The Role of Interleukin-17, Interleukin-23, and Transforming Growth Factor- β in Pregnancy Complicated by Placental Insufficiency

Dorota Darmochwal-Kolarz, Magdalena Michalak, Bogdan Kolarz, Monika Przegalinska-Kalamucka, Agnieszka Bojarska-Junak, Dariusz Sliwa, Jan Oleszczuk, Dorota Darmochwal-Kolarz, Magdalena Michalak, Bogdan Kolarz, Monika Przegalinska-Kalamucka, Agnieszka Bojarska-Junak, Dariusz Sliwa, Jan Oleszczuk

Abstract

Aim: The aim of the study was to evaluate the role of Interleukin-17 (IL-17), Interleukin-23 (IL-23), and transforming growth factor-β (TGF-β) in pregnancy complicated by placental insufficiency and in normal pregnancy.

Material and methods: The study comprised 34 patients with pregnancy complicated by fetal growth restriction (FGR) associated with preeclampsia (PE), as well as 35 healthy pregnant women. The concentrations of IL-17, IL-23, and TGF-β in sera from maternal peripheral blood were determined by an immunoenzymatic assay.

Results: There were higher concentrations of IL-17 in the study group when compared to the controls. In the group of patients with placental insufficiency, the levels of IL-17 positively correlated with systolic blood pressure (R = 0.42, p < 0.01). The study obtained comparable concentrations of IL-23 in both studied groups. The concentrations of TGF-β were significantly lower in pregnancy complicated by the insufficiency of placenta when compared to the controls.

Conclusions: It seems possible that the increased concentrations of IL-17 and the deficiency of TGF-β in pregnancy complicated by FGR and PE can be responsible for the activation of inflammatory response observed in PE cases.

Figures

Figure 1
Figure 1
The comparison of (a) IL-17, (b) IL-23, and (c) TGF-β concentrations in sera of patients with pregnancy complicated by placental insufficiency (n = 34) and healthy women with uncomplicated pregnancy (n = 35).

References

    1. Khan K. S., Wojdyla D., Say L., Gülmezoglu A. M., van Look P. F. WHO analysis of causes of maternal death: a systematic review. The Lancet. 2006;367(9516):1066–1074. doi: 10.1016/S0140-6736(06)68397-9.
    1. Berg C. J., Harper M. A., Atkinson S. M., et al. Preventability of pregnancy-related deaths. Obstetrics & Gynecology. 2005;106(6):1228–1234. doi: 10.1097/01.AOG.0000187894.71913.e8.
    1. Hogan M. C., Foreman K. J., Naghavi M., et al. Maternal mortality for 181 countries, 1980–2008: a systematic analysis of progress towards Millennium Development Goal 5. The Lancet. 2010;375(9726):1609–1623. doi: 10.1016/s0140-6736(10)60518-1.
    1. Lindheimer M. D., Taler S. J., Cunningham F. G. ASH position paper: Hypertension in pregnancy. Journal of Clinical Hypertension. 2009;11(4):214–225. doi: 10.1111/j.1751-7176.2009.00085.x.
    1. Misra D. P., Kiely J. L. The association between nulliparity and gestational hypertension. Journal of Clinical Epidemiology. 1997;50(7):851–855. doi: 10.1016/S0895-4356(97)00090-5.
    1. Saito S., Shiozaki A., Nakashima A., Sakai M., Sasaki Y. The role of the immune system in preeclampsia. Molecular Aspects of Medicine. 2007;28(2):192–209. doi: 10.1016/j.mam.2007.02.006.
    1. Saito S., Nakashima A., Shima T., Ito M. Th1/Th2/Th17 and Regulatory T-Cell Paradigm in Pregnancy. The American Journal of Reproductive Immunology. 2010;63(6):601–610. doi: 10.1111/j.1600-0897.2010.00852.x.
    1. Darmochwal-Kolarz D., Kludka-Sternik M., Lewandowska-Grygiel M., Omiotek M., Rolinski J. Th17 cells: The role in immunity. Current Immunology Reviews. 2010;6(1):16–22. doi: 10.2174/157339510790231815.
    1. Darmochwal-Kolarz D., Kludka-Sternik M., Tabarkiewicz J., et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. Journal of Reproductive Immunology. 2012;93(2):75–81. doi: 10.1016/j.jri.2012.01.006.
    1. Ito M., Nakashima A., Hidaka T., et al. A role for IL-17 in induction of an inflammation at the fetomaternal interface in preterm labour. Journal of Reproductive Immunology. 2010;84(1):75–85. doi: 10.1016/j.jri.2009.09.005.
    1. Nakashima A., Ito M., Shima T., Bac N. D., Hidaka T., Saito S. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. American Journal of Reproductive Immunology. 2010;64(1):4–11. doi: 10.1111/j.1600-0897.2010.00812.x.
    1. Gaffen S. L. Structure and signalling in the IL-17 receptor family. Nature Reviews Immunology. 2009;9(8):556–567. doi: 10.1038/nri2586.
    1. Oppmann B., Lesley R., Blom B., et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–725. doi: 10.1016/S1074-7613(00)00070-4.
    1. Cai J., Li M., Huang Q., Fu X., Wu H. Differences in cytokine expression and STAT3 activation between healthy controls and patients of unexplained recurrent spontaneous abortion (URSA) during early pregnancy. PLoS ONE. 2016;11(9) doi: 10.1371/journal.pone.0163252.e0163252
    1. Kikly K., Liu L., Na S., Sedgwick J. D. The IL-23/Th17 axis: therapeutic targets for autoimmune inflammation. Current Opinion in Immunology. 2006;18(6):670–675. doi: 10.1016/j.coi.2006.09.008.
    1. Li M. O., Wan Y. Y., Sanjabi S., Robertson A.-K. L., Flavell R. A. Transforming growth factor-β regulation of immune responses. Annual Review of Immunology. 2006;24:99–146. doi: 10.1146/annurev.immunol.24.021605.090737.
    1. Walshe T. E., Saint-Geniez M., Maharaj A. S. R., Sekiyama E., Maldonado A. E., D'Amore P. A. TGF-β is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS ONE. 2009;4(4) doi: 10.1371/journal.pone.0005149.e5149
    1. Letterio J. J., Roberts A. B. Regulation of immune responses by TGF-β. Annual Review of Immunology. 1998;16:137–161. doi: 10.1146/annurev.immunol.16.1.137.
    1. Wahl S. M., Wen J., Moutsopoulos N. TGF-β: A mobile purveyor of immune privilege. Immunological Reviews. 2006;213(1):213–227. doi: 10.1111/j.1600-065X.2006.00437.x.
    1. Steinborn A., Haensch G. M., Mahnke K., et al. Distinct subsets of regulatory T cells during pregnancy: Is the imbalance of these subsets involved in the pathogenesis of preeclampsia? Clinical Immunology. 2008;129(3):401–412. doi: 10.1016/j.clim.2008.07.032.
    1. Sasaki Y., Darmochwal-Kolarz D., Suzuki D., et al. Proportion of peripheral blood and decidual CD4+ CD25bright regulatory T cells in pre-eclampsia. Clinical and Experimental Immunology. 2007;149(1):139–145. doi: 10.1111/j.1365-2249.2007.03397.x.
    1. Santner-Nanan B., Peek M. J., Khanam R., et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. The Journal of Immunology. 2009;183(11):7023–7030. doi: 10.4049/jimmunol.0901154.
    1. Martínez-García E. A., Chávez-Robles B., Sánchez-Hernández P. E., et al. IL-17 increased in the third trimester in healthy women with term labor. American Journal of Reproductive Immunology. 2011;65(2):99–103. doi: 10.1111/j.1600-0897.2010.00893.x.
    1. Dhillion P., Wallace K., Herse F., et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2012;303(4):R353–R358. doi: 10.1152/ajpregu.00051.2012.
    1. Croxford A. L., Mair F., Becher B. IL-23: one cytokine in control of autoimmunity. European Journal of Immunology. 2012;42(9):2263–2273. doi: 10.1002/eji.201242598.
    1. Langrish C. L., Chen Y., Blumenschein W. M., et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine. 2005;201(2):233–240. doi: 10.1084/jem.20041257.
    1. Gayed M., Gordon C. Pregnancy and rheumatic diseases. Rheumatology. 2007;46(11):1634–1640. doi: 10.1093/rheumatology/kem156.
    1. Duerr RH., Taylor KD., Brant, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–1463.
    1. Ramhorst R., Grasso E., Paparini D., et al. Decoding the chemokine network that links leukocytes with decidual cells and the trophoblast during early implantation. Cell Adhesion and Migration. 2016;10(1-2):197–207. doi: 10.1080/19336918.2015.1135285.
    1. Bettelli E., Korn T., Kuchroo V. K. Th17: the third member of the effector T cell trilogy. Current Opinion in Immunology. 2007;19(6):652–657. doi: 10.1016/j.coi.2007.07.020.
    1. Chabaud M., Garnero P., Dayer J.-M., Guerne P.-A., Fossiez F., Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine. 2000;12(7):1092–1099. doi: 10.1006/cyto.2000.0681.
    1. Fujino S., Andoh A., Bamba S., et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65–70. doi: 10.1136/gut.52.1.65.
    1. Lygnos M. C., Pappa K. I., Papadaki H. A., et al. Changes in maternal plasma levels of VEGF, bFGF,TGF-β1, ET-1 and sKL during uncomplicated pregnancy, hypertensive pregnancy and gestational diabetes. In Vivo. 2006;20(1):157–164.
    1. Ogasawara M. S., Aoki K., Aoyama T., et al. Elevation of transforming growth factor-β1 is associated with recurrent miscarriage. Journal of Clinical Immunology. 2000;20(6):453–457. doi: 10.1023/A:1026459800016.
    1. Luo S., Yin H. N., Li S. W., et al. Effect of TGF-beta1 on Embryo Implantation And Development in Mice in Vitro. Journal of Sichuan University. Medical Science Edition. 2010;41(2):265–268.
    1. Oettel A., Lorenz M., Stangl V., Costa S.-D., Zenclussen A. C., Schumacher A. Human Umbilical Vein Endothelial Cells foster conversion of CD4+ CD25- Foxp3- T cells into CD4+ Foxp3+ Regulatory T Cells via Transforming Growth Factor-β. Scientific Reports. 2016;6 doi: 10.1038/srep23278.23278

Source: PubMed

3
購読する