Iron Status, Anemia, and Iron Interventions and Their Associations with Cognitive and Academic Performance in Adolescents: A Systematic Review

Kaitlyn L I Samson, Jordie A J Fischer, Marion L Roche, Kaitlyn L I Samson, Jordie A J Fischer, Marion L Roche

Abstract

In adolescents, iron-deficiency anemia is the leading cause of disability-adjusted life years lost. The World Health Organization recommends delivering iron supplementation through school-based platforms, requiring partnerships with the education sector. This anemia-reduction intervention is valued for the perceived benefits of improved learning and school performance. This article aims to systematically review the available evidence on the relationship between iron status and anemia and impacts of iron interventions on cognitive and academic performance in adolescents. Fifty studies were included: n = 26 cross-sectional and n = 24 iron-containing interventions. Our review suggests that iron status and anemia may be associated with academic performance in some contexts and that iron supplementation during adolescence may improve school performance, attention, and concentration. However, nearly all supplementation trials were judged to have moderate or high risk of bias. We did not find evidence suggesting that iron status and anemia influenced or were associated with attention, intelligence, nor memory in adolescents. Further, iron supplementation did not improve memory and recall or intelligence. Overall, more high-quality research is needed to guide programmers and policy makers to understand the relationships between anemia and educational performance and the potential impacts of iron interventions, which effectively reduce anemia, on adolescents' learning and school performance.

Keywords: academic performance; adolescents; anemia; cognitive performance; education; iron.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PRISMA flow diagram of study selection.

References

    1. Lynch S., Pfeiffer C.M., Georgieff M.K., Brittenham G., Fairweather-Tait S., Hurrell R.F., McArdle H.J., Raiten D.J. Biomarkers of Nutrition for Development (BOND)-Iron Review. J. Nutr. 2018;148:1001S–1067S. doi: 10.1093/jn/nxx036.
    1. Gropper S., Smith J. Advanced Human Nutrition and Metabolism. 6th ed. Wadsworth, Cengage Learning; Belmont, CA, USA: 2013.
    1. Bothwell T., Charlton R., Cook J., Finch C. Iron Metabolism in Man. Blackwell Scientific Publications; Oxford, UK: 1979.
    1. World Health Organization . Global Accelerated Action for the Health of Adolescents (AA-HA!) Implementation Guidance, 2016–2030. World Health Organization; Geneva, Switzerland: 2017.
    1. Burrows T., Goldman S., Pursey K., Lim R. Is There an Association between Dietary Intake and Academic Achievement: A Systematic Review. J. Hum. Nutr. Diet. 2017;30:117–140. doi: 10.1111/jhn.12407.
    1. Falkingham M., Abdelhamid A., Curtis P., Fairweather-Tait S., Dye L., Hooper L. The Effects of Oral Iron Supplementation on Cognition in Older Children and Adults: A Systematic Review and Meta-Analysis. Nutr. J. 2010;9:4. doi: 10.1186/1475-2891-9-4.
    1. Hermoso M., Vucic V., Vollhardt C., Arsic A., Roman-Viñas B., Iglesia-Altaba I., Gurinovic M., Koletzko B. The Effect of Iron on Cognitive Development and Function in Infants, Children and Adolescents: A Systematic Review. Ann. Nutr. Metab. 2011;59:154–165. doi: 10.1159/000334490.
    1. Low M., Farrell A., Biggs B., Pasricha S. Effects of Daily Iron Supplementation in Primary-School-Aged Children: Systematic Review and Meta-Analysis of Randomized Controlled Trials. CMAJ Can. Med. Assoc. J. = J. L’Assoc. Med. Can. 2013;185:E791–E802. doi: 10.1503/cmaj.130628.
    1. Sterne J., Savović J., Page M., Elbers R., Blencowe N., Boutron I., Cates C., Cheng H.-Y., Corbett M., Eldridge S., et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898.
    1. Sterne J., Hernán M., Reeves B., Savović J., Berkman N., Viswanathan M., Henry D., Altman D., Ansari M., Boutron I., et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomized Studies of Interventions. BMJ. 2016;355:i4919. doi: 10.1136/bmj.i4919.
    1. National Institute of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. [(accessed on 5 December 2019)]; Available online: .
    1. Karkada S., Upadhya S., Upadhya S., Bhat G. Beneficial Effects of Ragi (Finger Millet) on Hematological Parameters, Body Mass Index, and Scholastic Performance among Anemic Adolescent High-School Girls (AHSG) Compr. Child Adolesc. Nurs. 2019;42:141–150. doi: 10.1080/24694193.2018.1440031.
    1. Sen A., Kanani S.J. Impact of Iron-Folic Acid Supplementation on Cognitive Abilities of School Girls in Vadodara. Indian Pediatr. 2009;46:137–143.
    1. Sorensen L.B., Damsgaard C.T., Dalskov S.M., Petersen R.A., Egelund N., Dyssegaard C.B., Stark K.D., Andersen R., Tetens I., Astrup A., et al. Diet-Induced Changes in Iron and n-3 Fatty Acid Status and Associations with Cognitive Performance in 8–11-Year-Old Danish Children: Secondary Analyses of the Optimal Well-Being, Development and Health for Danish Children through a Healthy New Nordic Diet. Br. J. Nutr. 2015;114:1623–1637. doi: 10.1017/S0007114515003323.
    1. Vazir S., Nagalla B., Thangiah V., Kamasamudram V., Bhattiprolu S. Effect of Micronutrient Supplement on Health and Nutritional Status of Schoolchildren: Mental Function. Nutrition. 2006;22:S26–S32. doi: 10.1016/j.nut.2004.07.021.
    1. Devaki P.B., Chandra R.K., Geisser P. Effects of Oral Iron(III) Hydroxide Polymaltose Complex Supplementation on Hemoglobin Increase, Cognitive Function, Affective Behavior and Scholastic Performance of Adolescents with Varying Iron Status: A Single Centre Prospective Placebo Controlled Study. Arzneim.-Forsch./Drug Res. 2009;59:303–310.
    1. Halliday K.E., Karanja P., Turner E.L., Okello G., Njagi K., Dubeck M.M., Allen E., Jukes M.C.H., Brooker S.J. Plasmodium Falciparum, Anaemia and Cognitive and Educational Performance among School Children in an Area of Moderate Malaria Transmission: Baseline Results of a Cluster Randomized Trial on the Coast of Kenya. Trop. Med. Int. Health. 2012;17:532–549. doi: 10.1111/j.1365-3156.2012.02971.x.
    1. Abalkhail B., Shawky S. Prevalence of Daily Breakfast Intake, Iron Deficiency Anaemia and Awareness of Being Anaemic among Saudi School Students. Int. J. Food Sci. Nutr. 2002;53:519–528. doi: 10.1080/09637480220164370.
    1. Anuar Zaini M.Z., Lim C.T., Low W.Y., Harun F. Effects of Nutritional Status on Academic Performance of Malaysian Primary School Children. Asia-Pac. J. Public Health. 2005;17:81–87. doi: 10.1177/101053950501700204.
    1. Aquilani R., Maggi L., Parisi U., Ghioni G., Zucchella M., Nardi T., Lombardi P., Covini C., Verri M., Barbieri A., et al. School Performance Is Associated with Dietary Iron and Zinc Intake in Adolescent Girls. Curr. Top. Nutraceutical Res. 2011;9:71–76.
    1. Cai M.Q., Yan W.Y. Study on Iron Nutritional Status in Adolescence. Biomedical and environmental sciences. BES. 1990;3:113–119.
    1. Carruyo-Vizcaíno C., Vizcaíno G., Diez-Ewald M., Arteaga-Vizcaíno M., Torres-Guerra E. Concentration of Haemoglobin and Nutrients in Middle-Class Adolescents. Relationship to Academic Achievement. Investig. Clín. 1995;36:117–130.
    1. Dissanayake D.S., Kumarasiri P.V., Nugegoda D.B., Dissanayake D.M. The Association of Iron Status with Educational Performance and Intelligence among Adolescents. Ceylon Med. J. 2009;54:75–79. doi: 10.4038/cmj.v54i3.1199.
    1. El Hioui M., Azzaoui F.-Z., Ahami A.O.T., Rusinek S., Aboussaleh Y. Iron Deficiency and Cognitive Function among Moroccan School Children. Nutr. Ther. Metab. 2012;30:84–89.
    1. Goudarzi A., Mehrabi M.R., Goudarzi K. The Effect of Iron Deficiency Anemia on Intelligence Quotient (IQ) in under 17 Years Old Students. Pak. J. Biol. Sci. PJBS. 2008;11:1398–1400. doi: 10.3923/pjbs.2008.1398.1400.
    1. Halterman J.S., Kaczorowski J.M., Aligne C.A., Auinger P., Szilagyi P.G. Iron Deficiency and Cognitive Achievement among School-Aged Children and Adolescents in the United States. Pediatrics. 2001;107:1381–1386. doi: 10.1542/peds.107.6.1381.
    1. Hutchinson S.E., Powell C.A., Walker S.P., Chang S.M., Grantham-McGregor S.M. Nutrition, Anaemia, Geohelminth Infection and School Achievement in Rural Jamaican Primary School Children. Eur. J. Clin. Nutr. 1997;51:729–735. doi: 10.1038/sj.ejcn.1600473.
    1. Ivanovic D.M., Perez H.T., Olivares M.G., Diaz N.S., Leyton B.D., Ivanovic R.M. Scholastic Achievement: A Multivariate Analysis of Nutritional, Intellectual, Socioeconomic, Sociocultural, Familial, and Demographic Variables in Chilean School-Age Children. Nutrition. 2004;20:878–889. doi: 10.1016/j.nut.2004.06.009.
    1. Ji X., Cui N., Liu J. Neurocognitive Function Is Associated With Serum Iron Status in Early Adolescents. Biol. Res. Nurs. 2017;19:269–277. doi: 10.1177/1099800417690828.
    1. Kharat P.S., Waghmare P.P. Could Anemia Be the Reason for Dysfunctional Cognition? Int. J. Res. Med. Sci. 2015;3:663. doi: 10.5455/2320-6012.ijrms20150326.
    1. Masalha R., Afawi Z., Mahajnah M., Mashal A., Hallak M., Alsaied I., Bolotin A., Ifergan G., Wirguin I. The Impact of Nutritional Vitamin B12, Folate and Hemoglobin Deficiency on School Performance of Elementary School Children. J. Pediatr. Neurol. 2008;6:243–248.
    1. More S., Shivkumar V.B., Gangane N., Shende S. Effects of Iron Deficiency on Cognitive Function in School Going Adolescent Females in Rural Area of Central India. Anemia. 2013 doi: 10.1155/2013/819136.
    1. Nagalakshmi P., Santhosh H., Shobha C. A Study of Correlation between Hemoglobin Level and Cognitive Function in Children from Rural Area Staying in Residential School. Indian J. Physiol. Pharmacol. 2015;59:308–312.
    1. Nemati A., Barak M., Dehgan M.H., Alimohammadi H., Ettehad G.H., Baghi N., Arvin J., Mogadam R.A., Abbasgholizade N. Relation between Iron Deficiency and Anemia Whit School Success, Weight and Height in Schoolgirls Aged 12 Year Old in Ardebil Province of Iran, 2005. Res. J. Biol. Sci. 2007;2:263–267.
    1. Olson C.L., Acosta L.P., Hochberg N.S., Olveda R.M., Jiz M., McGarvey S.T., Kurtis J.D., Bellinger D.C., Friedman J.F. Anemia of Inflammation Is Related to Cognitive Impairment among Children in Leyte, The Philippines. PLoS Negl. Trop. Dis. 2009;3:e533. doi: 10.1371/journal.pntd.0000533.
    1. Ortega R.M., Gonzalez Fernandez M., Paz L., Andres P., Jimenez L.M., Jimenez M.J., Gonzalez Gross M., Requejo A.M., Gaspar M.J. Influence of Iron Status on Attention and Intellectual Performance of a Population of Spanish Adolescents. Arch. Lat. Nutr. 1993;43:6–11.
    1. Sen A., Kanani S.J. Deleterious Functional Impact of Anemia on Young Adolescent School Girls. Indian Pediatr. 2006;43:219–226.
    1. SoonMyung H., HyeJin H., HyunHee K. A Study on Iron Nutritional Status and Anemia of Middle School Girls in Ulsan Metropolitan City. J. Community Nutr. 2004;6:86–90.
    1. Teni M., Shiferaw S., Asefa F. Anemia and Its Relationship with Academic Performance among Adolescent School Girls in Kebena District, Southwest Ethiopia. Biotechnol. Health Sci. 2017;4:e43458. doi: 10.5812/bhs.13431.
    1. Thalanjeri P., Karanth H., Vinutha Shankar M.S., Kutty K. Impact of Iron Deficiency Anemia on Cognition of School Children of South India. Indian J. Clin. Anat. Physiol. 2016;3:135–138. doi: 10.5958/2394-2126.2016.00032.3.
    1. Walker S.P., Grantham-Mcgregor S.M., Himes J.H., Williams S., Duff E.M. School Performance in Adolescent Jamaican Girls: Associations with Health, Social and Behavioural Characteristics, and Risk Factors for Dropout. J. Adolesc. 1998;21:109–122. doi: 10.1006/jado.1997.0133.
    1. Webb T.E., Oski F.A. Iron Deficiency Anemia and Scholastic Achievement in Young Adolescents. J. Pediatr. 1973;82:827–830. doi: 10.1016/S0022-3476(73)80074-5.
    1. Kalaichelvi D. Ph.D. Thesis. Vinayaka Missions University; Salem, India: 2016. A Study on Effectiveness of Nutritional Intervention in Treating Iron Deficiency Anemia and Improving Intelligence among Adolescent Girls.
    1. Khan M.A., Farhana Haseen F., Jalal C.S.B., Rahman M., Akter S., Huda S.N. Effects of a Multiple Micronutrient Beverage Supplement on Haematologic, Iron, Vitamin A and Growth Status and Cognitive Development and School Performance among Adolescent Girls in Bangladesh. BRAC; 2004. [(accessed on 5 December 2019)]. Available online: .
    1. Muthayya S., Thankachan P., Hirve S., Amalrajan V., Thomas T., Lubree H., Agarwal D., Srinivasan K., Hurrell R.F., Yajnik C.S., et al. Iron Fortification of Whole Wheat Flour Reduces Iron Deficiency and Iron Deficiency Anemia and Increases Body Iron Stores in Indian School-Aged Children. J. Nutr. 2012;142:1997–2003. doi: 10.3945/jn.111.155135.
    1. Scott S.P., Murray-Kolb L.E., Wenger M.J., Udipi S.A., Ghugre P.S., Boy E., Haas J.D. Cognitive Performance in Indian School-Going Adolescents Is Positively Affected by Consumption of Iron-Biofortified Pearl Millet: A 6-Month Randomized Controlled Efficacy Trial. J. Nutr. 2018;148:1462–1471. doi: 10.1093/jn/nxy113.
    1. Solon F.S., Sarol J.N., Jr., Bernardo A.B.I., Solon J.A.A., Mehansho H., Sanchez-Fermin L.E., Wambangco L.S., Juhlin K.D. Effect of a Multiple-Micronutrient-Fortified Fruit Powder Beverage on the Nutrition Status, Physical Fitness, and Cognitive Performance of Schoolchildren in the Philippines. Food Nutr. Bull. 2003;24:S129–S140. doi: 10.1177/15648265030244S110.
    1. Vinodkumar M., Erhardt J.G., Rajagopalan S. Impact of a Multiple-Micronutrient Fortified Salt on the Nutritional Status and Memory of Schoolchildren. Int. J. Vitam. Nutr. Res. 2009;79:348–361. doi: 10.1024/0300-9831.79.56.348.
    1. Ballin A., Berar M., Rubinstein U., Kleter Y., Hershkovitz A., Meytes D. Iron State in Female Adolescents. Am. J. Dis. Child. 1992;146:803–805. doi: 10.1001/archpedi.1992.02160190035015.
    1. Bruner A.B., Joffe A., Duggan A.K., Casella J.F., Brandt J. Randomised Study of Cognitive Effects of Iron Supplementation in Non-Anaemic Iron-Deficient Adolescent Girls. Lancet. 1996;348:992–996. doi: 10.1016/S0140-6736(96)02341-0.
    1. Chellappa A.R., Karunanidhi S. Effect of Iron and Zinc Supplementation on Cognitive Functions of Female Adolescents in Chennai, India. Int. Proc. Chem. Biol. Environ. Eng. (IPCBEE) 2012;39:17–24.
    1. Lambert A., Knaggs K., Scragg R., Schaaf D. Effects of Iron Treatment on Cognitive Performance and Working Memory in Non-Anaemic, Iron-Deficient Girls. N. Z. J. Psychol. 2002;31:19.
    1. Rezaeian A., Ghayour-Mobarhan M., Mazloum S.R., Yavari M., Jafari S.A. Effects of Iron Supplementation Twice a Week on Attention Score and Haematologic Measures in Female High School Students. Singap. Med. J. 2014;55:587–592. doi: 10.11622/smedj.2014156.
    1. Soemantri A.G., Gopaldas T., Seshadri S., Pollitt E. Preliminary Findings on Iron Supplementation and Learning Achievement of Rural Indonesian Children. Am. J. Clin. Nutr. 1989;50:698–702. doi: 10.1093/ajcn/50.3.689.
    1. Soemantri A.G., Pollitt E., Kim I. Iron Deficiency Anemia and Educational Achievement. Am. J. Clin. Nutr. 1985;42:1221–1228. doi: 10.1093/ajcn/42.6.1221.
    1. Umamaheswari K., Bhaskaran M., Krishnamurthy G., Kavita V. Effect of Iron and Zinc Deficiency on Short Term Memory in Children. Indian Pediatr. 2011;48:289–293. doi: 10.1007/s13312-011-0060-7.
    1. Haskell C.F., Scholey A.B., Jackson P.A., Elliott J.M., Defeyter M.A., Greer J., Robertson B.C., Buchanan T., Tiplady B., Kennedy D.O. Cognitive and Mood Effects in Healthy Children during 12 Weeks’ Supplementation with Multi-Vitamin/Minerals. Br. J. Nutr. 2008;100:1086–1096. doi: 10.1017/S0007114508959213.
    1. Lynn R., Harland E.P. A Positive Effect of Iron Supplementation on the IQs of Iron Deficient Children. Personal. Individ. Differ. 1998;24:883–885. doi: 10.1016/S0191-8869(97)00219-5.
    1. Nelson M., Naismith D.J., Burley V., Gatenby S., Geddes N. Nutrient Intakes, Vitamin-Mineral Supplementation, and Intelligence in British Schoolchildren. Br. J. Nutr. 1990;64:13–22. doi: 10.1079/BJN19900005.
    1. Schoenthaler S.J., Amos S.P., Eysenck H.J., Peritz E., Yudkin J. Controlled Trial of Vitamin-Mineral Supplementation: Effects of Intelligence and Performance. Personal. Individ. Differ. 1991;12:351–362. doi: 10.1016/0191-8869(91)90287-L.
    1. Southon S., Wright A.J.A., Finglas P.M., Bailey A.L., Loughridge J.M., Walker A.D. Dietary Intake and Micronutrient Status of Adolescents: Effect of Vitamin and Trace Element Supplementation on Indices of Status and Performance in Tests of Verbal and Non-Verbal Intelligence. Br. J. Nutr. 1994;71:897–918. doi: 10.1079/BJN19940195.
    1. Vinodkumar M., Rajagopalan S., Vinodkumar M., Rajagopalan S. Efficacy of Fortification of School Meals with Ferrous Glycine Phosphate and Riboflavin against Anemia and Angular Stomatitis in Schoolchildren. Food Nutr. Bull. 2009;30:260–264. doi: 10.1177/156482650903000307.
    1. The World Bank World Bank Country and Lending Groups. [(accessed on 24 February 2020)]. Available online: .
    1. Deary I.J., Pattie A., Starr J.M. The Stability of Intelligence from Age 11 to Age 90 Years: The Lothian Birth Cohort of 1921. Psychol. Sci. 2013;24:2361–2368. doi: 10.1177/0956797613486487.
    1. Plomin R., von Stumm S. The New Genetics of Intelligence. Nature reviews. Genetics. 2018;19:148–159.
    1. Walker S., Grantham-McGregor S., Powell C., Chang S. Effects of Growth Restriction in Early Childhood on Growth, IQ, and Cognition at Age 11 to 12 Years and the Benefits of Nutritional Supplementation and Psychosocial Stimulation. J. Pediatr. 2000;137:36–41. doi: 10.1067/mpd.2000.106227.
    1. Khor G.L., Misra S. Micronutrient Interventions on Cognitive Performance of Children Aged 5-15 Years in Developing Countries. Asia Pac. J. Clin. Nutr. 2012;21:476–486.
    1. Lam L.F., Lawlis T.R. Feeding the Brain—The Effects of Micronutrient Interventions on Cognitive Performance among School-Aged Children: A Systematic Review of Randomized Controlled Trials. Clin. Nutr. 2017;36:1007–1014. doi: 10.1016/j.clnu.2016.06.013.
    1. Finkelstein J.L., Fothergill A., Hackl L.S., Haas J.D., Mehta S. Iron Biofortification Interventions to Improve Iron Status and Functional Outcomes. Proc. Nutr. Soc. 2019;78:197–207. doi: 10.1017/S0029665118002847.
    1. Grantham-McGregor S., Ani C. A Review of Studies on the Effect of Iron Deficiency on Cognitive Development in Children. J. Nutr. 2001;131:649S–668S. doi: 10.1093/jn/131.2.649S.
    1. Pasricha S., Gheorghe A., Sakr-Ashour F., Arcot A., Neufeld L., Murray-Kolb L., Suchdev P., Bode M. Net Benefit and Cost-Effectiveness of Universal Iron-Containing Multiple Micronutrient Powders for Young Children in 78 Countries: A Microsimulation Study. Lancet Glob. Health. 2020;8:e1071–e1080. doi: 10.1016/S2214-109X(20)30240-0.
    1. UNESCO Institute of Statistics Data for the Sustainable Development Goals. [(accessed on 21 February 2021)]. Available online:
    1. UNESCO Institute of Statistics Learning Outcomes. [(accessed on 21 February 2021)]. Available online: .
    1. Nutrition International Helping Adolescent Girls in Indonesia Reach Their Full Potential. [(accessed on 21 February 2021)]. Available online:
    1. United Nations . Children’s Fund (UNICEF) Programming Guidance: Nutrition in Middle Childhood and Adolescence. United Nations; New York, NY, USA: 2021.
    1. Bhardwaj A., Murage L., Sharma S., Dipo D., Makena C., Roche M., Arabi M. Weekly Iron and Folic Acid Supplementation and Nutrition Education for Adolescent Girls in Africa and Asia. Field Exch. 2021;66:40.
    1. Roche M.L., Bury L., Yusadiredja I.N., Asri E.K., Purwanti T.S., Kusyuniati S., Bhardwaj A., Izwardy D. Adolescent Girls’ Nutrition and Prevention of Anaemia: A School Based Multisectoral Collaboration in Indonesia. BMJ. 2018;363:k4541. doi: 10.1136/bmj.k4541.
    1. McCulloch A., Joshi H. Neighbourhood and Family Influences on the Cognitive Ability of Children in the British National Child Development Study. Soc. Sci. Med. 2001;53:579–591. doi: 10.1016/S0277-9536(00)00362-2.
    1. Edefonti V., Rosato V., Parpinel M., Nebbia G., Fiorica L., Fossali E., Ferraroni M., Decarli A., Agostoni C. The Effect of Breakfast Composition and Energy Contribution on Cognitive and Academic Performance: A Systematic Review. Am. J. Clin. Nutr. 2014;100:626–656. doi: 10.3945/ajcn.114.083683.
    1. Wachs T.D. The Nature and Nurture of Child Development. Food Nutr Bull. 1999;20:7–22. doi: 10.1177/156482659902000103.
    1. World Health Organization . Guideline: Daily Iron Supplementation in Adult Women and Adolescent Girls. World Health Organization; Geneva, Switzerland: 2016.
    1. World Health Organization . Guideline: Daily Iron Supplementation in Infants and Children. World Health Organization; Geneva, Switzerland: 2016.
    1. World Health Organization . Guideline: Intermittent Iron and Folic Acid Supplementation in Menstruating Women. World Health Organization; Geneva, Switzerland: 2011.
    1. Samson K.L.I., Loh S.P., Lee S.S., Sulistyoningrum D.C., Khor G.L., Mohd Shariff Z., Ismai I.Z., Yelland L.N., Leemaqz S., Makrides M., et al. Weekly Iron-Folic Acid Supplements Containing 2.8 Mg Folic Acid Are Associated with a Lower Risk of Neural Tube Defects than the Current Practice of 0.4 Mg: A Randomised Controlled Trial in Malaysia. BMJ Glob. Health. 2020;5:e003897. doi: 10.1136/bmjgh-2020-003897.
    1. Roche M.L., Samson K.L.I., Karakochuk C.D., Green T.J., Martínez H. Perspective: Weekly Iron and Folic Acid Supplementation (WIFAS): A Critical Review and Rationale for Inclusion in the Essential Medicines List to Accelerate Anemia and Neural Tube Defects Reduction. Adv. Nutr. 2021;12:334–342. doi: 10.1093/advances/nmaa169.
    1. Nutrition International Women and Girls’ Nutrition. [(accessed on 17 April 2020)]. Available online:
    1. De-Regil L.M., Jefferds M.E.D., Sylvetsky A.C., Dowswell T. Intermittent Iron Supplementation for Improving Nutrition and Development in Children under 12 Years of Age. Cochrane Database Syst. Rev. 2011;12:CD009085. doi: 10.1002/14651858.CD009085.pub2.
    1. Low M.S.Y., Speedy J., Styles C.E., De-Regil L.M., Pasricha S.-R. Daily Iron Supplementation for Improving Anaemia, Iron Status and Health in Menstruating Women. Cochrane Database Syst. Rev. 2016;4:CD009747. doi: 10.1002/14651858.CD009747.pub2.
    1. Fernandez-Gaxiola A., De-Regil L. Intermittent Iron Supplementation for Reducing Anaemia and Its Associated Impairments in Adolescent and Adult Menstruating Women. Cochrane Database Syst. Rev. 2019;1:CD009218.
    1. De-Regil L.M., Jefferds M.E.D., Peña-Rosas J.P. Point-of-Use Fortification of Foods with Micronutrient Powders Containing Iron in Children of Preschool and School-Age. Cochrane Database Syst. Rev. 2017;11:CD009666. doi: 10.1002/14651858.CD009666.pub2.
    1. Das J.K., Salam R.A., Mahmood S.B., Moin A., Kumar R., Mukhtar K., Lassi Z.S., Bhutta Z.A. Food Fortification with Multiple Micronutrients: Impact on Health Outcomes in General Population. Cochrane Database Syst. Rev. 2019;12:CD011400. doi: 10.1002/14651858.CD011400.pub2.
    1. de Jager C.A., Dye L., de Bruin E.A., Butler L., Fletcher J., Lamport D.J., Latulippe M.E., Spencer J.P., Wesnes K. Criteria for Validation and Selection of Cognitive Tests for Investigating the Effects of Foods and Nutrients. Nutr. Rev. 2014;72:162–179. doi: 10.1111/nure.12094.
    1. World Health Organization . Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. World Health Organization; Geneva, Switzerland: 2011.

Source: PubMed

3
購読する