The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis

Douglas J Veale, Dennis McGonagle, Iain B McInnes, James G Krueger, Christopher T Ritchlin, Dirk Elewaut, Keith S Kanik, Thijs Hendrikx, Gabriel Berstein, Jennifer Hodge, Jean-Baptiste Telliez, Douglas J Veale, Dennis McGonagle, Iain B McInnes, James G Krueger, Christopher T Ritchlin, Dirk Elewaut, Keith S Kanik, Thijs Hendrikx, Gabriel Berstein, Jennifer Hodge, Jean-Baptiste Telliez

Abstract

The pathogenesis of SpA is multifactorial and involves a range of immune cell types and cytokines, many of which utilize Janus kinase (JAK) pathways for signaling. In this review, we summarize the animal and pre-clinical data that have demonstrated the effects of JAK blockade on the underlying molecular mechanisms of SpA and provide a rationale for JAK inhibition for the treatment of SpA. We also review the available clinical trial data evaluating JAK inhibitors tofacitinib, baricitinib, peficitinib, filgotinib and upadacitinib in PsA, AS and related inflammatory diseases, which have demonstrated the efficacy of these agents across a range of SpA-associated disease manifestations. The available clinical trial data, supported by pre-clinical animal model studies demonstrate that JAK inhibition is a promising therapeutic strategy for the treatment of SpA and may offer the potential for improvements in multiple articular and extra-articular disease manifestations of PsA and AS.

Figures

Fig . 1
Fig. 1
Innate and adaptive immune responses in the initiation and perpetuation of SpA The JAK pathway sits at the crossroads of both key innate and adaptive immune cell populations that are thought to be important in SpA pathogenesis. The tissue-specific targets of SpA-related disease, including the skeleton, skin and gut, interact with diverse innate immune cells to maintain tissue homeostasis. Although SpA is immunologically heterogeneous, there is strong evidence for adaptive immune responses that could be due to autoantigens or to other antigens that breech tissue barriers. JAK: Janus kinase; Tc: cytotoxic T cell; Th: T helper; TYK: tyrosine kinase.
Fig . 2
Fig. 2
JAK inhibition of cytokine pathways involved in the pathogenesis of SpA Cytokine signaling and production at the enthesis: signaling for a number of key cytokine pathways implicated in the pathogenesis of SpA is blocked through direct inhibition of JAKs, including IFNγ, IL-7, IL-12, IL-15, IL-22 and IL-23. Other important cytokines, such as TNFα, IL-1 and IL-17, signal independently of JAKs, but their expression is regulated by JAK-dependent cytokines and, therefore, may be blocked indirectly via JAK inhibition. These cytokines influence cellular function for a broad range of innate and adaptive cell types, including many of those shown in Fig. 1. JAK, Janus kinase; TYK, tyrosine kinase.

References

    1. van der Horst-Bruinsma IE, Nurmohamed MT.. Management and evaluation of extra-articular manifestations in spondyloarthritis. Ther Adv Musculoskelet Dis 2012;4:413–22.
    1. Coates LC, Kavanaugh A, Mease PJ. et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis Rheumatol 2016;68:1060–71.
    1. Orr C, Veale DJ.. Is there a need for new agents with novel mechanisms of action in psoriatic arthritis? Ann Rheum Dis 2014;73:951–3.
    1. Fragoulis GE, Siebert S, McInnes IB.. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Annu Rev Med 2016;67:337–53.
    1. McGonagle D, Aydin SZ, Gul A, Mahr A, Direskeneli H.. ’MHC-I-opathy’-unified concept for spondyloarthritis and Behcet disease. Nat Rev Rheumatol 2015;11:731–40.
    1. Ghoreschi K, Gadina M.. Jakpot! New small molecules in autoimmune and inflammatory diseases. Exp Dermatol 2014;23:7–11.
    1. Villarino AV, Kanno Y, O’Shea JJ.. Mechanisms and consequences of Jak–STAT signaling in the immune system. Nat Immunol 2017;18:374–84.
    1. O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A.. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis 2013;72 (Suppl 2):ii111–5.
    1. Benjamin M, McGonagle D.. Histopathologic changes at “synovio–entheseal complexes” suggesting a novel mechanism for synovitis in osteoarthritis and spondylarthritis. Arthritis Rheum 2007;56:3601–9.
    1. Baeten D, Breban M, Lories R, Schett G, Sieper J.. Are spondylarthritides related but distinct conditions or a single disease with a heterogeneous phenotype? Arthritis Rheum 2013;65:12–20.
    1. Ellinghaus D, Jostins L, Spain SL. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016;48:510–8.
    1. Arakawa A, Siewert K, Stöhr J. et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med 2015;212:2203–12.
    1. Menon B, Gullick NJ, Walter GJ. et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol 2014;66:1272–81.
    1. Sherlock JP, Joyce-Shaikh B, Turner SP. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4–CD8– entheseal resident T cells. Nat Med 2012;18:1069–76.
    1. Jacques P, Lambrecht S, Verheugen E. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis 2014;73:437–45.
    1. Nestle FO, Kaplan DH, Barker J.. Psoriasis. N Engl J Med 2009;361:496–509.
    1. Costello ME, Ciccia F, Willner D. et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol 2015;67:686–91.
    1. Tito RY, Cypers H, Joossens M. et al. Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol 2017;69:114–21.
    1. Van de Wiele T, Van Praet JT, Marzorati M, Drennan MB, Elewaut D.. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol 2016;12:398–411.
    1. Scher JU, Littman DR, Abramson SB.. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheumatol 2016;68:35–45.
    1. Ghoreschi K, Laurence A, O’Shea JJ.. Janus kinases in immune cell signaling. Immunol Rev 2009;228:273–87.
    1. Spits H, Bernink JH, Lanier L.. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat Immunol 2016;17:758–64.
    1. Langrish CL, McKenzie BS, Wilson NJ. et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004;202:96–105.
    1. Smith JA, Colbert RA.. The IL-23/IL-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol 2014;66:231–41.
    1. Sieper J, Braun J, Kay J. et al. Sarilumab for the treatment of ankylosing spondylitis: results of a Phase II, randomised, double-blind, placebo-controlled study (ALIGN). Ann Rheum Dis 2015;74:1051–7.
    1. Krueger J, Clark JD, Suárez-Fariñas M. et al. Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: a randomized phase 2 study. J Allergy Clin Immunol 2016;137:1079–90.
    1. Gao W, McGarry T, Orr C. et al. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors. Ann Rheum Dis 2016;75:311–5.
    1. Paine A, Ritchlin C.. Bone remodeling in psoriasis and psoriatic arthritis: an update. Curr Opin Rheumatol 2016;28:66–75.
    1. Braem K, Lories RJ.. Insights into the pathophysiology of ankylosing spondylitis: contributions from animal models. Joint Bone Spine 2012;79:243–8.
    1. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD.. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27–associated human disorders. Cell 1990;63:1099–112.
    1. Milia AF, Ibba-Manneschi L, Manetti M. et al. Evidence for the prevention of enthesitis in HLA-B27/hβ(2)m transgenic rats treated with a monoclonal antibody against TNF-α. J Cell Mol Med 2011;15:270–9.
    1. van Tok M, van Duivenvoorde LM, Kramer I. et al. Anti-IL-17A treatment blocks inflammation, destruction and new bone formation in experimental spondyloarthritis in HLA-B27 transgenic rats. Arthritis Rheumatol 2015;67 (suppl 10) (20 March 2018, date last accessed).
    1. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G.. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999;10:387–98.
    1. Ruutu M, Thomas G, Steck R. et al. ß-glucan triggers spondylarthritis and Crohn’s disease–like ileitis in SKG mice. Arthritis Rheum 2012;64:2211–22.
    1. Reinhardt A, Yevsa T, Worbs T. et al. Interleukin-23–dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol 2016;68:2476–86.
    1. De Wilde K, Martens A, Lambrecht S. et al. A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Ann Rheum Dis 2017;76:585–92.
    1. Yokota K, Sato K, Miyazaki T. et al. Combination of tumor necrosis factor α and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol 2014;66:121–9.
    1. Mikami Y, Asano M, Honda MJ, Takagi M.. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2 cells. J Cell Physiol 2010;223:123–33.
    1. Meyer DM, Jesson MI, Li X. et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond) 2010;7:41.
    1. Dowty ME, Lin J, Ryder TF. et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a Janus kinase inhibitor, in humans. Drug Metab Dispos 2014;42:759–73.
    1. Hodge JA, Kawabata TT, Krishnaswami S. et al. The mechanism of action of tofacitinib – an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol 2016;34:318–28.
    1. Mease P, Hall S, Fitzgerald O. et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med 2017;377:1537–50.
    1. Gladman D, Rigby W, Azevedo VF. et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med 2017;377:1525–36.
    1. van der Heijde D, Deodhar A, Wei JC. et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis 2017;76:1340–7.
    1. Asquith M, Elewaut D, Lin P, Rosenbaum JT.. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Clin Rheumatol 2014;28:687–702.
    1. Danese S, Grisham MB, Hodge J, Telliez JB.. JAK inhibition using tofacitinib for inflammatory bowel disease treatment: a hub for multiple inflammatory cytokines. Am J Physiol Gastrointest Liver Physiol 2016;310:G155–62.
    1. Sandborn WJ, Su C, Sands BE. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med 2017;376:1723–36.
    1. Panés J, Sandborn WJ, Schreiber S. et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut 2017;66:1049–59.
    1. Vermeire S, Schreiber S, Petryka R. et al. Filgotinib, a selective JAK1 inhibitor, induces clinical remission in patients with moderate-to-severe Crohn’s disease: interim analysis from the Phase 2 FITZROY study. J Crohns Colitis 2016;10:S15.
    1. Marks DJ. Defective innate immunity in inflammatory bowel disease: a Crohn’s disease exclusivity? Curr Opin Gastroenterol 2011;27:328–34.
    1. Bachelez H, van de Kerkof PC, Strohal R. et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet 2015;386:552–61.
    1. Bissonnette R, Iversen L, Sofen H. et al. Tofacitinib withdrawal and retreatment in moderate-to-severe chronic plaque psoriasis: a randomized controlled trial. Br J Dermatol 2015;172:1395–406.
    1. Papp KA, Menter A, Abe M. et al. Two Phase 3 studies of oral tofacitinib in patients with moderate to severe plaque psoriasis: 16-week efficacy and safety results. J Am Acad Dermatol 2015;72 (Suppl 1):AB66.
    1. Ports WC, Khan S, Lan S. et al. A randomized phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis. Br J Dermatol 2013;169:137–45.
    1. Bissonnette R, Papp KA, Poulin Y. et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol 2016;175:902–11.
    1. Papp KA, Menter MA, Raman M. et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol 2016;174:1266–76.
    1. Liew SH, Nichols KK, Klamerus KJ. et al. Tofacitinib (CP-690, 550), a Janus kinase inhibitor for dry eye disease: results from a Phase 1/2 trial. Ophthalmology 2012;119:1328–35.
    1. Lin P, Suhler EB, Rosenbaum JT.. The future of uveitis treatment. Ophthalmology 2014;121:365–76.
    1. Burmester GR, Blanco R, Charles-Schoeman C. et al. Tofacitinib (CP-690, 550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 2013;381:451–60.
    1. Fleischmann R, Kremer J, Cush J. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 2012;367:495–507.
    1. Kremer J, Li Z-G, Hall S. et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med 2013;159:253–61.
    1. Lee EB, Fleischmann R, Hall S. et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 2014;370:2377–86.
    1. van der Heijde D, Tanaka Y, Fleischmann R. et al. Tofacitinib (CP-690, 550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum 2013;65:559–70.
    1. van Vollenhoven RF, Fleischmann R, Cohen S. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 2012;367:508–19.
    1. Wollenhaupt J, Silverfield J, Lee EB. et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J Rheumatol 2014;41:837–52.
    1. Genovese MC, Kremer J, Zamani O. et al. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med 2016;374:1243–52.
    1. Kremer JM, Emery P, Camp HS. et al. A Phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy. Arthritis Rheumatol 2016;68:2867–77.
    1. Namour F, Diderichsen PM, Cox E. et al. Pharmacokinetics and pharmacokinetic/pharmacodynamic modeling of filgotinib (GLPG0634), a selective JAK1 inhibitor, in support of Phase IIb dose selection. Clin Pharmacokinet 2015;54:859–74.
    1. Kivitz AJ, Gutierrez-Ureña SR, Poiley J. et al. Peficitinib, a JAK inhibitor, in the treatment of moderate-to-severe rheumatoid arthritis in patients with an inadequate response to methotrexate. Arthritis Rheumatol 2017;69:709–19.
    1. Ghoreschi K, Jesson MI, Li X. et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690, 550). J Immunol 2011;186:4234–43.
    1. Dowty M, Lin T, Wang L. et al. Lack of differentiation of Janus kinase inhibitors in rheumatoid arthritis based on Janus kinase pharmacology and clinically meaningful concentrations. Ann Rheum Dis 2014;73 (Suppl 2):116.
    1. Wollenhaupt J, Silverfield J, Lee EB. et al. Tofacitinib, an oral Janus kinase inhibitor, in the treatment of rheumatoid arthritis: safety and clinical and radiographic efficacy in open-label, long-term extension studies over 7 years. Arthritis Rheumatol 2015;67:1645 (abstract).

Source: PubMed

3
購読する