The neural correlates of discrete gait characteristics in ageing: A structured review

Joanna Wilson, Liesl Allcock, Ríona Mc Ardle, John-Paul Taylor, Lynn Rochester, Joanna Wilson, Liesl Allcock, Ríona Mc Ardle, John-Paul Taylor, Lynn Rochester

Abstract

Gait is complex, described by diverse characteristics underpinned by widespread central nervous system networks including motor and cognitive functions. Despite this, neural substrates of discrete gait characteristics are poorly understood, limiting understanding of gait impairment in ageing and disease. This structured review aims to map gait characteristics, defined from a pre-specified model reflecting independent gait domains, to brain imaging parameters in older adults. Fifty-two studies of 38,029 yielded were reviewed. Studies showed inconsistent approaches when mapping gait assessment to neural substrates, limiting conclusions. Gait impairments typically associated with brain deterioration, specifically grey matter atrophy and white matter integrity loss. Gait velocity, a global measure of gait control, was most frequently associated with these imaging markers within frontal and basal ganglia regions, and its decline predicted from white matter volume and integrity measurements. Fewer studies assessed additional gait measures or functional imaging parameters. Future studies mapping regional neuroanatomical and functional correlates of gait are needed, including those which take a multi-process network perspective to better understand mobility in health and disease.

Keywords: Ageing; Gait; Neuroimaging; Older adults.

Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
The model of gait developed by Lord et al. (Lord et al., 2013) for older adults. 16 gait characteristics map to 5 gait domains; Pace, Rhythm, Variability, Asymmetry and Postural Control.
Fig. 2
Fig. 2
A prisma diagram demonstrating the search yield for the structured review.
Fig. 3
Fig. 3
Heat map of the cross-sectional studies assessing each imaging and gait parameter.
Fig. 4
Fig. 4
Heat map of the longitudinal studies assessing each imaging and gait parameter.
Fig. 5
Fig. 5
Map of the regional associations between GM volume and gait characteristics; gait velocity (A), step length (B), step time variability (C), step width (D), cadence (E) and double support time (F). Areas which are darker in colour indicate regions that were associated with the characteristic in multiple studies. Panel A shows the entire brain in an orange colour, to indicate that the volume of most brain regions have been associated with gait velocity.
Fig. 6
Fig. 6
Key recommendations for future studies.

References

    1. Annweiler C., Montero-Odasso M., Bartha R., Drozd J., Hachinski V., Beauchet O. Association between gait variability and brain ventricle attributes: a brain mapping study. Exp. Gerontol. 2014;57:256–263.
    1. Anwar A.R., Muthalib M., Perrey S., Galka A., Granert O., Wolff S., Heute U., Deuschl G., Raethjen J., Muthuraman M. Effective connectivity of cortical sensorimotor networks during finger movement tasks: a simultaneous fNIRS, fMRI, EEG study. Brain Topogr. 2016;29(5):645–660.
    1. Baezner H., Blahak C., Poggesi A., Pantoni L., Inzitari D., Chabriat H., Erkinjuntti T., Fazekas F., Ferro J.M., Langhorne P., O’Brien J., Scheltens P., Visser M.C., Wahlund L.O., Waldemar G., Wallin A., Hennerici M.G. Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology. 2008;70(12):935–942.
    1. Beauchet O., Annweiler C., Celle S., Bartha R., Barthelemy J.-C., Roche F. Higher gait variability is associated with decreased parietal gray matter volume among healthy older adults. Brain Topogr. 2014;27(2):293–295.
    1. Beauchet O., Launay C.P., Annweiler C., Allali G. Hippocampal volume, early cognitive decline and gait variability: which association? Exp. Gerontol. 2015;61:98–104.
    1. Beauchet O., Launay C.P., Barden J., Liu-Ambrose T., Chester V.L., Szturm T., Grenier S., Leonard G., Bherer L., Annweiler C., Helbostad J.L., Verghese J., Allali G. Association between falls and brain subvolumes: results from a cross-sectional analysis in healthy older adults. Brain Topogr. 2017;30(2):272–280.
    1. Beurskens R., Helmich I., Rein R., Bock O. Age-related changes in prefrontal activity during walking in dual-task situations: a fNIRS study. Int. J. Psychophysiol. 2014;92(3):122–128.
    1. Bohannon R.W., Williams Andrews A. Normal walking speed: a descriptive meta-analysis. Physiotherapy. 2011;97(3):182–189.
    1. Bohnen N.I., Jahn K. Imaging: what can it tell us about parkinsonian gait? Movement Disord. 2013;28(11):1492–1500.
    1. Bolandzadeh N., Liu-Ambrose T., Aizenstein H., Harris T., Launer L., Yaffe K., Kritchevsky S.B., Newman A., Rosano C. Pathways linking regional hyperintensities in the brain and slower gait. NeuroImage. 2014;99:7–13.
    1. Bruijn S.M., Van Impe A., Duysens J., Swinnen S.P. White matter microstructural organization and gait stability in older adults. Front. Aging Neurosci. 2014;6(June)
    1. Callisaya M.L., Beare R., Phan T.G., Blizzard L., Thrift A.G., Chen J., Srikanth V.K. Brain structural change and gait decline: a longitudinal population-based study. J. Am. Geriatr. Soc. 2013;61(7):1074–1079.
    1. Callisaya M.L., Beare R., Phan T.G., Chen J., Srikanth V.K. Global and regional associations of smaller cerebral gray and white matter volumes with gait in older people. PLoS one. 2014;9(1)
    1. Cham R., Studenski S.A., Perera S., Bohnen N.I. Striatal dopaminergic denervation and gait in healthy adults. Exp. Brain Res. 2008;185(3):391–398.
    1. Choi P., Ren M., Phan T.G., Callisaya M., Ly J.V., Beare R., Chong W., Srikanth V. Silent infarcts and cerebral microbleeds modify the associations of white matter lesions with gait and postural stability: population-based study. Stroke. 2012;43(6):1505–1510.
    1. Crockett R.A., Hsu C.L., Best J.R., Liu-Ambrose T. Resting State default Mode network connectivity, dual task performance, gait speed, and postural sway in older adults with mild cognitive impairment. Front. Aging Neurosci. 2017;9 pp. 423-423.
    1. de Laat K.F., Tuladhar A.M., van Norden A.G., Norris D.G., Zwiers M.P., de Leeuw F.-E. Loss of White matter integrity is associated with gait disorders in cerebral small vessel disease. Brain: A J. Neurol. 2011;134(1):73–83.
    1. de Laat K.F., Van Den Berg H.A.C., Van Norden A.G.W., Gons R.A.R., Olde Rikkert M.G.M., De Leeuw F.E. Microbleeds are independently related to gait disturbances in elderly individuals with cerebral small vessel disease. Stroke. 2011;42(2):494–497.
    1. de Laat K.F., Van Norden A.G.W., Gons R.A.R., Van Oudheusden L.J.B., Van Uden I.W.M., Norris D.G., Zwiers M.P., De Leeuw F.E. Diffusion tensor imaging and gait in elderly persons with cerebral small vessel disease. Stroke. 2011;42(2):373–379.
    1. de Laat K.F., Reid A.T., Grim D.C., Evans A.C., Kotter R., van Norden A.G., de Leeuw F.-E. Cortical thickness is associated with gait disturbances in cerebral small vessel disease. NeuroImage. 2012;59(2):1478–1484.
    1. del Campo N., Payoux P., Djilali A., Delrieu J., Hoogendijk E.O., Rolland Y., Cesari M., Weiner M.W., Andrieu S., Vellas B. Relationship of regional brain beta-amyloid to gait speed. Neurology. 2016;86(1):36–43.
    1. Della Nave R., Foresti S., Pratesi A., Ginestroni A., Inzitari M., Salvadori E., Giannelli M., Diciotti S., Inzitari D., Mascalchi M. Whole-brain histogram and voxel-based analyses of diffusion tensor imaging in patients with leukoaraiosis: correlation with motor and cognitive impairment. Am. J. Neuroradiol. 2007;28(7):1313–1319.
    1. Doi T., Blumen H.M., Verghese J., Shimada H., Makizako H., Tsutsumimoto K., Hotta R., Nakakubo S., Suzuki T. Gray matter volume and dual-task gait performance in mild cognitive impairment. Brain Imaging Behav. 2017;11(3):887–898.
    1. Dumurgier J., Crivello F., Mazoyer B., Ahmed I., Tavernier B., Grabli D., François C., Tzourio-Mazoyer N., Tzourio C., Elbaz A. MRI atrophy of the caudate nucleus and slower walking speed in the elderly. NeuroImage. 2012;60(2):871–878.
    1. Ezzati A., Katz M.J., Lipton M.L., Lipton R.B., Verghese J. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI. Neuroradiology. 2015;57(8):851–861.
    1. Fling B.W., Dale M.L., Curtze C., Smulders K., Nutt J.G., Horak F.B. Associations between mobility, cognition and callosal integrity in people with parkinsonism. NeuroImage: Clin. 2016;11:415–422.
    1. Fling B.W., Curtze C., Horak F.B. Gait asymmetry in people with parkinson’s disease Is linked to reduced integrity of callosal sensorimotor regions. Front. Neurol. 2018;9(215)
    1. Frederiksen K.S., Garde E., Skimminge A., Barkhof F., Scheltens P., van Straaten E.C., Fazekas F., Baezner H., Verdelho A., Ferro J.M., Erkinjuntti T., Jokinen H., Wahlund L.O., O’Brien J.T., Basile A.M., Pantoni L., Inzitari D., Waldemar G. Corpus callosum tissue loss and development of motor and global cognitive impairment: the LADIS study. Dementia Geriatric Cognitive Disord. 2011;32(4):279–286.
    1. Gabell A., Nayak U.S.L. The effect of age on variability in Gait1. J. Gerontol. 1984;39(6):662–666.
    1. Gilat M., Bell P.T., Ehgoetz Martens K.A., Georgiades M.J., Hall J.M., Walton C.C., Lewis S.J.G., Shine J.M. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in parkinson’s disease. NeuroImage. 2017;152:207–220.
    1. Graham J.E., Ostir G.V., Kuo Y.-F., Fisher S.R., Ottenbacher K.J. Relationship between test methodology and mean velocity in timed Walk tests: a review. Arch. Phys. Med. Rehabil. 2008;89(5):865–872.
    1. Hamacher D., Herold F., Wiegel P., Hamacher D., Schega L. Brain activity during walking: a systematic review. Neurosci. Biobehav. Rev. 2015;57:310–327.
    1. Hausdorff J.M., Rios D.A., Edelberg H.K. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 2001;82(8):1050–1056.
    1. Hollman J.H., McDade E.M., Petersen R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture. 2011;34(1):111–118.
    1. Holtzer R., Mahoney J.R., Izzetoglu M., Wang C., England S., Verghese J. Online fronto-cortical control of simple and attention-demanding locomotion in humans. NeuroImage. 2015;112:152–159.
    1. Hu K., Van Someren E.J.W., Shea S.A., Scheer F.A.J.L. Reduction of scale invariance of activity fluctuations with aging and alzheimer’s disease: involvement of the circadian pacemaker. Proc. Nat. Acad. Sci. 2009;106(8):2490–2494.
    1. Li P., Yu L., Lim A.S.P., Buchman A.S., Scheer F.A.J.L., Shea S.A., Schneider J.A., Bennett D.A., Hu K. Fractal regulation and incident alzheimer’s disease in elderly individuals. Alzheimer’s Dementia. 2018;14(9):1114–1125.
    1. Lord S., Galna B., Verghese J., Coleman S., Burn D., Rochester L. Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J. Gerontol. – Ser. A Biol. Sci. Med. Sci. 2013;68(7):820–827.
    1. Lord S., Galna B., Coleman S., Yarnall A., Burn D., Rochester L. Cognition and gait Show a selective pattern of association dominated by phenotype in incident parkinson’s disease. Front. Aging Neurosci. 2014;6:249.
    1. Manor B., Newton E., Abduljalil A., Novak V. The relationship between brain volume and walking outcomes in older adults with and without diabetic peripheral neuropathy. Diabetes Care. 2012;35(9):1907–1912.
    1. Montero-Odasso M., Verghese J., Beauchet O., Hausdorff J.M. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J. Am. Geriatr. Soc. 2012;60(11):2127–2136.
    1. Morris R., Lord S., Bunce J., Burn D., Rochester L. Gait and cognition: mapping the global and discrete relationships in ageing and neurodegenerative disease. Neurosci. Biobehav. Rev. 2016;64:326–345.
    1. Moscufo N., Wolfson L., Meier D., Liguori M., Hildenbrand P.G., Wakefield D., Schmidt J.A., Pearlson G.D., Guttmann C.R.G. Mobility decline in the elderly relates to lesion accrual in the splenium of the corpus callosum. Age. 2012;34(2):405–414.
    1. Müller M.L.T.M., Bohnen N.I., Kotagal V., Scott P.J.H., Koeppe R.A., Frey K.A., Albin R.L. Clinical markers for identifying cholinergic deficits in parkinson’s disease. Mov. Disord. 2015;30(2):269–273.
    1. Murray M.E., Senjem M.L., Petersen R.C., Hollman J.H., Preboske G.M., Weigand S.D., Knopman D.S., Ferman T.J., Dickson D.W., Jack C.R., Jr Functional impact of white matter hyperintensities in cognitively normal elderly subjects. Arch. Neurol. 2010;67(11):1379–1385.
    1. Nadkarni N.K., McIlroy W.E., Mawji E., Black S.E. Gait and subcortical hyperintensities in mild alzheimer’s disease and aging. Dement. Geriatr. Cogn. Disord. 2009;28(4):295–301.
    1. Nadkarni N.K., Nunley K.A., Aizenstein H., Harris T.B., Yaffe K., Satterfield S., Newman A.B., Rosano C. Association between cerebellar gray matter volumes, gait speed, and information-processing ability in older adults enrolled in the health ABC study. J. Gerontol. Series A: Biol. Sci. Med. Sci. 2014;69(8):996–1003.
    1. Nadkarni N.K., Perera S., Snitz B.E. Association of brain amyloid-β with slow gait in elderly individuals without dementia: influence of cognition and apolipoprotein e ε4 genotype. JAMA Neurol. 2017;74(1):82–90.
    1. Novak V., Haertle M., Zhao P., Hu K., Munshi M., Novak P., Abduljalil A., Alsop D. White matter hyperintensities and dynamics of postural control. Magn. Reson. Imaging. 2009;27(6):752–759.
    1. O’Sullivan M., Jones D.K., Summers P.E., Morris R.G., Williams S.C.R., Markus H.S. Evidence for cortical "disconnection" as a mechanism of age-related cognitive decline. Neurology. 2001;57(4):632–638.
    1. Rochester L., Yarnall A.J., Baker M.R., David R.V., Lord S., Galna B., Burn D.J. Cholinergic dysfunction contributes to gait disturbance in early parkinson’s disease. Brain. 2012;135(Pt 9):2779–2788.
    1. Rochester L., Galna B., Lord S., Yarnall A.J., Morris R., Duncan G., Khoo T.K., Mollenhauer B., Burn D.J. Decrease in Aβ42 predicts dopa-resistant gait progression in early parkinson disease. Neurology. 2017
    1. Rosano C., Brach J., Longstreth W.T., Jr, Newman A.B. Quantitative measures of gait characteristics indicate prevalence of underlying subclinical structural brain abnormalities in high-functioning older adults. Neuroepidemiology. 2005;26(1):52–60.
    1. Rosano C., Kuller L.H., Chung H., Arnold A.M., Longstreth W.T., Jr, Newman A.B. Subclinical brain magnetic resonance imaging abnormalities predict physical functional decline in high-functioning older adults. J. Am. Geriatr. Soc. 2005;53(4):649–654.
    1. Rosano C., Aizenstein H.J., Studenski S., Newman A.B. A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J. Gerontol.- Ser. A Biol. Sci. Med. Sci. 2007;62(9):1048–1055.
    1. Rosano C., Brach J., Studenski S., Longstreth W., Newman A.B. Gait variability is associated with subclinical brain vascular abnormalities in high-functioning older adults. Neuroepidemiology. 2007;29(3-4):193–200.
    1. Rosano C., Aizenstein H., Brach J., Longenberger A., Studenski S., Newman A.B. Gait measures indicate underlying focal gray matter atrophy in the brain of older adults. J. Gerontol.- Ser. A Biol. Sci. Med. Sci. 2008;63(12):1380–1388.
    1. Rosario B.L., Rosso A.L., Aizenstein H.J., Harris T., Newman A.B., Satterfield S., Studenski S.A., Yaffe K., Rosano C. Cerebral white matter and slow gait: contribution of hyperintensities and normal-appearing parenchyma. J. Gerontol.- Ser. A Biol. Sci. Med. Sci. 2016;71(7):968–973.
    1. Rosso A.L., Olson Hunt M.J., Yang M., Brach J.S., Harris T.B., Newman A.B., Satterfield S., Studenski S.A., Yaffe K., Aizenstein H.J., Rosano C. Higher step length variability indicates lower gray matter integrity of selected regions in older adults. Gait Posture. 2014;40(1):225–230.
    1. Ryberg C., Rostrup E., Paulson O.B., Barkhof F., Scheltens P., Van Straaten E.C.W., Van Der Flier W.M., Fazekas F., Schmidt R., Ferro J.M., Baezner H., Erkinjuntti T., Jokinen H., Wahlund L.O., Poggesi A., Pantoni L., Inzitari D., Waldemar G. Corpus callosum atrophy as a predictor of age-related cognitive and motor impairment: a 3-year follow-up of the LADIS study cohort. J. Neurol. Sci. 2011;307(1-2):100–105.
    1. Sakurai R., Fujiwara Y., Yasunaga M., Takeuchi R., Murayama Y., Ohba H., Sakuma N., Suzuki H., Oda K., Sakata M., Toyohara J., Ishiwata K., Shinkai S., Ishii K. Regional cerebral glucose metabolism and gait speed in healthy community-dwelling older women. J. Gerontol.- Ser. A Biol. Sci. Med. Sci. 2014;69(12):1519–1527.
    1. Sakurai R., Ishii K., Yasunaga M., Takeuchi R., Murayama Y., Sakuma N., Sakata M., Oda K., Ishibashi K., Ishiwata K., Fujiwara Y., Montero-Odasso M. Geriatrics and Gerontology International; 2017. The Neural Substrate of Gait and Executive Function Relationship in Elderly Women: A PET Study.
    1. Shimada H., Ishii K., Ishiwata K., Oda K., Suzukawa M., Makizako H., Doi T., Suzuki T. Gait adaptability and brain activity during unaccustomed treadmill walking in healthy elderly females. Gait Posture. 2013;38(2):203–208.
    1. Sorond F.A., Kiely D.K., Galica A., Moscufo N., Serrador J.M., Iloputaife I., Egorova S., Dell’Oglio E., Meier D.S., Newton E., Milberg W.P., Guttmann C.R., Lipsitz L.A. Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston study. Ann. Neurol. 2011;70(2):213–220.
    1. Soumaré A., Elbaz A., Zhu Y., Maillard P., Crivello F., Tavernier B., Dufouil C., Mazoyer B., Tzourio C. White matter lesions volume and motor performances in the elderly. Ann. Neurol. 2009;65(6):706–715.
    1. Stijntjes M., De Craen A.J.M., Van Der Grond J., Meskers C.G.M., Slagboom P.E., Maier A.B. Cerebral microbleeds and lacunar infarcts are associated with walking speed independent of cognitive performance in middle-aged to older adults. Gerontology. 2016;62(5):500–507.
    1. Stolze H., Kuhtz-Buschbeck J., Drucke H., Johnk K., Illert M., Deuschl G. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2001;70(3):289–297.
    1. Studenski S., Perera S., Patel K., Rosano C., Faulkner K., Inzitari M., Brach J., Chandler J., Cawthon P., Connor E.B., Nevitt M., Visser M., Kritchevsky S., Badinelli S., Harris T., Newman A.B., Cauley J., Ferrucci L., Guralnik J. Gait speed and survival in older adults. JAMA. 2011;305(1):50–58.
    1. Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov. Disord. 2013;28(11):1483–1491.
    1. Tian Q., Chastan N., Bair W.-N., Resnick S.M., Ferrucci L., Studenski S.A. The brain map of gait variability in aging, cognitive impairment and dementia—A systematic review. Neurosci. Biobehav. Rev. 2017;74(Part A):149–162.
    1. Tian Q., Resnick S.M., Bilgel M., Wong D.F., Ferrucci L., Studenski S.A. Beta-amyloid burden predicts Lower extremity performance decline in cognitively unimpaired older adults. J. Gerontol.- Ser. A Biol. Sci. Med. Sci. 2017;72(5):716–723.
    1. van der Holst H.M., Tuladhar A.M., Zerbi V., van Uden I.W.M., de Laat K.F., van Leijsen E.M.C., Ghafoorian M., Platel B., Bergkamp M.I., van Norden A.G.W., Norris D.G., van Dijk E.J., Kiliaan A.J., de Leeuw F.E. White matter changes and gait decline in cerebral small vessel disease. NeuroImage : Clinical. 2018;17:731–738.
    1. Verghese J., Wang C., Lipton R.B., Holtzer R., Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. Journal of Neurology, Neurosurgery, and Psychiatry. 2007;78(9):929–935.
    1. Verghese J., Robbins M., Holtzer R., Zimmerman M., Wang C., Xue X., Lipton R.B. Gait dysfunction in mild cognitive impairment syndromes. J. Am. Geriatr. Soc. 2008;56(7):1244–1251.
    1. Verghese J., Wang C., Holtzer R. Relationship of clinic-based gait speed measurement to limitations in Community-based activities in older adults. Arch. Phys. Med. Rehabil. 2011;92(5):844–846.
    1. Verlinden V.J.A., Van der Geest J.N., Hoogendam Y.Y., Hofman A., Breteler M.M.B., Ikram M.A. Gait patterns in a community-dwelling population aged 50 years and older. Gait Posture. 2013;37(4):500–505.
    1. Verlinden V.J., de Groot M., Cremers L.G., van der Geest J.N., Hofman A., Niessen W.J., van der Lugt A., Vernooij M.W., Ikram M. Tract-specific white matter microstructure and gait in humans. Neurobiol. Aging. 2016;43:164–173.
    1. Vitorio R., Stuart S., Rochester L., Alcock L., Pantall A. fNIRS response during walking — artefact or cortical activity? A systematic review. Neurosci. Biobehav. Rev. 2017;83:160–172.
    1. Wade D.T. Measurement in neurological rehabilitation. Curr. Opin. Neurol. Neurosurg. 1992;5(5):682–686.
    1. Watson N.L., Rosano C., Boudreau R.M., Simonsick E.M., Ferrucci L., Sutton-Tyrrell K., Hardy S.E., Atkinson H.H., Yaffe K., Satterfield S., Harris T.B., Newman A.B., for the Health, A.B.C.S Executive function, memory, and gait speed decline in Well-functioning older adults. J. Gerontol.: Ser. A. 2010;65A(10):1093–1100.
    1. Wennberg A.M.V., Savica R., Hagen C.E., Roberts R.O., Knopman D.S., Hollman J.H., Vemuri P., Jack C.R., Petersen R.C., Mielke M.M. Cerebral amyloid deposition Is associated with gait parameters in the Mayo clinic study of aging. J. Am. Geriatr. Soc. 2017;65(4):792–799.
    1. Wennberg A.M.V., Savica R., Mielke M.M. Association between various brain pathologies and gait disturbance. Dement. Geriatr. Cogn. Disord. 2017;43(3-4):128–143.
    1. Willey J.Z., Scarmeas N., Provenzano F.A., Luchsinger J.A., Mayeux R., Brickman A.M. White matter hyperintensity volume and impaired mobility among older adults. J. Neurol. 2013;260(3):884–890.
    1. Wolfson L., Wei X., Hall C.B., Panzer V., Wakefield D., Benson R.R., Schmidt J.A., Warfield S.K., Guttmann C.R.G. Accrual of MRI white matter abnormalities in elderly with normal and impaired mobility. J. Neurol. Sci. 2005;232(1-2):23–27.
    1. Wolfson L., Wakefield D.B., Moscufo N., Kaplan R.F., Hall C.B., Schmidt J.A., Guttmann C.R.G., White W.B. Rapid buildup of brain white matter hyperintensities over 4 years linked to ambulatory blood pressure, mobility, cognition, and depression in old persons. J. Gerontol.- Ser. A Biol. Sci. Med. Sci. 2013;68(11):1387–1394.
    1. Yuan J., Blumen H.M., Verghese J., Holtzer R. Functional connectivity associated with gait velocity during walking and walking-while-talking in aging: a resting-state fMRI study. Hum. Brain Mapp. 2015;36(4):1484–1493.
    1. Zimmerman M.E., Lipton R.B., Pan J.W., Hetherington H.P., Verghese J. MRI- and MRS-derived hippocampal correlates of quantitative locomotor function in older adults. Brain Res. 2009;1291:73–81.

Source: PubMed

3
購読する