Effects of a Multicomponent Exercise Program in Physical Function and Muscle Mass in Sarcopenic/Pre-Sarcopenic Adults

Hyuma Makizako, Yuki Nakai, Kazutoshi Tomioka, Yoshiaki Taniguchi, Nana Sato, Ayumi Wada, Ryoji Kiyama, Kota Tsutsumimoto, Mitsuru Ohishi, Yuto Kiuchi, Takuro Kubozono, Toshihiro Takenaka, Hyuma Makizako, Yuki Nakai, Kazutoshi Tomioka, Yoshiaki Taniguchi, Nana Sato, Ayumi Wada, Ryoji Kiyama, Kota Tsutsumimoto, Mitsuru Ohishi, Yuto Kiuchi, Takuro Kubozono, Toshihiro Takenaka

Abstract

This study aimed to assess the effects of a multicomponent exercise program on physical function and muscle mass in older adults with sarcopenia or pre-sarcopenia. Moreover, we aim to standardize the exercise program for easy incorporation in the daily life of community-dwelling older adults as a secondary outcome. A single-blind randomized controlled trial was conducted with individuals (≥60 years) who had sarcopenia or pre-sarcopenia (n = 72). Participants were randomly assigned to the exercise and control groups. The exercise program consisted of 12 weekly 60-minute sessions that included resistance, balance, flexibility, and aerobic training. Outcome measures were physical function and muscle mass. Assessments were conducted before and immediately after the intervention. Among the 72 participants (mean age: 75.0 ± 6.9 years; 70.8% women), 67 (93.1%) completed the trial. Group-by-time interactions on the chair stand (p = 0.02) and timed "up and go" (p = 0.01) tests increased significantly in the exercise group. Although the exercise group showed a tendency to prevent loss of muscle mass, no significant interaction effects were observed for cross-sectional muscle area and muscle volume. The 12-week exercise program improved physical function in the intervention group. Although it is unclear whether the program is effective in increasing muscle mass, a multicomponent exercise program would be an effective treatment for physical function among older adults with sarcopenia.

Keywords: muscle strength; randomized controlled trial; resistance training; sarcopenia.

Conflict of interest statement

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Flow diagram indicating participant progress through the trial.
Figure 2
Figure 2
Cross-sectional muscle area of the thigh for segmentation and a sample segmented image.
Figure 3
Figure 3
Improvement percentage of sarcopenia-related physical function and muscle mass after intervention.

References

    1. Cruz-Jentoft A.J., Landi F. Sarcopenia. Clin. Med. 2014;14:183–186. doi: 10.7861/clinmedicine.14-2-183.
    1. Reginster J.Y., Cooper C., Rizzoli R., Kanis J.A., Appelboom G., Bautmans I., Bischoff-Ferrari H.A., Boers M., Brandi M.L., Bruyere O., et al. Recommendations for the conduct of clinical trials for drugs to treat or prevent sarcopenia. Aging Clin. Exp. Res. 2016;28:47–58. doi: 10.1007/s40520-015-0517-y.
    1. Cao L., Morley J.E. Sarcopenia is recognized as an independent condition by an International Classification of Disease, tenth revision, Clinical Modification (ICD-10-CM) Code. J. Am. Med. Dir. Assoc. 2016;17:675–677. doi: 10.1016/j.jamda.2016.06.001.
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., Schneider S.M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Muscaritoli M., Anker S.D., Argilés J., Aversa Z., Bauer J.M., Biolo G., Boirie Y., Bosaeus I., Cederholm T., Costelli P., et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010;29:154–159. doi: 10.1016/j.clnu.2009.12.004.
    1. Fielding R.A., Vellas B., Evans W.J., Bhasin S., Morley J.E., Newman A.B., van Kan G.A., Andrieu S., Bauer J., Breuille D., et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011;12:249–256. doi: 10.1016/j.jamda.2011.01.003.
    1. Morley J.E., Abbatecola A.M., Argiles J.M., Baracos V., Bauer J., Bhasin S., Cederholm T., Coats A.J., Cummings S.R., Evans W.J., et al. Sarcopenia with limited mobility: An international consensus. J. Am. Med. Dir. Assoc. 2011;12:403–409. doi: 10.1016/j.jamda.2011.04.014.
    1. Chen L.K., Liu L.K., Woo J., Assantachai P., Auyeung T.W., Bahyah K.S., Chou M.Y., Chen L.Y., Hsu P.S., Krairit O., et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014;15:95–101. doi: 10.1016/j.jamda.2013.11.025.
    1. McLean R.R., Shardell M.D., Alley D.E., Cawthon P.E., Fragala M.S., Harris T.B., Kenny A.M., Peters K.W., Ferrucci L., Guralnik J.M., et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: The foundation for the National Institutes of Health (FNIH) sarcopenia project. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:576–583. doi: 10.1093/gerona/glu012.
    1. Shafiee G., Keshtkar A., Soltani A., Ahadi Z., Larijani B., Heshmat R. Prevalence of sarcopenia in the world: A systematic review and meta- analysis of general population studies. J. Diabetes Metab. Disord. 2017;16:21. doi: 10.1186/s40200-017-0302-x.
    1. Shen Y., Chen J., Chen X., Hou L., Lin X., Yang M. Prevalence and Associated Factors of Sarcopenia in Nursing Home Residents: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2019;20:5–13. doi: 10.1016/j.jamda.2018.09.012.
    1. Cruz-Jentoft A.J., Landi F., Schneider S.M., Zúñiga C., Arai H., Boirie Y., Chen L.K., Fielding R.A., Martin F.C., Michel J.P., et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS) Age Ageing. 2014;43:748–759. doi: 10.1093/ageing/afu115.
    1. Wu I.C., Lin C.C., Hsiung C.A., Wang C.Y., Wu C.H., Chan D.C., Li T.C., Lin W.Y., Huang K.C., Chen C.Y., et al. Epidemiology of sarcopenia among community-dwelling older adults in Taiwan: A pooled analysis for a broader adoption of sarcopenia assessments. Geriatr. Gerontol. Int. 2014;14(Suppl. 1):52–60. doi: 10.1111/ggi.12193.
    1. Chen L.K., Lee W.J., Peng L.N., Liu L.K., Arai H., Akishita M., Asian Working Group for Sarcopenia Recent advances in sarcopenia research in Asia: 2016 update from the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2016;17:761–767. doi: 10.1016/j.jamda.2016.05.016.
    1. Makizako H., Nakai Y., Tomioka K., Taniguchi Y. Prevalence of sarcopenia defined using the Asia Working Group for Sarcopenia criteria in Japanese community-dwelling older adults: A systematic review and meta-analysis. Phys. Ther. Res. 2019;22:53–57. doi: 10.1298/ptr.R0005.
    1. von Haehling S., Morley J.E., Anker S.D. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle. 2010;1:129–133. doi: 10.1007/s13539-010-0014-2.
    1. Patel H.P., Syddall H.E., Jameson K., Robinson S., Denison H., Roberts H.C., Edwards M., Dennison E., Cooper C., Aihie Sayer A. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: Findings from the Hertfordshire Cohort Study (HCS) Age Ageing. 2013;42:378–384. doi: 10.1093/ageing/afs197.
    1. Brown J.C., Harhay M.O., Harhay M.N. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J. Cachexia Sarcopenia Muscle. 2016;7:290–298. doi: 10.1002/jcsm.12073.
    1. Yoshimura Y., Wakabayashi H., Yamada M., Kim H., Harada A., Arai H. Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J. Am. Med. Dir. Assoc. 2017;18:553.e1–553.e16. doi: 10.1016/j.jamda.2017.03.019.
    1. Yamada M., Kimura Y., Ishiyama D., Nishio N., Abe Y., Kakehi T., Fujimoto J., Tanaka T., Ohji S., Otobe Y., et al. Differential Characteristics of Skeletal Muscle in Community-Dwelling Older Adults. J. Am. Med. Dir. Assoc. 2017;18:807.e9–807.e16. doi: 10.1016/j.jamda.2017.05.011.
    1. Borg G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–381. doi: 10.1249/00005768-198205000-00012.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. Chen L., Woo J., Assantachai P., Auyeung T.W., Chou M.Y., Iijimia K., Jang H.C., Kang L., Kim M., Kim S., et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020;21:300–307. doi: 10.1016/j.jamda.2019.12.012.
    1. Makizako H., Shimada H., Doi T., Tsutsumimoto K., Lee S., Lee S.C., Harada K., Hotta R., Nakakubo S., Bae S., et al. Age-dependent changes in physical performance and body composition in community-dwelling Japanese older adults. J. Cachexia Sarcopenia Muscle. 2017;8:607–614. doi: 10.1002/jcsm.12197.
    1. Whitney S.L., Wrisley D.M., Marchetti G.F., Gee M.A., Redfern M.S., Furman J.M. Clinical measurement of sit-to-stand performance in people with balance disorders: Validity of data for the Five-Times-Sit-to-Stand Test. Phys. Ther. 2005;85:1034–1045. doi: 10.1093/ptj/85.10.1034.
    1. Podsiadlo D., Richardson S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148.
    1. Kim H.K., Suzuki T., Saito K., Yoshida H., Kobayashi H., Kato H., Katayama M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc. 2012;60:16–23. doi: 10.1111/j.1532-5415.2011.03776.x.
    1. Lauretani F., Russo C.R., Bandinelli S., Bartali B., Cavazzini C., Di Iorio A., Corsi A.M., Rantanen T., Guralnik J.M., Ferrucci L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003;95:1851–1860. doi: 10.1152/japplphysiol.00246.2003.
    1. Mitchell W.K., Williams J., Atherton P., Larvin M., Lund J., Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012;3:260. doi: 10.3389/fphys.2012.00260.
    1. Newman A.B., Kupelian V., Visser M., Simonsick E.M., Goodpaster B.H., Kritchevsky S.B., Tylavsky F.A., Rubin S.M., Harris T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2006;61:72–77. doi: 10.1093/gerona/61.1.72.
    1. Perera S., Patel K.V., Rosano C., Rubin S.M., Satterfield S., Harris T., Ensrud K., Orwoll E., Lee C.G., Chandler J.M., et al. Gait speed predicts incident disability: A pooled analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71:63–71. doi: 10.1093/gerona/glv126.
    1. Makizako H., Shimada H., Doi T., Tsutsumimoto K., Nakakubo S., Hotta R., Suzuki T. Predictive cutoff values of the five-times sit-to-stand test and the timed “up & go” test for disability incidence in older people dwelling in the community. Phys. Ther. 2017;97:417–424.
    1. Duan-Porter W., Vo T.N., Ullman K., Langsetmo L., Strotmeyer E.S., Taylor B.C., Santanasto A.J., Cawthon P.M., Newman A.B., Simonsick E.M., et al. Hospitalization-associated change in gait speed and risk of functional limitations for older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:1657–1663. doi: 10.1093/gerona/glz027.
    1. Studenski S., Perera S., Patel K., Rosano C., Faulkner K., Inzitari M., Brach J., Chandler J., Cawthon P., Connor E.B., et al. Gait speed and survival in older adults. JAMA. 2011;305:50–58. doi: 10.1001/jama.2010.1923.
    1. Eekhoff E.M.W., van Schoor N.M., Biedermann J.S., Oosterwerff M.M., de Jongh R., Bravenboer N., van Poppel M.N.M., Deeg D.J.H. Relative importance of four functional measures as predictors of 15-year mortality in the older Dutch population. BMC Geriatr. 2019;19:92. doi: 10.1186/s12877-019-1092-4.
    1. Fiatarone M.A., Marks E.C., Ryan N.D., Meredith C.N., Lipsitz L.A., Evans W.J. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263:3029–3034. doi: 10.1001/jama.1990.03440220053029.
    1. Lopez P., Izquierdo M., Radaelli R., Sbruzzi G., Grazioloi R., Pinto R.S., Cadore E.L. Effectiveness of multimodal training on functional capacity in frail older people: A meta-analysis of randomized controlled trials. J. Aging Phys. Act. 2018;26:407–418. doi: 10.1123/japa.2017-0188.
    1. Chan D.D., Tsou H.H., Chang C.B., Yang R.S., Tsauo J.Y., Chen C.Y., Hsiao C.F., Hsu Y.T., Chen C.H., Chang S.F., et al. Integrated care for geriatric frailty and sarcopenia: A randomized control trial. J. Cachexia Sarcopenia Muscle. 2017;8:78–88. doi: 10.1002/jcsm.12132.
    1. Borde R., Hortobagyi T., Granacher U. Dose-response relationships of resistance training in healthy old adults: A systematic review and meta-analysis. Sports Med. 2015;45:1693–1720. doi: 10.1007/s40279-015-0385-9.
    1. Cruz-Jentoft A.J., Kiesswetter E., Drey M., Sieber C.C. Nutrition, frailty, and sarcopenia. Aging Clin. Exp. Res. 2017;29:43–48. doi: 10.1007/s40520-016-0709-0.
    1. Mithal A., Bonjour J.P., Boonen S., Burckhardt P., Degens H., El Hajj Fuleihan G., Josse R., Lips P., Morales Torres J., Rizzoli R., et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 2013;24:1555–1566. doi: 10.1007/s00198-012-2236-y.
    1. Granic A., Sayer A.A., Robinson S.M. Dietary patterns, skeletal muscle health, and sarcopenia in older adults. Nutrients. 2019;11:745. doi: 10.3390/nu11040745.
    1. Hickson M. Nutritional interventions in sarcopenia: A critical review. Proc. Nutr. Soc. 2015;74:378–386. doi: 10.1017/S0029665115002049.
    1. Woo J. Nutritional interventions in sarcopenia: Where do we stand? Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:19–23. doi: 10.1097/MCO.0000000000000432.
    1. Lozano-Montoya I., Correa-Perez A., Abraha I., Soiza R.L., Cherubini A., O’Mahony D., Cruz-Jentoft A.J. Nonpharmacological interventions to treat physical frailty and sarcopenia in older patients: A systematic overview - the SENATOR Project ONTOP Series. Clin. Interv. Aging. 2017;12:721–740. doi: 10.2147/CIA.S132496.
    1. Curtis E., Litwic A., Cooper C., Dennison E. Determinants of muscle and bone aging. J. Cell. Physiol. 2015;230:2618–2625. doi: 10.1002/jcp.25001.
    1. Kikuchi N., Yoshida S., Min S.K., Lee K., Sakamaki-Sunaga M., Okamoto T., Nakazato K. The ACTN3 R577X genotype is associated with muscle function in a Japanese population. Appl. Physiol. Nutr. Metab. 2015;40:316–322. doi: 10.1139/apnm-2014-0346.

Source: PubMed

3
購読する