Novel Adipokines and Their Role in Bone Metabolism: A Narrative Review

Fnu Deepika, Siresha Bathina, Reina Armamento-Villareal, Fnu Deepika, Siresha Bathina, Reina Armamento-Villareal

Abstract

The growing burden of obesity and osteoporosis is a major public health concern. Emerging evidence of the role of adipokines on bone metabolism has led to the discovery of novel adipokines over the last decade. Obesity is recognized as a state of adipose tissue inflammation that adversely affects bone health. Adipokines secreted from white adipose tissue (WAT) and bone marrow adipose tissue (BMAT) exerts endocrine and paracrine effects on the survival and function of osteoblasts and osteoclasts. An increase in marrow fat is implicated in osteoporosis and, hence, it is crucial to understand the complex interplay between adipocytes and bone. The objective of this review is to summarize recent advances in our understanding of the role of different adipokines on bone metabolism.

Methods: This is a comprehensive review of the literature available in PubMED and Cochrane databases, with an emphasis on the last five years using the keywords.

Results: Leptin has shown some positive effects on bone metabolism; in contrast, both adiponectin and chemerin have consistently shown a negative association with BMD. No significant association was found between resistin and BMD. Novel adipokines such as visfatin, LCN-2, Nesfatin-1, RBP-4, apelin, and vaspin have shown bone-protective and osteoanabolic properties that could be translated into therapeutic targets.

Conclusion: New evidence suggests the potential role of novel adipokines as biomarkers to predict osteoporosis risk, and as therapeutic targets for the treatment of osteoporosis.

Keywords: adipokines; bone metabolism; bone mineral density; bone turnover markers; osteoblast; osteoclast; osteoporosis.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Cross-talk between different Adipocyte derived factors and bone. The above figure illustrates PPARγ inhibition or activation along with adipocyte-derived adipokines can alter or disrupt the communication between osteoblasts and osteoclasts. Adipokines; omentin visfatin and resistin enhance osteoblast differentiation and inhibit osteoclast formation. On the contrary, adipokines; leptin, chemerin, and adiponectin abrogate osteoblast formation and, thus, resulting in alterations in the homeostasis of bone [142,143,144].
Figure 2
Figure 2
Illustrates the role of Novel adipokines role in bone metabolism. Apelin, vaspin, and Nesfatin when bound to receptors of APJ, Grp78, and Cannabinoid receptors (CR) activate Pi3k -Akt pathway and Ras pathway for subsequent osteoblast survival and RUNX2/Osterix pathway leading to bone formation. On the other hand, lipocalin (LCN2) binds to the MC4R receptor complex on OCPs, inducing the p38 MAP kinase pathway, then binds to Sp1 sites on the RANK promoter, activating RANK expression. This in turn favors osteoclast formation and bone resorption. Thus, novel adipokines mediating the crosstalk between osteoblast and osteoclast add on a new mechanism by which Osteoblast can control bone resorption [147,148,149,150].

References

    1. Ouchi N., Parker J.L., Lugus J.J., Walsh K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011;11:85–97. doi: 10.1038/nri2921.
    1. Hida K., Wada J., Eguchi J., Zhang H., Baba M., Seida A., Hashimoto I., Okada T., Yasuhara A., Nakatsuka A., et al. Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity. Proc. Natl. Acad. Sci. USA. 2005;102:10610–10615. doi: 10.1073/pnas.0504703102.
    1. Sun N., Wang H., Wang L. Vaspin alleviates dysfunction of endothelial progenitor cells induced by high glucose via PI3K/Akt/eNOS pathway. Int. J. Clin. Exp. Pathol. 2015;8:482–489.
    1. Tanna N., Patel K., Moore A.E., Dulnoan D., Edwards S., Hampson G. The relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial calcification and stiffness: A cross-sectional study in post-menopausal women. J. Endocrinol. Investig. 2017;40:1345–1353. doi: 10.1007/s40618-017-0711-1.
    1. Li X.P., Zeng S., Wang M., Wu X.P., Liao E.Y. Relationships between serum omentin-1, body fat mass and bone mineral density in healthy Chinese male adults in Changsha area. J. Endocrinol. Investig. 2014;37:991–1000. doi: 10.1007/s40618-014-0140-3.
    1. Tohidi M., Akbarzadeh S., Larijani B., Kalantarhormozi M., Ostovar A., Assadi M., Vahdat K., Farrokhnia M., Sanjdideh Z., Amirinejad R., et al. Omentin-1, visfatin and adiponectin levels in relation to bone mineral density in Iranian postmenopausal women. Bone. 2012;51:876–881. doi: 10.1016/j.bone.2012.08.117.
    1. He J., Li J.-C., Xie H., Xu Z.-H., Sun Y.-W., Shan Q. Serum Chemerin Levels in relation to Osteoporosis and Bone Mineral Density: A Case-Control Study. Dis. Markers. 2015;2015:786708. doi: 10.1155/2015/786708.
    1. Kadric L., Zylla S., Nauck M., Völzke H., Friedrich N., Hannemann A. Associations between plasma chemerin concentrations and bone quality in adults from the general population. Endocrinology. 2018;159:2378–2385. doi: 10.1210/en.2018-00157.
    1. Shi L., Mao C., Wang X., Liu R., Li L., Mou X., Xu P., Li H., Xu C., Yuan G., et al. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women. Medicine. 2016;95:e4583. doi: 10.1097/MD.0000000000004583.
    1. Mihai G., Gasparik A.I., Pascanu I.M., Cevei M., Hutanu A., Pop R.-M. The influence of Visfatin, RBP-4 and insulin resistance on bone mineral density in women with treated primary osteoporosis. Aging Clin. Exp. Res. 2019;31:889–895. doi: 10.1007/s40520-019-01206-6.
    1. Biver E., Salliot C., Combescure C., Gossec L., Hardouin P., Legroux-Gerot I., Cortet B. Influence of Adipokines and Ghrelin on Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2011;96:2703–2713. doi: 10.1210/jc.2011-0047.
    1. Rucci N., Capulli M., Piperni S.G., Cappariello A., Lau P., Frings-Meuthen P., Heer M., Teti A. Lipocalin 2: A New Mechanoresponding Gene Regulating Bone Homeostasis. J. Bone Miner. Res. 2015;30:357–368. doi: 10.1002/jbmr.2341.
    1. Capulli M., Ponzetti M., Maurizi A., Gemini-Piperni S., Berger T., Mak T.W., Teti A., Rucci N. A Complex Role for Lipocalin 2 in Bone Metabolism: Global Ablation in Mice Induces Osteopenia Caused by an Altered Energy Metabolism. J. Bone Miner. Res. 2018;33:1141–1153. doi: 10.1002/jbmr.3406.
    1. Xie H., Tang S.-Y., Cui R.-R., Huang J., Ren X.-H., Yuan L.-Q., Lu Y., Yang M., Zhou H.-D., Wu X.-P., et al. Apelin and its receptor are expressed in human osteoblasts. Regul. Pept. 2006;134:118–125. doi: 10.1016/j.regpep.2006.02.004.
    1. Tang S.-Y., Xie H., Yuan L.-Q., Luo X.-H., Huang J., Cui R.-R., Zhou H.-D., Wu X.-P., Liao E.-Y. Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides. 2007;28:708–718. doi: 10.1016/j.peptides.2006.10.005.
    1. Xie H., Yuan L.-Q., Luo X.-H., Huang J., Cui R.-R., Guo L.-J., Zhou H.-D., Wu X.-P., Liao E.-Y. Apelin suppresses apoptosis of human osteoblasts. Apoptosis. 2006;12:247–254. doi: 10.1007/s10495-006-0489-7.
    1. Tymicki G., Puzio I., Pawłowska-Olszewska M., Bieńko M., Radzki R.P. The Influence of Nesfatin-1 on Bone Metabolism Markers Concentration, Densitometric, Tomographic and Mechanical Parameters of Skeletal System of Rats in the Conditions of Established Osteopenia. Animals. 2022;12:654. doi: 10.3390/ani12050654.
    1. Skic A., Puzio I., Tymicki G., Kołodziej P., Pawłowska-Olszewska M., Skic K., Beer-Lech K., Bieńko M., Gołacki K. Effect of Nesfatin-1 on Rat Humerus Mechanical Properties under Quasi-Static and Impact Loading Conditions. Materials. 2022;15:333. doi: 10.3390/ma15010333.
    1. Achari A.E., Jain S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int. J. Mol. Sci. 2017;18:1321. doi: 10.3390/ijms18061321.
    1. Liu H., Liu S., Ji H., Zhao Q., Liu Y., Hu P., Luo E. An adiponectin receptor agonist promote osteogenesis via regulating bone-fat balance. Cell Prolif. 2021;54:e13035. doi: 10.1111/cpr.13035.
    1. Yang J., Park O.-J., Kim J., Han S., Yang Y., Yun C.-H., Han S.H. Adiponectin Deficiency Triggers Bone Loss by Up-Regulation of Osteoclastogenesis and Down-Regulation of Osteoblastogenesis. Front. Endocrinol. 2019;10:815. doi: 10.3389/fendo.2019.00815.
    1. Chen G., Huang L., Wu X., Liu X., Xu Q., Li F., Dai M., Zhang B. Adiponectin inhibits osteoclastogenesis by suppressing NF-κB and p38 signaling pathways. Biochem. Biophys. Res. Commun. 2018;503:2075–2082. doi: 10.1016/j.bbrc.2018.07.162.
    1. Zhu J., Liu C., Jia J., Zhang C., Yuan W., Leng H., Xu Y., Song C. Short-term caloric restriction induced bone loss in both axial and appendicular bones by increasing adiponectin. Ann. New York Acad. Sci. 2020;1474:47–60. doi: 10.1111/nyas.14380.
    1. Jürimäe J., Jürimäe T. Adiponectin is a predictor of bone mineral density in middle-aged premenopausal women. Osteoporos. Int. 2007;18:1253–1259. doi: 10.1007/s00198-007-0365-5.
    1. Stojanovic S., Arsenijevic N., Djukic A., Djukic S., Simonovic S.Z., Jovanovic M., Pejnovic N., Nikolic V., Zivanovic S., Stefanovic M., et al. Adiponectin as a Potential Biomarker of Low Bone Mineral Density in Postmenopausal Women with Metabolic Syndrome. Acta Endocrinol. 2018;14:201–207. doi: 10.4183/aeb.2018.201.
    1. Bacchetta J., Boutroy S., Guebre-Egziabher F., Juillard L., Drai J., Pelletier S., Richard M., Charrié A., Carlier M.C., Chapurlat R., et al. The relationship between adipokines, osteocalcin and bone quality in chronic kidney disease. Nephrol. Dial. Transplant. 2009;24:3120–3125. doi: 10.1093/ndt/gfp262.
    1. Tan C.O., Battaglino R.A., Doherty A.L., Gupta R., Lazzari A.A., Garshick E., Zafonte R., Morse L.R. Adiponectin is associated with bone strength and fracture history in paralyzed men with spinal cord injury. Osteoporos. Int. 2014;25:2599–2607. doi: 10.1007/s00198-014-2786-2.
    1. Roomi A.B., Nori W., Al-Badry S.H. The Value of Serum Adiponectin in Osteoporotic Women: Does Weight Have an Effect? J. Obes. 2021;2021:5325813. doi: 10.1155/2021/5325813.
    1. Barbour K.E., Zmuda J.M., Boudreau R., Strotmeyer E.S., Horwitz M.J., Evans R.W., Kanaya A.M., Harris T.B., Bauer D.C., Cauley J.A. Adipokines and the risk of fracture in older adults. J. Bone Miner. Res. 2011;26:1568–1576. doi: 10.1002/jbmr.361.
    1. Reid I.R., Baldock P.A., Cornish J. Effects of Leptin on the Skeleton. Endocr. Rev. 2018;39:938–959. doi: 10.1210/er.2017-00226.
    1. Ducy P., Amling M., Takeda S., Priemel M., Schilling A.F., Beil F.T., Shen J., Vinson C., Rueger J.M., Karsenty G. Leptin Inhibits Bone Formation through a Hypothalamic Relay: A Central Control of Bone Mass. Cell. 2000;100:197–207. doi: 10.1016/S0092-8674(00)81558-5.
    1. Turner R.T., Kalra S.P., Wong C.P., Philbrick K., Lindenmaier L.B., Boghossian S., Iwaniec U.T. Peripheral leptin regulates bone formation. J. Bone Miner. Res. 2012;28:22–34. doi: 10.1002/jbmr.1734.
    1. Hamrick M.W., Pennington C., Newton D., Xie D., Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone. 2004;34:376–383. doi: 10.1016/j.bone.2003.11.020.
    1. Philbrick K.A., Wong C.P., Branscum A.J., Turner R.T., Iwaniec U.T. Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J. Endocrinol. 2017;232:461–474. doi: 10.1530/JOE-16-0484.
    1. Bartell S.M., Rayalam S., Ambati S., Gaddam D.R., Hartzell D.L., Hamrick M., She J.-X., Della-Fera M.A., Baile C.A. Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J. Bone Miner. Res. 2011;26:1710–1720. doi: 10.1002/jbmr.406.
    1. Cornish J., Callon K.E., Bava U., Lin C., Naot D., Hill B.L., Grey A.B., Broom N., Myers D., Nicholson G., et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 2002;175:405–415. doi: 10.1677/joe.0.1750405.
    1. Reseland J.E., Syversen U., Bakke I., Qvigstad G., Eide L.G., Hjertner O., Gordeladze J.O., Drevon C.A. Leptin Is Expressed in and Secreted from Primary Cultures of Human Osteoblasts and Promotes Bone Mineralization. J. Bone Miner. Res. 2001;16:1426–1433. doi: 10.1359/jbmr.2001.16.8.1426.
    1. Gordeladze J.O., Drevon C.A., Syversen U., Reseland J.E. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J. Cell. Biochem. 2002;85:825–836. doi: 10.1002/jcb.10156.
    1. Zhang J., Li T., Xu L., Li W., Cheng M., Zhuang J., Chen Y., Xu W. Leptin promotes ossification through multiple ways of bone metabolism in osteoblast: A pilot study. Gynecol. Endocrinol. 2013;29:758–762. doi: 10.3109/09513590.2013.798278.
    1. Holloway W.R., Collier F.M., Aitken C.J., Myers D.E., Hodge J.M., Malakellis M., Gough T.J., Collier G.R., Nicholson G.C. Leptin Inhibits Osteoclast Generation. J. Bone Miner. Res. 2002;17:200–209. doi: 10.1359/jbmr.2002.17.2.200.
    1. Lamghari M., Tavares L., Guimarães-Camboa N., Barbosa M. Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. J. Cell. Biochem. 2006;98:1123–1129. doi: 10.1002/jcb.20853.
    1. Khan S.N., DuRaine G., Virk S.S., Fung J., Rowland D.J., Reddi A.H., Lee M.A. The Temporal Role of Leptin Within Fracture Healing and the Effect of Local Application of Recombinant Leptin on Fracture Healing. J. Orthop. Trauma. 2013;27:656–662. doi: 10.1097/BOT.0b013e3182847968.
    1. Beil F.T., Barvencik F., Gebauer M., Beil B., Pogoda P., Rueger J.M., Ignatius A., Schinke T., Amling M. Effects of Increased Bone Formation on Fracture Healing in Mice. J. Trauma Inj. Infect. Crit. Care. 2011;70:857–862. doi: 10.1097/TA.0b013e3181de3dd9.
    1. Philbrick K.A., Martin S.A., Colagiovanni A.R., Branscum A.J., Turner R.T., Iwaniec U.T. Effects of hypothalamic leptin gene therapy on osteopetrosis in leptin-deficient mice. J. Endocrinol. 2018;236:57–68. doi: 10.1530/JOE-17-0524.
    1. Chou S.H., Chamberland J.P., Liu X., Matarese G., Gao C., Stefanakis R., Brinkoetter M.T., Gong H., Arampatzi K., Mantzoros C.S. Leptin is an effective treatment for hypothalamic amenorrhea. Proc. Natl. Acad. Sci. USA. 2011;108:6585–6590. doi: 10.1073/pnas.1015674108.
    1. Sienkiewicz E., Magkos F., Aronis K.N., Brinkoetter M., Chamberland J.P., Chou S., Arampatzi K.M., Gao C., Koniaris A., Mantzoros C.S. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism. 2011;60:1211–1221. doi: 10.1016/j.metabol.2011.05.016.
    1. Foo J.-P., Polyzos S.A., Anastasilakis A.D., Chou S., Mantzoros C.S. The Effect of Leptin Replacement on Parathyroid Hormone, RANKL-Osteoprotegerin Axis, and Wnt Inhibitors in Young Women With Hypothalamic Amenorrhea. J. Clin. Endocrinol. Metab. 2014;99:E2252–E2258. doi: 10.1210/jc.2014-2491.
    1. Albala C., Yáñez M., Devoto E., Sostin C., Zeballos L., Santos J.L. Obesity as a protective factor for postmenopausal osteoporosis. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1996;20:1027–1032.
    1. Conroy R., Girotra M., Shane E., McMahon D.J., Pavlovich K.H., Leibel R.L., Rosenbaum M., Korner J. Leptin administration does not prevent the bone mineral metabolism changes induced by weight loss. Metabolism. 2011;60:1222–1226. doi: 10.1016/j.metabol.2011.02.010.
    1. Fukuhara A., Matsuda M., Nishizawa M., Segawa K., Tanaka M., Kishimoto K., Matsuki Y., Murakami M., Ichisaka T., Murakami H., et al. Visfatin: A Protein Secreted by Visceral Fat That Mimics the Effects of Insulin. Science. 2005;307:426–430. doi: 10.1126/science.1097243.
    1. Moschen A.R., Geiger S., Gerner R., Tilg H. Pre-B cell colony enhancing factor/NAMPT/visfatin and its role in inflammation-related bone disease. Mutat. Res. Mol. Mech. Mutagen. 2010;690:95–101. doi: 10.1016/j.mrfmmm.2009.06.012.
    1. Chang Y.-H., Chang D.-M., Lin K.-C., Shin S.-J., Lee Y.-J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes/Metab. Res. Rev. 2011;27:515–527. doi: 10.1002/dmrr.1201.
    1. Li Y., He X., Li Y., He J., Anderstam B., Andersson G., Lindgren U. Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: A possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J. Bone Miner. Res. 2011;26:2656–2664. doi: 10.1002/jbmr.480.
    1. Xie H., Tang S.-Y., Luo X.-H., Huang J., Cui R.-R., Yuan L.-Q., Zhou H.-D., Wu X.-P., Liao E.-Y. Insulin-Like Effects of Visfatin on Human Osteoblasts. Calcif. Tissue Int. 2007;80:201–210. doi: 10.1007/s00223-006-0155-7.
    1. Baek J.M., Ahn S.-J., Cheon Y.-H., Lee M.S., Oh J., Kim J.-Y. Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro. Mol. Med. Rep. 2016;15:784–792. doi: 10.3892/mmr.2016.6069.
    1. Linossier M.-T., Amirova L.E., Thomas M., Normand M., Bareille M.-P., Gauquelin-Koch G., Beck A., Costes-Salon M.-C., Bonneau C., Gharib C., et al. Effects of short-term dry immersion on bone remodeling markers, insulin and adipokines. PLoS ONE. 2017;12:e0182970. doi: 10.1371/journal.pone.0182970.
    1. Iacobellis G., Iorio M., Napoli N., Cotesta D., Zinnamosca L., Marinelli C., Petramala L., Minisola S., D’Erasmo E., Letizia C. Relation of adiponectin, visfatin and bone mineral density in patients with metabolic syndrome. J. Endocrinol. Investig. 2011;34:e12–e15. doi: 10.1007/BF03346703.
    1. Nagpal S., Patel S., Jacobe H., DiSepio D., Ghosn C., Malhotra M., Teng M., Duvic M., Chandraratna R.A. Tazarotene-induced Gene 2 (TIG2), a Novel Retinoid-Responsive Gene in Skin. J. Investig. Dermatol. 1997;109:91–95. doi: 10.1111/1523-1747.ep12276660.
    1. Bozaoglu K., Bolton K., McMillan J., Zimmet P., Jowett J., Collier G., Walder K., Segal D. Chemerin Is a Novel Adipokine Associated with Obesity and Metabolic Syndrome. Endocrinology. 2007;148:4687–4694. doi: 10.1210/en.2007-0175.
    1. Goralski K.B., McCarthy T.C., Hanniman E.A., Zabel B.A., Butcher E.C., Parlee S.D., Muruganandan S., Sinal C.J. Chemerin, a Novel Adipokine That Regulates Adipogenesis and Adipocyte Metabolism. J. Biol. Chem. 2007;282:28175–28188. doi: 10.1074/jbc.M700793200.
    1. Rourke J.L., Dranse H.J., Sinal C.J. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes. Rev. 2013;14:245–262. doi: 10.1111/obr.12009.
    1. Singh A., Choubey M., Bora P., Krishna A. Adiponectin and Chemerin: Contrary Adipokines in Regulating Reproduction and Metabolic Disorders. Reprod. Sci. 2018;25:1462–1473. doi: 10.1177/1933719118770547.
    1. Muruganandan S., Govindarajan R., McMullen N.M., Sinal C.J. Chemokine-Like Receptor 1 Is a Novel Wnt Target Gene that Regulates Mesenchymal Stem Cell Differentiation. Stem Cells. 2017;35:711–724. doi: 10.1002/stem.2520.
    1. Ramos-Junior E., Leite G.A., Carmo-Silva C.C., Taira T.M., Neves K.B., Colon D., Da Silva L.A., Salvador S.L., Tostes R., Cunha F.Q., et al. Adipokine Chemerin Bridges Metabolic Dyslipidemia and Alveolar Bone Loss in Mice. J. Bone Miner. Res. 2017;32:974–984. doi: 10.1002/jbmr.3072.
    1. Han L., Zhang Y., Wan S., Wei Q., Shang W., Huang G., Fang P., Min W. Loss of chemerin triggers bone remodeling in vivo and in vitro. Mol. Metab. 2021;53:101322. doi: 10.1016/j.molmet.2021.101322.
    1. Zhao H., Yan D., Xiang L., Huang C., Li J., Yu X., Huang B., Wang B., Chen J., Xiao T., et al. Chemokine-like receptor 1 deficiency leads to lower bone mass in male mice. Cell. Mol. Life Sci. 2018;76:355–367. doi: 10.1007/s00018-018-2944-3.
    1. Suzuki Y.A., Shin K., Lönnerdal B. Molecular Cloning and Functional Expression of a Human Intestinal Lactoferrin Receptor. Biochemistry. 2001;40:15771–15779. doi: 10.1021/bi0155899.
    1. Pan X., Kaminga A.C., Wen S.W., Acheampong K., Liu A. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis. PLoS ONE. 2019;14:e0226292. doi: 10.1371/journal.pone.0226292.
    1. Rao S.-S., Hu Y., Xie P.-L., Cao J., Wang Z.-X., Liu J.-H., Yin H., Huang J., Tan Y.-J., Luo J., et al. Omentin-1 prevents inflammation-induced osteoporosis by downregulating the pro-inflammatory cytokines. Bone Res. 2018;6:9. doi: 10.1038/s41413-018-0012-0.
    1. Du Y., Ji Q., Cai L., Huang F., Lai Y., Liu Y., Yu J., Han B., Zhu E., Zhang J., et al. Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc. Diabetol. 2016;15:90. doi: 10.1186/s12933-016-0406-5.
    1. Zhao A., Xiao H., Zhu Y., Liu S., Zhang S., Yang Z., Du L., Li X., Niu X., Wang C., et al. Omentin-1: A newly discovered warrior against metabolic related diseases. Expert Opin. Ther. Targets. 2022;26:275–289. doi: 10.1080/14728222.2022.2037556.
    1. Xie H., Xie P.-L., Luo X.-H., Wu X.-P., Zhou H.-D., Tang S.-Y., Liao E.-Y. Omentin-1 exerts bone-sparing effect in ovariectomized mice. Osteoporos. Int. 2011;23:1425–1436. doi: 10.1007/s00198-011-1697-8.
    1. Tang C., Liang D., Qiu Y., Zhu J., Tang G. Omentin-1 induces osteoblast viability and differentiation via the TGF-β/Smad signaling pathway in osteoporosis. Mol. Med. Rep. 2022;25:132. doi: 10.3892/mmr.2022.12648.
    1. Feng S.-K., Chen T.-H., Li H.-M., Cao J., Liu D.-B., Rao S.-S., Liu J.-H., Zhang Y., Wang Z.-X., Li Y.-Y., et al. Deficiency of Omentin-1 leads to delayed fracture healing through excessive inflammation and reduced CD31hiEmcnhi vessels. Mol. Cell. Endocrinol. 2021;534:111373. doi: 10.1016/j.mce.2021.111373.
    1. Zhang Y., Jiang Y., Tang S. Serum omentin-1 concentration and bone mineral density in postmenopausal women. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2014;39:389–394. doi: 10.3969/j.issn.1672-7347.2014.04.012.
    1. Wang D., Jiang T.-J., Liao L., Huang J. Relationships between serum omentin-1 concentration and bone mineral density, and bone biochemical markers in Chinese women. Clin. Chim. Acta. 2013;426:64–67. doi: 10.1016/j.cca.2013.09.002.
    1. Yan P., Xu Y., Zhang Z., Zhu J., Miao Y., Gao C., Wan Q. Association of Circulating Omentin-1 with Osteoporosis in a Chinese Type 2 Diabetic Population. Mediat. Inflamm. 2020;2020:9389720. doi: 10.1155/2020/9389720.
    1. Dikker O., Bekpinar S., Ozdemirler G., Uysal M., Vardar M., Atar S., Usta M., Huner B. Evaluation of the Relation Between Omentin-1 and Vitamin D in Postmenopausal Women With or Without Osteoporosis. Exp. Clin. Endocrinol. Diabetes. 2018;126:316–320. doi: 10.1055/s-0043-120110.
    1. Gołąbek K., Ostrowska Z., Ziora K., Oświęcimska J., Świętochowska E., Marek B., Kajdaniuk D., Strzelczyk J., Kos-Kudła B. Association between omentin-1, bone metabolism markers, and cytokines of the RANKL/RANK/OPG system in girls with anorexia nervosa. Endokrynol. Pol. 2015;66:514–520. doi: 10.5603/EP.2015.0063.
    1. Al Jaberi S., Cohen A., D’Souza C., Abdulrazzaq Y.M., Ojha S., Bastaki S., Adeghate E.A. Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomed. Pharmacother. 2021;142:112002. doi: 10.1016/j.biopha.2021.112002.
    1. Nielsen B.S., Borregaard N., Bundgaard J.R., Timshel S., Sehested M., Kjeldsen L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut. 1996;38:414–420. doi: 10.1136/gut.38.3.414.
    1. Mosialou I., Shikhel S., Liu J.-M., Maurizi A., Luo N., He Z., Huang Y., Zong H., Friedman R.A., Barasch J., et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543:385–390. doi: 10.1038/nature21697.
    1. Zhang Y., Guo H., Deis J.A., Mashek M.G., Zhao M., Ariyakumar D., Armien A.G., Bernlohr D.A., Mashek D.G., Chen X. Lipocalin 2 Regulates Brown Fat Activation via a Nonadrenergic Activation Mechanism. J. Biol. Chem. 2014;289:22063–22077. doi: 10.1074/jbc.M114.559104.
    1. Paton C.M., Rogowski M.P., Kozimor A.L., Stevenson J.L., Chang H., Cooper J.A. Lipocalin-2 increases fat oxidation in vitro and is correlated with energy expenditure in normal weight but not obese women. Obesity. 2013;21:E640–E648. doi: 10.1002/oby.20507.
    1. Mosialou I., Shikhel S., Luo N., Petropoulou P.I., Panitsas K., Bisikirska B., Rothman N.J., Tenta R., Cariou B., Wargny M., et al. Lipocalin-2 counteracts metabolic dysregulation in obesity and diabetes. J. Exp. Med. 2020;217:e20191261. doi: 10.1084/jem.20191261.
    1. Lim W.H., Wong G., Lim E.M., Byrnes E., Zhu K., Devine A., Pavlos N.J., Prince R.L., Lewis J.R. Circulating Lipocalin 2 Levels Predict Fracture-Related Hospitalizations in Elderly Women: A Prospective Cohort Study. J. Bone Miner. Res. 2015;30:2078–2085. doi: 10.1002/jbmr.2546.
    1. Maurizi A., Ponzetti M., Gautvik K.M., Reppe S., Teti A., Rucci N. Lipocalin 2 serum levels correlate with age and bone turnover biomarkers in healthy subjects but not in postmenopausal osteoporotic women. Bone Rep. 2021;14:101059. doi: 10.1016/j.bonr.2021.101059.
    1. Ansari M.G.A., Hussain S.D., Wani K.A., Yakout S.M., Al-Disi D., Alokail M.S., Reginster J.-Y., Al-Daghri N.M. Influence of bone mineral density in circulating adipokines among postmenopausal Arab women. Saudi J. Biol. Sci. 2020;27:374–379. doi: 10.1016/j.sjbs.2019.10.007.
    1. Cervellati C., Bonaccorsi G., Bergamini C.M., Fila E., Greco P., Valacchi G., Massari L., Gonelli A., Tisato V. Association between circulatory levels of adipokines and bone mineral density in postmenopausal women. Menopause. 2016;23:984–992. doi: 10.1097/GME.0000000000000655.
    1. Villalvilla A., García-Martín A., Largo R., Gualillo O., Herrero-Beaumont G., Gómez R. The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction. Sci. Rep. 2016;6:29243. doi: 10.1038/srep29243.
    1. Courbon G., David V. Lipocalin-2: A novel link between the injured kidney and the bone. Curr. Opin. Nephrol. Hypertens. 2022;31:312–319. doi: 10.1097/MNH.0000000000000804.
    1. Silha J., Krsek M., Skrha J., Sucharda P., Nyomba B., Murphy L. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: Correlations with insulin resistance. Eur. J. Endocrinol. 2003;149:331–335. doi: 10.1530/eje.0.1490331.
    1. Heilbronn L., Rood J., Janderova L., Albu J.B., Kelley D.E., Ravussin E., Smith S.R. Relationship between Serum Resistin Concentrations and Insulin Resistance in Nonobese, Obese, and Obese Diabetic Subjects. J. Clin. Endocrinol. Metab. 2004;89:1844–1848. doi: 10.1210/jc.2003-031410.
    1. Reilly M.P., Lehrke M., Wolfe M.L., Rohatgi A., Lazar M.A., Rader D.J. Resistin Is an Inflammatory Marker of Atherosclerosis in Humans. Circulation. 2005;111:932–939. doi: 10.1161/01.CIR.0000155620.10387.43.
    1. McTernan C., McTernan P., Harte A., Levick P., Barnett A., Kumar S. Resistin, central obesity, and type 2 diabetes. Lancet. 2002;359:46–47. doi: 10.1016/S0140-6736(02)07281-1.
    1. Bokarewa M., Nagaev I., Dahlberg L., Smith U., Tarkowski A. Resistin, an Adipokine with Potent Proinflammatory Properties. J. Immunol. 2005;174:5789–5795. doi: 10.4049/jimmunol.174.9.5789.
    1. Benomar Y., Taouis M. Molecular Mechanisms Underlying Obesity-Induced Hypothalamic Inflammation and Insulin Resistance: Pivotal Role of Resistin/TLR4 Pathways. Front. Endocrinol. 2019;10:140. doi: 10.3389/fendo.2019.00140.
    1. Tsiklauri L., Werner J., Kampschulte M., Frommer K.W., Berninger L., Irrgang M., Glenske K., Hose D., El Khassawna T., Pons-Kühnemann J., et al. Visfatin alters the cytokine and matrix-degrading enzyme profile during osteogenic and adipogenic MSC differentiation. Osteoarthr. Cartil. 2018;26:1225–1235. doi: 10.1016/j.joca.2018.06.001.
    1. Thommesen L., Stunes A.K., Monjo M., Grøsvik K., Tamburstuen M.V., Kjøbli E., Lyngstadaas S.P., Reseland J.E., Syversen U. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J. Cell. Biochem. 2006;99:824–834. doi: 10.1002/jcb.20915.
    1. Li X., Sun F., Lu J., Zhang J., Wang J., Zhu H., Gu M., Ma J. Osteoclasts May Affect Glucose Uptake-Related Insulin Resistance by Secreting Resistin. Diabetes Metab. Syndr. Obes. Targets Ther. 2021;14:3461–3470. doi: 10.2147/DMSO.S316964.
    1. Beckers S., Zegers D., Van Camp J.K., Boudin E., Nielsen T.L., Brixen K., Andersen M., Van Hul W. Resistin polymorphisms show associations with obesity, but not with bone parameters in men: Results from the Odense Androgen Study. Mol. Biol. Rep. 2012;40:2467–2472. doi: 10.1007/s11033-012-2327-z.
    1. Mohiti-Ardekani J., Soleymani-Salehabadi H., Owlia M.B., Mohiti A. Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients. J. Bone Miner. Metab. 2013;32:400–404. doi: 10.1007/s00774-013-0511-4.
    1. Zhang H., Xie H., Zhao Q., Xie G.Q., Wu X.P., Liao E.Y., Luo X.H. Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women. J. Endocrinol. Investig. 2010;33:707–711. doi: 10.1007/BF03346674.
    1. Oh K.W., Lee W.Y., Rhee E.J., Baek K.H., Yoon K.H., Kang M.I., Yun E.J., Park C.Y., Ihm S.H., Choi M.G., et al. The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin. Endocrinol. 2005;63:131–138. doi: 10.1111/j.1365-2265.2005.02312.x.
    1. Tariq S., Tariq S., Khaliq S., Baig M., Murad M.A., Lone K.P. Association Between Vitamin D and Resistin in Postmenopausal Females With Altered Bone Health. Front. Endocrinol. 2021;11:615440. doi: 10.3389/fendo.2020.615440.
    1. Głogowska-Szeląg J., Kos-Kudła B., Marek B., Nowak M., Siemińska L. Assessment of selected adipocytokines in obese women with postmenopausal osteoporosis. Endokrynol. Pol. 2019;70:478–483. doi: 10.5603/EP.a2019.0043.
    1. Hopps E., Canino B., Caimi G. Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol. 2011;48:183–189. doi: 10.1007/s00592-011-0278-9.
    1. Oh-I S., Shimizu H., Satoh T., Okada S., Adachi S., Inoue K., Eguchi H., Yamamoto M., Imaki T., Hashimoto K., et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 2006;443:709–712. doi: 10.1038/nature05162.
    1. Jiang L., Bao J., Zhou X., Xiong Y., Wu L. Increased Serum Levels and Chondrocyte Expression of Nesfatin-1 in Patients with Osteoarthritis and Its Relation with BMI, hsCRP, and IL-18. Mediat. Inflamm. 2013;2013:649506. doi: 10.1155/2013/631251.
    1. Scotece M., Conde J., Abella V., López V., Lago F., Pino J., Gómez-Reino J.J., Gualillo O. NUCB2/nesfatin-1: A new adipokine expressed in human and murine chondrocytes with pro-inflammatory properties, an in vitro study. J. Orthop. Res. 2014;32:653–660. doi: 10.1002/jor.22585.
    1. Jiang L., Xu K., Li J., Zhou X., Xu L., Wu Z., Ma C., Ran J., Hu P., Bao J., et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging. 2020;12:1760–1777. doi: 10.18632/aging.102711.
    1. Puzio I., Tymicki G., Pawłowska M., Bieńko M., Radzki R.P. Nesfatin-1 prevents negative changes in bone in conditions of developing osteopenia. Ann. Agric. Environ. Med. 2020;27:66–75. doi: 10.26444/aaem/105981.
    1. Graham T.E., Yang Q., Blüher M., Hammarstedt A., Ciaraldi T.P., Henry R.R., Wason C.J., Oberbach A., Jansson P.-A., Smith U., et al. Retinol-Binding Protein 4 and Insulin Resistance in Lean, Obese, and Diabetic Subjects. New Engl. J. Med. 2006;354:2552–2563. doi: 10.1056/NEJMoa054862.
    1. Hatfield J.T., Anderson P.J., Powell B.C. Retinol-binding protein 4 is expressed in chondrocytes of developing mouse long bones: Implications for a local role in formation of the secondary ossification center. Histochem. Cell Biol. 2013;139:727–734. doi: 10.1007/s00418-012-1062-9.
    1. Lind T., Lind P.M., Jacobson A., Hu L., Sundqvist A., Risteli J., Yebra-Rodriguez A., Rodriguez-Navarro A., Andersson G., Melhus H. High dietary intake of retinol leads to bone marrow hypoxia and diaphyseal endosteal mineralization in rats. Bone. 2011;48:496–506. doi: 10.1016/j.bone.2010.10.169.
    1. Ye A., Zhang H., Peng Y., Liao E. Serum retinol binding protein 4 and bone metabolism in patients with type 2 diabetes. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2012;37:197–202. doi: 10.3969/j.issn.1672-7347.2012.02.015.
    1. Huang N., Zhou J., Wang W., Wang Q., Tang Y., Sun Y., Wang D., Chen S. Retinol-binding protein 4 is positively associated with bone mineral density in patients with type 2 diabetes and osteopenia or osteoporosis. Clin. Endocrinol. 2018;88:659–664. doi: 10.1111/cen.13560.
    1. Högström M., Nordström A., Nordström P. Retinol, retinol-binding protein 4, abdominal fat mass, peak bone mineral density, and markers of bone metabolism in men: The Northern Osteoporosis and Obesity (NO2) Study. Eur. J. Endocrinol. 2008;158:765–770. doi: 10.1530/EJE-07-0796.
    1. Yu X.-H., Tang Z.-B., Liu L.-J., Qian H., Tang S.-L., Zhang D., Tian G.-P., Tang C.-K. Apelin and its receptor APJ in cardiovascular diseases. Clin. Chim. Acta. 2014;428:1–8. doi: 10.1016/j.cca.2013.09.001.
    1. O’Harte F.P.M., Parthsarathy V., Hogg C., Flatt P.R. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS ONE. 2018;13:e0202350. doi: 10.1371/journal.pone.0202350.
    1. Wattanachanya L., Lu W.-D., Kundu R.K., Wang L., Abbott M.J., O’Carroll D., Quertermous T., Nissenson R.A. Increased Bone Mass in Mice Lacking the Adipokine Apelin. Endocrinology. 2013;154:2069–2080. doi: 10.1210/en.2012-2034.
    1. Chen L., Shi X., Xie J., Weng S.-J., Xie Z.-J., Tang J.-H., Yan D.-Y., Wang B.-Z., Fang K.-H., Hong C.-X., et al. Apelin-13 induces mitophagy in bone marrow mesenchymal stem cells to suppress intracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway. Free. Radic. Biol. Med. 2021;163:356–368. doi: 10.1016/j.freeradbiomed.2020.12.235.
    1. Han X.-F., Zhang X.-X., Liu K.-M., Zhang Q. Apelin-13 deficiency alters cortical bone geometry, organic bone matrix, and inhibits Wnt/β-catenin signaling. Gen. Comp. Endocrinol. 2018;267:29–35. doi: 10.1016/j.ygcen.2018.05.024.
    1. Hang K., Ye C., Xu J., Chen E., Wang C., Zhang W., Ni L., Kuang Z., Ying L., Xue D., et al. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway. Stem Cell Res. Ther. 2019;10:189. doi: 10.1186/s13287-019-1286-x.
    1. Liu S., Wang W., Yin L., Zhu Y. Influence of Apelin-13 on osteoporosis in Type-2 diabetes mellitus: A clinical study. Pak. J. Med. Sci. 2018;34:159–163. doi: 10.12669/pjms.341.14135.
    1. Zhu X., Jiang Y., Shan P.-F., Shen J., Liang Q.-H., Cui R.-R., Liu Y., Liu G.-Y., Wu S.-S., Lu Q., et al. Vaspin attenuates the apoptosis of human osteoblasts through ERK signaling pathway. Amino Acids. 2013;44:961–968. doi: 10.1007/s00726-012-1425-5.
    1. Wang J., Chen Z., Guan Z. Vaspin deficiency failed to promote the proliferation of BMSCs in osteoarthritis. Int. J. Rheum. Dis. 2021;24:90–95. doi: 10.1111/1756-185X.14010.
    1. Kamio N., Kawato T., Tanabe N., Kitami S., Morita T., Ochiai K., Maeno M. Vaspin Attenuates RANKL-Induced Osteoclast Formation in RAW264.7 Cells. Connect. Tissue Res. 2013;54:147–152. doi: 10.3109/03008207.2012.761978.
    1. Zhu X., Zhang L., Chen Y., Chen B., Huang H., Lv J., Hu S., Shen J. Vaspin protects mouse mesenchymal stem cells from oxidative stress-induced apoptosis through the MAPK/p38 pathway. Mol. Cell. Biochem. 2019;462:107–114. doi: 10.1007/s11010-019-03614-8.
    1. Wang H., Chen F., Li J., Wang Y., Jiang C., Wang Y., Zhang M., Xu J. Vaspin antagonizes high fat-induced bone loss in rats and promotes osteoblastic differentiation in primary rat osteoblasts through Smad-Runx2 signaling pathway. Nutr. Metab. 2020;17:9. doi: 10.1186/s12986-020-0429-5.
    1. Liu Y., Xu F., Pei H.-X., Zhu X., Lin X., Song C.-Y., Liang Q.-H., Liao E.-Y., Yuan L.-Q. Vaspin regulates the osteogenic differentiation of MC3T3-E1 through the PI3K-Akt/miR-34c loop. Sci. Rep. 2016;6:25578. doi: 10.1038/srep25578.
    1. Ostrowska Z., Ziora K., Oświęcimska J., Świętochowska E., Marek B., Kajdaniuk D., Strzelczyk J., Gołąbek K., Morawiecka-Pietrzak M., Wołkowska-Pokrywa K., et al. Vaspin and selected indices of bone status in girls with anorexia nervosa. Endokrynol. Pol. 2016;67:599–606. doi: 10.5603/EP.2016.0070.
    1. Terzoudis S., Malliaraki N., Damilakis J., Dimitriadou D.A., Zavos C., Koutroubakis I.E. Chemerin, visfatin, and vaspin serum levels in relation to bone mineral density in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2016;28:814–819. doi: 10.1097/MEG.0000000000000617.
    1. Tariq S., Tariq S., Abualhamael S.A., Shahzad M. Effect of Ibandronate Therapy on Serum Chemerin, Vaspin, Omentin-1 and Osteoprotegerin (OPG) in Postmenopausal Osteoporotic Females. Front. Pharmacol. 2022;13:822671. doi: 10.3389/fphar.2022.822671.
    1. Moradi S., Mirzaei K., Abdurahman A.A., Keshavarz S.A. Adipokines may mediate the relationship between resting metabolic rates and bone mineral densities in obese women. Osteoporos. Int. 2017;28:1619–1629. doi: 10.1007/s00198-017-3914-6.
    1. Muruganandan S., Roman A.A., Sinal C.J. Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: Cross talk with the osteoblastogenic program. Cell. Mol. Life Sci. 2009;66:236–253. doi: 10.1007/s00018-008-8429-z.
    1. Lin G.L., Hankenson K.D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J. Cell. Biochem. 2011;112:3491–3501. doi: 10.1002/jcb.23287.
    1. Huang W., Yang S., Shao J., Li Y.P. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front. Biosci. 2007;12:3068–3092. doi: 10.2741/2296.
    1. Soltanoff C.S., Yang S., Chen W., Li Y.-P. Signaling Networks that Control the Lineage Commitment and Differentiation of Bone Cells. Crit. Rev. Eukaryot. Gene Expr. 2009;19:1–46. doi: 10.1615/CritRevEukarGeneExpr.v19.i1.10.
    1. Kang S., Bennett C.N., Gerin I., Rapp L.A., Hankenson K.D., Macdougald O.A. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 2007;282:14515–14524. doi: 10.1074/jbc.M700030200.
    1. Takahashi A., Morita M., Yokoyama K., Suzuki T., Yamamoto T. Tob2 Inhibits Peroxisome Proliferator-Activated Receptor γ2 Expression by Sequestering Smads and C/EBPα during Adipocyte Differentiation. Mol. Cell. Biol. 2012;32:5067–5077. doi: 10.1128/MCB.00610-12.
    1. Ann E.-J., Kim H.-Y., Choi Y.-H., Kim M.-Y., Mo J.-S., Jung J., Yoon J.-H., Kim S.-M., Moon J.-S., Seo M.-S., et al. Inhibition of Notch1 signaling by Runx2 during osteoblast differentiation. J. Bone Miner. Res. 2011;26:317–330. doi: 10.1002/jbmr.227.
    1. Zhuang H., Zhang X., Zhu C., Tang X., Yu F., Shang G.W., Cai X. Molecular Mechanisms of PPAR-γ; Governing MSC Osteogenic and Adipogenic Differentiation. Curr. Stem Cell Res. Ther. 2016;11:255–264. doi: 10.2174/1574888X10666150531173309.
    1. Wei W., Wang X., Yang M., Smith L.C., Dechow P.C., Wan Y. PGC1β Mediates PPARγ Activation of Osteoclastogenesis and Rosiglitazone-Induced Bone Loss. Cell Metab. 2010;11:503–516. doi: 10.1016/j.cmet.2010.04.015.
    1. Oh S.-A., Lee H.-Y., Lee J.H., Kim T.-H., Jang J.-H., Kim H.-W., Wall I. Collagen Three-Dimensional Hydrogel Matrix Carrying Basic Fibroblast Growth Factor for the Cultivation of Mesenchymal Stem Cells and Osteogenic Differentiation. Tissue Eng. Part A. 2012;18:1087–1100. doi: 10.1089/ten.tea.2011.0360.
    1. Ikeda F., Nishimura R., Matsubara T., Tanaka S., Inoue J.-I., Reddy S.V., Hata K., Yamashita K., Hiraga T., Watanabe T., et al. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J. Clin. Investig. 2004;114:475–484. doi: 10.1172/JCI200419657.
    1. Basurto L., Galván R., Cordova N., Saucedo R., Vargas C., Campos S., Halley E., Avelar F., Zárate A. Adiponectin is associated with low bone mineral density in elderly men. Eur. J. Endocrinol. 2009;160:289–293. doi: 10.1530/EJE-08-0569.
    1. Tai T.-Y., Chen C.-L., Tsai K.-S., Tu S.-T., Wu J.-S., Yang W.-S. A longitudinal analysis of serum adiponectin levels and bone mineral density in postmenopausal women in Taiwan. Sci. Rep. 2022;12:8090. doi: 10.1038/s41598-022-12273-7.
    1. Thomas T. The complex effects of leptin on bone metabolism through multiple pathways. Curr. Opin. Pharmacol. 2004;4:295–300. doi: 10.1016/j.coph.2004.01.009.
    1. Thomas T., Burguera B. Is Leptin the Link Between Fat and Bone Mass? J. Bone Miner. Res. 2002;17:1563–1569. doi: 10.1359/jbmr.2002.17.9.1563.
    1. Muruganandan S., Parlee S.D., Rourke J.L., Ernst M.C., Goralski K.B., Sinal C.J. Chemerin, a Novel Peroxisome Proliferator-activated Receptor γ (PPARγ) Target Gene That Promotes Mesenchymal Stem Cell Adipogenesis. J. Biol. Chem. 2011;286:23982–23995. doi: 10.1074/jbc.M111.220491.
    1. Wu S.-S., Liang Q.-H., Liu Y., Cui R.-R., Yuan L.-Q., Liao E.-Y. Omentin-1 Stimulates Human Osteoblast Proliferation through PI3K/Akt Signal Pathway. Int. J. Endocrinol. 2013;2013:368970. doi: 10.1155/2013/368970.
    1. Brunetti L., Di Nisio C., Recinella L., Chiavaroli A., Leone S., Ferrante C., Orlando G., Vacca M. Effects of vaspin, chemerin and omentin-1 on feeding behavior and hypothalamic peptide gene expression in the rat. Peptides. 2011;32:1866–1871. doi: 10.1016/j.peptides.2011.08.003.
    1. De Oliveira A.A., Vergara A., Wang X., Vederas J.C., Oudit G.Y. Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists. Peptides. 2022;147:170697. doi: 10.1016/j.peptides.2021.170697.
    1. Wang J., Zhang K., Zhang S., Guan Z. Vaspin promotes chondrogenic differentiation of BMSCs via Akt activation in osteoarthritis. BMC Musculoskelet. Disord. 2022;23:344. doi: 10.1186/s12891-022-05295-9.
    1. Algul S., Ozkan Y., Ozcelik O. Serum Nesfatin-1 Levels in Patients With Different Glucose Tolerance Levels. Physiol. Res. 2016;65:979–985. doi: 10.33549/physiolres.933186.
    1. Zieger K., Weiner J., Krause K., Schwarz M., Kohn M., Stumvoll M., Blüher M., Heiker J.T. Vaspin suppresses cytokine-induced inflammation in 3T3-L1 adipocytes via inhibition of NFκB pathway. Mol. Cell. Endocrinol. 2018;460:181–188. doi: 10.1016/j.mce.2017.07.022.
    1. Qiu S., Chen X., Pang Y., Zhang Z. Lipocalin-2 protects against renal ischemia/reperfusion injury in mice through autophagy activation mediated by HIF1α and NF-κb crosstalk. Biomed. Pharmacother. 2018;108:244–253. doi: 10.1016/j.biopha.2018.09.023.
    1. Yan Q.-W., Yang Q., Mody N., Graham T.E., Hsu C.-H., Xu Z., Houstis N.E., Kahn B.B., Rosen E.D. The Adipokine Lipocalin 2 Is Regulated by Obesity and Promotes Insulin Resistance. Diabetes. 2007;56:2533–2540. doi: 10.2337/db07-0007.
    1. Zhou R., Guo Q., Xiao Y., Guo Q., Huang Y., Li C., Luo X. Endocrine role of bone in the regulation of energy metabolism. Bone Res. 2021;9:25. doi: 10.1038/s41413-021-00142-4.

Source: PubMed

3
購読する