Implant evaluation of an insertable cardiac monitor outside the electrophysiology lab setting

Roman Pachulski, James Cockrell, Hemant Solomon, Fang Yang, John Rogers, Roman Pachulski, James Cockrell, Hemant Solomon, Fang Yang, John Rogers

Abstract

Background: To date, insertable cardiac monitors (ICM) have been implanted in the hospital without critical evaluation of other potential settings. Providing alternatives to in-hospital insertion may increase access to ICM, decrease waiting times for patients awaiting diagnosis, and reduce hospital resources.

Methods: This was a prospective, non-randomized, clinical trial involving nine clinical sites throughout the United States designed to assess the feasibility of ICM implants in a non-hospital setting. Other than the Reveal® ICM, implant supplies and techniques were left to physician discretion in patients who met indications. Patients were followed up to 90 days post-implant. The primary objective was to characterize the number of procedure-related adverse events that required surgical intervention within 90 days.

Results: Sixty-five patients were implanted at nine out-of-hospital sites. The insertion procedure was well tolerated by all patients. There were no deaths, systemic infections or endocarditis. There were two (3%) procedure-related adverse events requiring device explant and four (6%) adverse events not requiring explant. ICM use led to 16 diagnoses (24.6%) with 9 patients proceeding to alternate cardiac device implants during the course of the 90-day follow up.

Conclusion: Out-of-hospital ICM insertion can be accomplished with comparable procedural safety and represents a reasonable alternative to the in-hospital setting. CLINICALTRIALS.GOV REGISTRATION NUMBER: NCT01168427.

Conflict of interest statement

Competing Interests: FY was an employee of Medtronic, Inc., whose company funded this study. JC is an employee of Cardiovascular Consultants PA. HS is an employee of Southeastern Heart and Vascular Center. In addition, Dr. James Cockrell acts on the Regional Advisory Panel and is a speaker for Medtronic. Dr. John Rogers is also a speaker and consultant for Medtronic as well as receives research support and acts as a speaker and consultant for St. Jude Medical. Reveal® ICM is a product of Medtronic. There are no further patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Patient Flow Chart: Enrolled patient…
Figure 1. Patient Flow Chart: Enrolled patient outcomes.

References

    1. Brignole M, Menozzi C, Maggi R, Solano A, Donateo P, et al. (2005) The usage and diagnostic yield of the implantable loop-recorder in detection of the mechanism of syncope and in guiding effective antiarrhythmic therapy in older people. Europace 7: 273–279.
    1. Brignole M, Sutton R, Menozzi C, Garcia-Civera R, Moya A, et al. (2006) International Study on Syncope of Uncertain Etiology 2 (ISSUE 2) Group. Early application of an implantable loop recorder allows effective specific therapy in patients with recurrent suspected neurally mediated syncope. Eur Heart J 27: 1085–1092.
    1. Schernthaner C, Danmayr F, Altenberger J, Pichler M, Strohmer B (2008) High incidence of tachyarrhythmias detected by an implantable loop recorder in patients with unexplained syncope. Kardiol Pol 66: 37–44.
    1. Entem FR, Enriquez SG, Cobo M, Expósito V, Llano M, et al. (2009) Utility of implantable loop recorders for diagnosing unexplained syncope in clinical practice. Clin Cardiol 32(1): 28–31.
    1. Giada F, Gulizia M, Francese M, Croci F, Santangelo L, et al. (2007) Recurrent unexplained palpitations (RUP) study comparison of implantable loop recorder versus conventional diagnostic strategy. J Am Coll Cardiol 49(19): 1951–1956.
    1. Patel N, Hingorani A, Ascher E (2008) Office-based surgery for vascular surgeons. Perspect Vasc Surg Endovasc Ther 20(4): 326–330.
    1. Fernandez H (2011) Update on the management of menometrorrhagia: new surgical approaches. Gynecol Endocrinol 27: 1131–1136.
    1. Matin SF, Feeley T, Kennamer D, Corriere JN Jr, Miles M, et al. (2009) Office cystoscopy and transrectal ultrasound-guided prostate biopsies pose minimal risk: prospective evaluation of 921 procedures. Urology 73: 1175–1178.
    1. Starling J 3rd, Thosani MK, Coldiron BM (2012) Determining the safety of office-based surgery: what 10 years of Florida data and 6 years of Alabama data reveal. Dermatol Surg 38: 171–177.
    1. Seidl K, Rameken M, Breunung S, Senges J, Jung W, et al. (2000) Diagnostic assessment of recurrent unexplained syncope with a new subcutaneously implantable loop recorder. Europace 2: 256–262.
    1. Babikar A, Hynes B, Ward N, Oslizok P, Walsh K, et al. (2008) A retrospective study of the clinical experience of the implantable loop recorder in a paediatric setting. Int J Clin Pract 62(2): 1520–1525.
    1. Krahn AD, Klein GJ, Yee R, Takle-Newhouse T, Norris C (1999) Use of an extended monitoring strategy in patients with problematic syncope. Reveal Investigators. Circulation 99: 406–410.
    1. Udo EO, Zuithoff NP, van Hemel NM, de Cock CC, Hendriks T, et al. (2012) Incidence and predictors of short- and long-term complications in pacemaker therapy: The FOLLOWPACE study. Heart Rhythm 9: 728–735.
    1. Tarakji KG, Chan EJ, Cantillon DJ, Doonan AL, Hu T, et al. (2010) Cardiac implantable electronic device infections: presentation, management, and patient outcomes. Heart Rhythm 7: 1043–1047.
    1. Smit J, Korup E, Schønheyder HC (2010) Infections associated with permanent pacemakers and implanted cardioverter-defibrillator devices. A 10-year regional study in Denmark. Scan J Infect Dis 42: 658–664.
    1. Krahn AD, Klein GJ, Yee R, Skanes AC (2004) Detection of asymptomatic arrhythmias in unexplained syncope. Am Heart J 148: 326–332.
    1. Moya A, Brignole M, Menozzi C, Garcia-Civera R, Tognarini S, et al. (2001) International Study on Syncope of Uncertain Etiology (ISSUE) Investigators. Mechanism of syncope in patients with isolated syncope and in patients with tilt-positive syncope. Circulation 104: 1261–1267.
    1. Johansen JB, Jørgensen OD, Møller M, Arnsbo P, Mortensen PT, et al. (2011) Infection after pacemaker implantation: infection rates and risk factors associated with infection in a population-based cohort study of 46299 consecutive patients. Eur Heart J 32: 991–998.
    1. Nery PB, Fernandes R, Nair GM, Sumner GL, Ribas CS, et al. (2010) Device-related infection among patients with pacemakers and implantable defibrillators: incidence, risk factors, and consequences. J Cardiovasc Electrophysiol 21: 786–790.
    1. Krahn AD, Lee DS, Birnie D, Healey JS, Crystal E, et al. (2011) Predictors of short-term complications after implantable cardioverter-defibrillator replacement: results from the Ontario ICD Database. Circ Arrhythm Electrophysiol 4: 136–142.
    1. Voigt A, Shalaby A, Saba S (2010) Continued rise in rates of cardiovascular implantable electronic device infections in the United States: temporal trends and causative insights. Pacing Clin Electrophysiol 33: 414–419.
    1. Grubb BP, Welch M, Karabin B, Foster W, Zhang D, et al. (2012) Initial experience with a technique for wound closure after cardiac device implantation designed to reduce infection and minimize tissue scar formation. Am J Ther 19(2): 88–91.

Source: PubMed

3
購読する