aeruginosa: PRIMERS IV. Clin Infect Dis. 2019;68(11):1823–1830. doi: 10.1093/cid/ciy801.
    1. Claeys KC, Heil EL, Hitchcock S, Johnson JK, Leekha S. Management of Gram-negative bloodstream infections in the era of rapid diagnostic testing: impact with and without antibiotic stewardship. Open Forum Infect Dis. 2020;7(10):ofaa427. doi: 10.1093/ofid/ofaa427.
    1. Tribble AC, Gerber JS, Bilker WB, Lautenbach E. Impact of rapid diagnostics with antimicrobial stewardship support for children with positive blood cultures: a quasi-experimental study with time trend analysis. Infect Control Hosp Epidemiol. 2020;41(8):883–890. doi: 10.1017/ice.2020.191.
    1. Laub RR, Knudsen JD. Clinical consequences of using PNA-FISH in Staphylococcal bacteraemia. Eur J Clin Microbiol Infect Dis. 2014;33(4):599–601. doi: 10.1007/s10096-013-1990-x.
    1. Cosgrove SE, Li DX, Tamma PD, Avdic E, Hadhazy E, Wakefield T, Gherna M, Carroll KC. Use of PNA FISH for blood cultures growing Gram-positive cocci in chains without a concomitant antibiotic stewardship intervention does not improve time to appropriate antibiotic therapy. Diagn Microbiol Infect Dis. 2016;86(1):86–92. doi: 10.1016/j.diagmicrobio.2016.06.016.
    1. Stevenson M, Pandor A, Martyn-St James M, Rafia R, Uttley L, Stevens J, Sanderson J, Wong R, Perkins GD, McMullan R, Dark P. Sepsis: the LightCycler SeptiFast Test MGRADE(R), SepsiTest and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi - a systematic review and economic evaluation. Health Technol Assess. 2016;20(46):1–246. doi: 10.3310/hta20460.
    1. Dark P, Blackwood B, Gates S, McAuley D, Perkins GD, McMullan R, Wilson C, Graham D, Timms K, Warhurst G. Accuracy of LightCycler((R)) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis. Intensive Care Med. 2015;41(1):21–33. doi: 10.1007/s00134-014-3553-8.
    1. Chang SS, Hsieh WH, Liu TS, Lee SH, Wang CH, Chou HC, Yeo YH, Tseng CP, Lee CC. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis - a systemic review and meta-analysis. PLoS One. 2013;8(5):e62323. doi: 10.1371/journal.pone.0062323.
    1. Ziegler I, Fagerstrom A, Stralin K, Molling P. Evaluation of a commercial multiplex PCR assay for detection of pathogen DNA in blood from patients with suspected sepsis. PLoS One. 2016;11(12):e0167883. doi: 10.1371/journal.pone.0167883.
    1. Zboromyrska Y, Cilloniz C, Cobos-Trigueros N, Almela M, Hurtado JC, Vergara A, et al. Evaluation of the Magicplex Sepsis real-time test for the rapid diagnosis of bloodstream infections in adults. Front Cell Infect Microbiol. 2019;9:56. doi: 10.3389/fcimb.2019.00056.
    1. Pfaller MA, Wolk DM, Lowery TJ. T2MR and T2Candida: novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future Microbiol. 2016;11(1):103–117. doi: 10.2217/fmb.15.111.
    1. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, Groeger JS, Judson MA, Vinagre YM, Heard SO, Zervou FN, Zacharioudakis IM, Kontoyiannis DP, Pappas PG. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–899. doi: 10.1093/cid/ciu959.
    1. Clancy CJ, Nguyen MH. T2 magnetic resonance for the diagnosis of bloodstream infections: charting a path forward. J Antimicrob Chemother. 2018;73(suppl_4):iv2–iv5. doi: 10.1093/jac/dky050.
    1. De Angelis G, Posteraro B, De Carolis E, Menchinelli G, Franceschi F, Tumbarello M, et al. T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. J Antimicrob Chemother. 2018;73(suppl_4):iv20–iiv6. doi: 10.1093/jac/dky049.
    1. Nguyen MH, Clancy CJ, Pasculle AW, Pappas PG, Alangaden G, Pankey GA, Schmitt BH, Rasool A, Weinstein MP, Widen R, Hernandez DR, Wolk DM, Walsh TJ, Perfect JR, Wilson MN, Mylonakis E. Performance of the T2Bacteria panel for diagnosing bloodstream infections: a diagnostic accuracy study. Ann Intern Med. 2019;170(12):845–852. doi: 10.7326/M18-2772.
    1. Maki DG. The T2Bacteria Panel had 90% sensitivity for detecting targeted organisms, 43% for any bloodstream infection organism. Ann Intern Med. 2019;171(6):JC34. doi: 10.7326/ACPJ201909170-034.
    1. Weinrib DA, Capraro GA. The uncertain clinical benefit of the T2Bacteria panel. Ann Intern Med. 2019;170(12):888–889. doi: 10.7326/M19-0971.
    1. Oros D, Ceprnja M, Zucko J, Cindric M, Hozic A, Skrlin J, Barisic K, Melvan E, Uroic K, Kos B, Starcevic A. Identification of pathogens from native urine samples by MALDI-TOF/TOF tandem mass spectrometry. Clin Proteomics. 2020;17:25. doi: 10.1186/s12014-020-09289-4.
    1. Brunetti G, Ceccarelli G, Giordano A, Navazio AS, Vittozzi P, Venditti M, Raponi G. Fast and reliable diagnosis of XDR Acinetobacter baumannii meningitis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. New Microbiol. 2018;41(1):77–79.
    1. Ozenci V, Patel R, Ullberg M, Stralin K. Demise of polymerase chain reaction/electrospray ionization-mass spectrometry as an infectious diseases diagnostic tool. Clin Infect Dis. 2018;66(3):452–455. doi: 10.1093/cid/cix743.
    1. Rutanga JP, Van Puyvelde S, Heroes AS, Muvunyi CM, Jacobs J, Deborggraeve S. 16S metagenomics for diagnosis of bloodstream infections: opportunities and pitfalls. Expert Rev Mol Diagn. 2018;18(8):749–759. doi: 10.1080/14737159.2018.1498786.
    1. Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20(6):341–355. doi: 10.1038/s41576-019-0113-7.
    1. Parize P, Muth E, Richaud C, Gratigny M, Pilmis B, Lamamy A, et al. Untargeted next-generation sequencing-based first-line diagnosis of infection in immunocompromised adults: a multicentre, blinded, prospective study. Clin Microbiol Infect. 2017;23(8):574 e1–574 e6. doi: 10.1016/j.cmi.2017.02.006.
    1. Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, Kawli T, Christians FC, Venkatasubrahmanyam S, Wall GD, Cheung A, Rogers ZN, Meshulam-Simon G, Huijse L, Balakrishnan S, Quinn JV, Hollemon D, Hong DK, Vaughn ML, Kertesz M, Bercovici S, Wilber JC, Yang S. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol. 2019;4(4):663–674. doi: 10.1038/s41564-018-0349-6.
    1. Goggin KP, Gonzalez-Pena V, Inaba Y, Allison KJ, Hong DK, Ahmed AA, Hollemon D, Natarajan S, Mahmud O, Kuenzinger W, Youssef S, Brenner A, Maron G, Choi J, Rubnitz JE, Sun Y, Tang L, Wolf J, Gawad C. Evaluation of plasma microbial cell-free DNA sequencing to predict bloodstream infection in pediatric patients with relapsed or refractory cancer. JAMA Oncol. 2020;6(4):552–556. doi: 10.1001/jamaoncol.2019.4120.
    1. Niles DT, Wijetunge DSS, Palazzi DL, Singh IR, Revell PA. Plasma metagenomic next-generation sequencing assay for identifying pathogens: a retrospective review of test utilization in a large children’s hospital. J Clin Microbiol. 2020;58(11).
    1. Hogan CA, Yang S, Garner OB, Green DA, Gomez CA, Dien Bard J, et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study. Clin Infect Dis. 2020.
    1. Grumaz S, Grumaz C, Vainshtein Y, Stevens P, Glanz K, Decker SO, Hofer S, Weigand MA, Brenner T, Sohn K. Enhanced performance of next-generation sequencing diagnostics compared with standard of care microbiological diagnostics in patients suffering from septic shock. Crit Care Med. 2019;47(5):e394–e402. doi: 10.1097/CCM.0000000000003658.
    1. Charnot-Katsikas A, Tesic V, Love N, Hill B, Bethel C, Boonlayangoor S, et al. Use of the Accelerate Pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow. J Clin Microbiol. 2018;56(1).
    1. Lutgring JD, Bittencourt C, McElvania TeKippe E, Cavuoti D, Hollaway R, Burd EM. Evaluation of the Accelerate Pheno System: results from two academic medical centers. J Clin Microbiol. 2018;56(4).
    1. Marschal M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann M, Peter S. Evaluation of the Accelerate Pheno System for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J Clin Microbiol. 2017;55(7):2116–2126. doi: 10.1128/JCM.00181-17.
    1. Pancholi P, Carroll KC, Buchan BW, Chan RC, Dhiman N, Ford B, et al. Multicenter evaluation of the Accelerate PhenoTest BC kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis. J Clin Microbiol. 2018;56(4).
    1. Dubourg G, Raoult D. Emerging methodologies for pathogen identification in positive blood culture testing. Expert Rev Mol Diagn. 2016;16(1):97–111. doi: 10.1586/14737159.2016.1112274.
    1. Lee M, Scardina T, Zheng X, Patel SJ. Clinical performance and impact of Accelerate Pheno for Gram-negative bacteremia in hospitalized children. Clin Ther. 2020;42(9):1630–1636. doi: 10.1016/j.clinthera.2020.07.015.
    1. Dare RK, Lusardi K, Pearson C, McCain KD, Daniels B, Van S, et al. Clinical impact of Accelerate PhenoTM rapid blood culture detection system in bacteremic patients. Clin Infect Dis. 2020.
    1. Vasala A, Hytonen VP, Laitinen OH. Modern tools for rapid diagnostics of antimicrobial resistance. Front Cell Infect Microbiol. 2020;10:308. doi: 10.3389/fcimb.2020.00308.
    1. Hsueh EC, DeBloom JR, Lee J, Sussman JJ, Covington KR, Middlebrook B, et al. Interim analysis of survival in a prospective, multi-center registry cohort of cutaneous melanoma tested with a prognostic 31-gene expression profile test. J Hematol Oncol. 2017;10(1):152. doi: 10.1186/s13045-017-0520-1.
    1. Vargas J, Lima JA, Kraus WE, Douglas PS, Rosenberg S. Use of the Corus(R) CAD Gene expression test for assessment of obstructive coronary artery disease likelihood in symptomatic non-diabetic patients. PLoS Curr. 2013;5:ecurrents.eogt.0f04f6081905998fa92b99593478aeab.
    1. Sweeney TE, Wong HR, Khatri P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci Transl Med. 2016;8(346):346ra91. doi: 10.1126/scitranslmed.aaf7165.
    1. Herberg JA, Kaforou M, Wright VJ, Shailes H, Eleftherohorinou H, Hoggart CJ, Cebey-López M, Carter MJ, Janes VA, Gormley S, Shimizu C, Tremoulet AH, Barendregt AM, Salas A, Kanegaye J, Pollard AJ, Faust SN, Patel S, Kuijpers T, Martinón-Torres F, Burns JC, Coin LJM, Levin M, for the IRIS Consortium Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children. JAMA. 2016;316(8):835–845. doi: 10.1001/jama.2016.11236.
    1. Sampson D, Yager TD, Fox B, Shallcross L, McHugh L, Seldon T, Rapisarda A, Hendriks RA, Brandon RB, Navalkar K, Simpson N, Stafford S, Gil E, Venturini C, Tsaliki E, Roe J, Chain B, Noursadeghi M. Blood transcriptomic discrimination of bacterial and viral infections in the emergency department: a multi-cohort observational validation study. BMC Med. 2020;18(1):185. doi: 10.1186/s12916-020-01653-3.
    1. Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald JC, Checchia PA, Meyer K, Quasney M, Hall M, Gedeit R, Freishtat RJ, Nowak J, Lutfi R, Gertz S, Grunwell JR, Lindsell CJ. Endotype transitions during the acute phase of pediatric septic shock reflect changing risk and treatment response. Crit Care Med. 2018;46(3):e242–e2e9. doi: 10.1097/CCM.0000000000002932.
    1. Palavecino EL, Williamson JC, Ohl CA. Collaborative antimicrobial stewardship: working with microbiology. Infect Dis Clin North Am. 2020;34(1):51–65. doi: 10.1016/j.idc.2019.10.006.
    1. Aamot HV, Noone JC, Skramm I, Leegaard TM. Are conventional microbiological diagnostics sufficiently expedient in the era of rapid diagnostics? Evaluation of conventional microbiological diagnostics of orthopedic implant-associated infections (OIAI). Acta Orthop. 2020:1–6.
    1. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, Peterson LE, Musser JM. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med. 2013;137(9):1247–1254. doi: 10.5858/arpa.2012-0651-OA.
    1. Huang AM, Newton D, Kunapuli A, Gandhi TN, Washer LL, Isip J, Collins CD, Nagel JL. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis. 2013;57(9):1237–1245. doi: 10.1093/cid/cit498.
    1. Juttukonda LJ, Katz S, Gillon J, Schmitz J, Banerjee R. Impact of a rapid blood culture diagnostic test in a children’s hospital depends on Gram-positive versus Gram-negative organism and day versus night shift. J Clin Microbiol. 2020;58(4).
    1. Banerjee R, Teng CB, Cunningham SA, Ihde SM, Steckelberg JM, Moriarty JP, Shah ND, Mandrekar JN, Patel R. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis. 2015;61(7):1071–1080. doi: 10.1093/cid/civ447.
    1. Cwengros LN, Mynatt RP, Timbrook TT, Mitchell R, Salimnia H, Lephart P, et al. Minimizing time to optimal antimicrobial therapy for Enterobacteriaceae bloodstream infections: a retrospective, hypothetical application of predictive scoring tools vs rapid diagnostics tests. Open Forum Infect Dis. 2020;7(8):ofaa278. doi: 10.1093/ofid/ofaa278.
    1. Kondo M, Simon MS, Westblade LF, Jenkins SG, Babady NE, Loo AS, et al. Implementation of infectious diseases rapid molecular diagnostic tests and antimicrobial stewardship program involvement in acute-care hospitals. Infect Control Hosp Epidemiol. 2020:1–3.
    1. She RC, Bender JM. Advances in rapid molecular blood culture diagnostics: healthcare impact, laboratory implications, and multiplex technologies. J Appl Lab Med. 2019;3(4):617–630. doi: 10.1373/jalm.2018.027409.
    1. Nasef R, El Lababidi R, Alatoom A, Krishnaprasad S, Bonilla F. The impact of integrating rapid PCR-based blood culture identification panel to an established antimicrobial stewardship program in the United Arab of Emirates. Int J Infect Dis. 2020;91:124–128. doi: 10.1016/j.ijid.2019.11.028.
    1. Mahrous AJ, Thabit AK, Elarabi S, Fleisher J. Clinical impact of pharmacist-directed antimicrobial stewardship guidance following blood culture rapid diagnostic testing. J Hosp Infect. 2020;106(3):436–446. doi: 10.1016/j.jhin.2020.09.010.
    1. Hogan CA, Ebunji B, Watz N, Kapphahn K, Rigdon J, Mui E, et al. Impact of rapid antimicrobial susceptibility testing in Gram-negative rod bacteremia: a quasi-experimental study. J Clin Microbiol. 2020;58(9).
    1. Faugno AK, Laidman AY, Perez Martinez JD, Campbell AJ, Blyth CC. Do rapid diagnostic methods improve antibiotic prescribing in paediatric bacteraemia? J Paediatr Child Health. 2020.
    1. Tseng AS, Kasule SN, Rice F, Mi L, Chan L, Seville MT, et al. Is It Actionable? An evaluation of the rapid PCR-based blood culture identification panel on the management of Gram-positive and Gram-negative blood stream infections. Open Forum Infect Dis. 2018;5(12):ofy308. doi: 10.1093/ofid/ofy308.
    1. Oberhettinger P, Zieger J, Autenrieth I, Marschal M, Peter S. Evaluation of two rapid molecular test systems to establish an algorithm for fast identification of bacterial pathogens from positive blood cultures. Eur J Clin Microbiol Infect Dis. 2020;39(6):1147–1157. doi: 10.1007/s10096-020-03828-5.
    1. Kapur S, Gehani M, Kammili N, Bhardwaj P, Nag V, Devara SM, et al. Clinical validation of innovative optical-sensor-based, low-cost, rapid diagnostic test to reduce antimicrobial resistance. J Clin Med. 2019;8(12).
    1. National Pathology Accreditation Advisory Council (NPAAC). Guidelines for point of care testing. In: Department of Health, editor. 1st Edition ed 2015.
    1. Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol. 2017;55(8):2313–2320. doi: 10.1128/JCM.00476-17.

Source: PubMed

3
購読する