Reference Values of Cardiopulmonary Exercise Test Parameters in the Contemporary Paediatric Population

Pascal Amedro, Stefan Matecki, Taissa Pereira Dos Santos, Sophie Guillaumont, Jonathan Rhodes, Suellen Moli Yin, Alfred Hager, Julia Hock, Gregoire De La Villeon, Johan Moreau, Anne Requirand, Luc Souilla, Marie Vincenti, Marie-Christine Picot, Helena Huguet, Thibault Mura, Arthur Gavotto, Pascal Amedro, Stefan Matecki, Taissa Pereira Dos Santos, Sophie Guillaumont, Jonathan Rhodes, Suellen Moli Yin, Alfred Hager, Julia Hock, Gregoire De La Villeon, Johan Moreau, Anne Requirand, Luc Souilla, Marie Vincenti, Marie-Christine Picot, Helena Huguet, Thibault Mura, Arthur Gavotto

Abstract

Background: The evaluation of health status by cardiopulmonary exercise test (CPET) has shown increasing interest in the paediatric population. Our group recently established reference Z-score values for paediatric cycle ergometer VO2max, applicable to normal and extreme weights, from a cohort of 1141 healthy children. There are currently no validated reference values for the other CPET parameters in the paediatric population. This study aimed to establish, from the same cohort, reference Z-score values for the main paediatric cycle ergometer CPET parameters, apart from VO2max.

Results: In this cross-sectional study, 909 healthy children aged 5-18 years old underwent a CPET. Linear, quadratic, and polynomial mathematical regression equations were applied to identify the best CPET parameters Z-scores, according to anthropometric parameters (sex, age, height, weight, and BMI). This study provided Z-scores for maximal CPET parameters (heart rate, respiratory exchange ratio, workload, and oxygen pulse), submaximal CPET parameters (ventilatory anaerobic threshold, VE/VCO2 slope, and oxygen uptake efficiency slope), and maximum ventilatory CPET parameters (tidal volume, respiratory rate, breathing reserve, and ventilatory equivalent for CO2 and O2).

Conclusions: This study defined paediatric reference Z-score values for the main cycle ergometer CPET parameters, in addition to the existing reference values for VO2max, applicable to children of normal and extreme weights. Providing Z-scores for CPET parameters in the paediatric population should be useful in the follow-up of children with various chronic diseases. Thus, new paediatric research fields are opening up, such as prognostic studies and clinical trials using cardiopulmonary fitness outcomes. Trial registration NCT04876209-Registered 6 May 2021-Retrospectively registered, https://ichgcp.net/clinical-trials-registry/NCT04876209 .

Keywords: Aerobic exercise; Children; Maximal breathing capacity; Physical fitness; Z-score.

Conflict of interest statement

The authors have no competing interests to declare.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Correlation between observed and predicted values of CPET maximal parameters using the Z-score model. The “underweight” group was represented by blue points, the “normal weight” group by green points, and the “overweight/obesity” group by red points. The correlation between measured and predicted values using the Z-score model for RERmax (panel A), workloadmax (panel B) and O2 pulsemax (panel C)
Fig. 2
Fig. 2
Correlation between observed and predicted values of CPET submaximal parameters using the Z-score model. The “underweight” group was represented by blue points, the “normal weight” group by green points, and the “overweight/obesity” group by red points. The correlation between measured and predicted values using the Z-score model for VAT (panel A), VE/VCO2 slope (panel B) and OUES (panel C)
Fig. 3
Fig. 3
Correlation between observed and predicted values CPET ventilatory parameters using the Z-score model. The “underweight” group was represented by blue points, the “normal weight” group by green points, and the “overweight/obesity” group by red points. The correlation between measured and predicted values using the Z-score model for VTmax (panel A) and RRmax (panel B)

References

    1. Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary exercise testing in pediatrics. Ann Am Thorac Soc. 2017;14:S123–S128. doi: 10.1513/AnnalsATS.201611-912FR.
    1. Amedro P, Gavotto A, Guillaumont S, Bertet H, Vincenti M, De La Villeon G, et al. Cardiopulmonary fitness in children with congenital heart diseases versus healthy children. Heart Br Card Soc. 2018;104:1026–1036.
    1. Gavotto A, Dubard V, Avesani M, Huguet H, Picot M-C, Abassi H, et al. Impaired aerobic capacity in adolescents and young adults after treatment for cancer or non-malignant haematological disease. Pediatr Res. 2023;
    1. Moreau J, Socchi F, Renoux MC, Requirand A, Abassi H, Guillaumont S, et al. Cardiopulmonary fitness in children with asthma versus healthy children. Arch Dis Child. 2022;archdischild-2021-323733.
    1. Pattaragarn A, Warady BA, Sabath RJ. Exercise capacity in pediatric patients with end-stage renal disease. Perit Dial Int J Int Soc Perit Dial. 2004;24:274–280. doi: 10.1177/089686080402400310.
    1. Verduci E, Bronsky J, Embleton N, Gerasimidis K, Indrio F, Köglmeier J, et al. Role of dietary factors, food habits and lifestyle in childhood obesity development. A position paper from the European Society for paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr. 2021
    1. Amedro P, Gavotto A, Legendre A, Lavastre K, Bredy C, De La Villeon G, et al. Impact of a centre and home-based cardiac rehabilitation program on the quality of life of teenagers and young adults with congenital heart disease: the QUALI-REHAB study rationale, design and methods. Int J Cardiol. 2019;283:112–118. doi: 10.1016/j.ijcard.2018.12.050.
    1. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–2035. doi: 10.1001/jama.2009.681.
    1. Cooper DM, Weiler-Ravell D, Whipp BJ, Wasserman K. Aerobic parameters of exercise as a function of body size during growth in children. J Appl Physiol. 1984;56:628–634. doi: 10.1152/jappl.1984.56.3.628.
    1. Cooper DM, Weiler-Ravell D. Gas exchange response to exercise in children. Am Rev Respir Dis. 1984;129:S47–48. doi: 10.1164/arrd.1984.129.2P2.S47.
    1. Gavotto A, Mura T, Rhodes J, Yin SM, Hager A, Hock J, et al. Reference values of aerobic fitness in the contemporary paediatric population. Eur J Prev Cardiol. 2023;zwad054.
    1. Takken T, Mylius CF, Paap D, Broeders W, Hulzebos HJ, Van Brussel M, et al. Reference values for cardiopulmonary exercise testing in healthy subjects—an updated systematic review. Expert Rev Cardiovasc Ther. 2019;17:413–426. doi: 10.1080/14779072.2019.1627874.
    1. Gavotto A, Huguet H, Picot M-C, Guillaumont S, Matecki S, Amedro P. The V̇e/V̇co2 slope: a useful tool to evaluate the physiological status of children with congenital heart disease. J Appl Physiol Bethesda Md. 1985;2020(129):1102–1110.
    1. Gavotto A, Vandenberghe D, Abassi H, Huguet H, Macioce V, Picot M-C, et al. Oxygen uptake efficiency slope: a reliable surrogate parameter for exercise capacity in healthy and cardiac children? Arch Dis Child. 2020;105:1167–1174. doi: 10.1136/archdischild-2019-317724.
    1. Amedro P, Picot MC, Moniotte S, Dorka R, Bertet H, Guillaumont S, et al. Correlation between cardio-pulmonary exercise test variables and health-related quality of life among children with congenital heart diseases. Int J Cardiol. 2016;203:1052–1060. doi: 10.1016/j.ijcard.2015.11.028.
    1. Abassi H, Gavotto A, Picot MC, Bertet H, Matecki S, Guillaumont S, et al. Impaired pulmonary function and its association with clinical outcomes, exercise capacity and quality of life in children with congenital heart disease. Int J Cardiol [Internet]. 2019 [cited 2019 Mar 11]; Available from:
    1. Moreau J, Lavastre K, Romieu H, Charbonnier F, Guillaumont S, Bredy C, et al. Impact of Sophrology on cardiopulmonary fitness in teenagers and young adults with a congenital heart disease: the SOPHROCARE study rationale, design and methods. Int J Cardiol Heart Vasc. 2020;27:100489.
    1. Amedro P, Werner O, Abassi H, Boisson A, Souilla L, Guillaumont S, et al. Health-related quality of life and physical activity in children with inherited cardiac arrhythmia or inherited cardiomyopathy: the prospective multicentre controlled QUALIMYORYTHM study rationale, design and methods. Health Qual Life Outcomes. 2021;19:187. doi: 10.1186/s12955-021-01825-6.
    1. American Thoracic Society, American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167:211–77.
    1. Barlow SE, Expert Committee Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–192. doi: 10.1542/peds.2007-2329C.
    1. Takken T, Blank AC, Hulzebos EH, van Brussel M, Groen WG, Helders PJ. Cardiopulmonary exercise testing in congenital heart disease: (contra)indications and interpretation. Neth Heart J Mon J Neth Soc Cardiol Neth Heart Found. 2009;17:385–392.
    1. Rowland TW. Does peak VO2 reflect VO2max in children?: evidence from supramaximal testing. Med Sci Sports Exerc. 1993;25:689–693. doi: 10.1249/00005768-199306000-00007.
    1. Armstrong N, Welsman J, Winsley R. Is peak VO2 a maximal index of children’s aerobic fitness? Int J Sports Med. 1996;17:356–359. doi: 10.1055/s-2007-972860.
    1. Brusasco V, Crapo R, Viegi G. American Thoracic Society, European Respiratory Society. Coming together: the ATS/ERS consensus on clinical pulmonary function testing. Eur Respir J. 2005;26:1–2. doi: 10.1183/09031936.05.00034205.
    1. Stephens P, Paridon SM. Exercise testing in pediatrics. Pediatr Clin North Am. 2004;51:1569–1587. doi: 10.1016/j.pcl.2004.08.003.
    1. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol Bethesda Md. 1985;1986(60):2020–2027.
    1. Weatherald J, Sattler C, Garcia G, Laveneziana P. Ventilatory response to exercise in cardiopulmonary disease: the role of chemosensitivity and dead space. Eur Respir J. 2018;51.
    1. Watson M, Ionescu MF, Sylvester K, Fuld J. Minute ventilation/carbon dioxide production in patients with dysfunctional breathing. Eur Respir Rev Off J Eur Respir Soc. 2021;30:200182. doi: 10.1183/16000617.0182-2020.
    1. DeVore GR. Computing the Z score and centiles for cross-sectional analysis: a practical approach. J Ultrasound Med Off J Am Inst Ultrasound Med. 2017;36:459–473.
    1. Mawad W, Drolet C, Dahdah N, Dallaire F. A review and critique of the statistical methods used to generate reference values in pediatric echocardiography. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2013;26:29–37. doi: 10.1016/j.echo.2012.09.021.
    1. Nittari G, Scuri S, Petrelli F, Pirillo I, di Luca NM, Grappasonni I. Fighting obesity in children from European World Health Organization member states. Epidemiological data, medical-social aspects, and prevention programs. Clin Ter. 2019;170:e223–e230.
    1. Cooper KH, Purdy JG, White SR, Pollock ML, Linnerud AC. Age-fitness adjusted maximal heart rates. Role Exerc Int Med. 1977;10:78–88.
    1. Rhodes J, Ubeda Tikkanen A, Jenkins KJ. Exercise testing and training in children with congenital heart disease. Circulation. 2010;122:1957–1967. doi: 10.1161/CIRCULATIONAHA.110.958025.
    1. Mahendran AK, Katz D, Opotowsky AR, Lubert AM. Exercise pathophysiology and testing in individuals with a Fontan circulation. CJC Pediatr Congenit Heart Dis [Internet]. 2023 [cited 2023 Mar 16]; Available from:
    1. Wasserman K. The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis. 1984;129:S35–40. doi: 10.1164/arrd.1984.129.2P2.S35.
    1. Casaburi R. Physiologic responses to training. Clin Chest Med. 1994;15:215–227. doi: 10.1016/S0272-5231(21)01069-8.
    1. Paolillo S, Veglia F, Salvioni E, Corrà U, Piepoli M, Lagioia R, et al. Heart failure prognosis over time: how the prognostic role of oxygen consumption and ventilatory efficiency during exercise has changed in the last 20 years. Eur J Heart Fail. 2019
    1. Novais ARB, Matecki S, Jaussent A, Picot M-C, Amedro P, Guillaumont S, et al. Hyperventilation during exercise in very low birth weight school-age children may implicate inspiratory muscle weakness. J Pediatr. 2012;160:415–420.e1. doi: 10.1016/j.jpeds.2011.09.014.
    1. Keochkerian D, Chlif M, Delanaud S, Gauthier R, Maingourd Y, Ahmaidi S. Breathing pattern adopted by children with cystic fibrosis with mild to moderate pulmonary impairment during exercise. Respir Int Rev Thorac Dis. 2008;75:170–177.
    1. Brat K, Stastna N, Merta Z, Olson LJ, Johnson BD, Cundrle I. Cardiopulmonary exercise testing for identification of patients with hyperventilation syndrome. PLoS ONE. 2019;14:e0215997. doi: 10.1371/journal.pone.0215997.
    1. de Groot EP, Duiverman EJ, Brand PLP. Dysfunctional breathing in children with asthma: a rare but relevant comorbidity. Eur Respir J. 2013;41:1068–1073. doi: 10.1183/09031936.00130212.
    1. Azab NY, El Mahalawy II, El Aal GAA, Taha MH. Breathing pattern in asthmatic patients during exercise. Egypt J Chest Dis Tuberc. 2015;64:521–527. doi: 10.1016/j.ejcdt.2015.02.009.
    1. Clark CJ, Cochrane LM. Assessment of work performance in asthma for determination of cardiorespiratory fitness and training capacity. Thorax. 1988;43:745–749. doi: 10.1136/thx.43.10.745.
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40:1324–1343. doi: 10.1183/09031936.00080312.
    1. Cumming GR. Maximal exercise capacity of children with heart defects. Am J Cardiol. 1978;42:613–619. doi: 10.1016/0002-9149(78)90631-8.

Source: PubMed

3
購読する