Perturbation-based trunk stabilization training in elite rowers: A pilot study

Robin Schäfer, Hendrik Schäfer, Petra Platen, Robin Schäfer, Hendrik Schäfer, Petra Platen

Abstract

Introduction: Low back pain is a major health issue in elite rowers. High training volume, frequent flexion movements of the lower spine and rotational movement in sweep rowing contribute to increased spinal strain and neuropathological patterns. Perturbation-based trunk stabilization training (PTT) may be effective to treat neuromuscular deficits and low back pain.

Methods: All boat classes (8+, 4+/-, 2-) of the male German national sweep rowing team participated in this non-randomized parallel group study. We included 26 athletes (PTT: n = 12, control group: n = 14) in our analysis. Physical and Sports therapists conducted 16 individualized PTT sessions á 30-40 minutes in 10 weeks, while the control group kept the usual routines. We collected data before and after intervention on back pain intensity and disability, maximum isometric trunk extension and flexion, jump height and postural sway of single-leg stance.

Results: We found less disability (5.3 points, 95% CI [0.4, 10.1], g = 0.42) for PTT compared to control. Pain intensity decreased similar in both groups (-14.4 and -15.4 points), yielding an inconclusive between-group effect (95% CI [-16.3, 14.3]). Postural sway, strength and jump height tend to have no between- and within-group effects.

Conclusion: Perturbation-based trunk stabilization training is possibly effective to improve the physical function of the lower back in elite rowers.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig 1. CONSORT flow diagram.
Fig 1. CONSORT flow diagram.
Fig 2. Progression of the basic exercises…
Fig 2. Progression of the basic exercises squat (upper line) and rowing (lower line).
Fig 3. Pain and disability outcomes.
Fig 3. Pain and disability outcomes.
Top plots show change scores in violin-scatter-plots accompanied by adjusted 95% CI obtained by marginal means of ANCOVA; bottom plots show adjusted between-group effects on both the whole experimental group (black) and the LBP subgroup (red)–positive values represent beneficial effects towards PTT (perturbation-based trunk stabilization training) over CG (control group); grey shaded: Null ± MIC (minimal important change) for group and individual changes; 1,2: data left out in leave-one-out-analysis; CPI: characteristic pain intensity, DS: disability score, LOO: leave-one-out analysis.
Fig 4. Functional outcomes.
Fig 4. Functional outcomes.
Plots show adjusted between-group effects of ANCOVA (95% CI); negative values in strength and jumps and positive values in balance represent beneficial effects towards PTT (perturbation-based trunk stabilization training) over CG (control group); grey shaded: Null ± MIC (minimal important change); MVC: maximal voluntary contraction, CMJ: counter movement jump.

References

    1. Fett D, Trompeter K, Platen P. Back pain in elite sports: A cross-sectional study on 1114 athletes. PLoS ONE. 2017; 12:e0180130. doi: 10.1371/journal.pone.0180130 .
    1. Trompeter K, Fett D, Platen P. Prevalence of Back Pain in Sports: A Systematic Review of the Literature. Sports Med. 2017; 47:1183–207. doi: 10.1007/s40279-016-0645-3 .
    1. Farahbakhsh F, Rostami M, Noormohammadpour P, Mehraki Zade A, Hassanmirazaei B, Faghih Jouibari M, et al.. Prevalence of low back pain among athletes: A systematic review. J Back Musculoskelet Rehabil. 2018; 31:901–16. doi: 10.3233/BMR-170941 .
    1. Maselli F, Ciuro A, Mastrosimone R, Cannone M, Nicoli P, Signori A, et al.. Low back pain among Italian rowers: A cross-sectional survey. J Back Musculoskelet Rehabil. 2015; 28:365–76. doi: 10.3233/BMR-140529 .
    1. Ng L, Perich D, Burnett A, Campbell A, O’Sullivan P. Self-reported prevalence, pain intensity and risk factors of low back pain in adolescent rowers. J Sci Med Sport. 2014; 17:266–70. doi: 10.1016/j.jsams.2013.08.003 .
    1. Mortazavi J, Zebardast J, Mirzashahi B. Low Back Pain in Athletes. Asian journal of sports medicine. 06.2015; 6:e24718. doi: 10.5812/asjsm.6(2)2015.24718
    1. Wilson F, Thornton JS, Wilkie K, Hartvigsen J, Vinther A, Ackerman KE, et al.. 2021 consensus statement for preventing and managing low back pain in elite and subelite adult rowers. Br J Sports Med. 2021. Epub 2021/03/08. doi: 10.1136/bjsports-2020-103385 .
    1. Reeves NP, Cholewicki J, van Dieën JH, Kawchuk G, Hodges PW. Are Stability and Instability Relevant Concepts for Back Pain. J Orthop Sports Phys Ther. 2019; 49:415–24. doi: 10.2519/jospt.2019.8144 .
    1. Borghuis J, Hof AL, Lemmink KAPM. The importance of sensory-motor control in providing core stability: implications for measurement and training. Sports Med. 2008; 38:893–916. doi: 10.2165/00007256-200838110-00002 .
    1. Meier ML, Vrana A, Schweinhardt P. Low Back Pain: The Potential Contribution of Supraspinal Motor Control and Proprioception. Neuroscientist. 2019; 25:583–96. doi: 10.1177/1073858418809074 .
    1. Knox MF, Chipchase LS, Schabrun SM, Romero RJ, Marshall PWM. Anticipatory and compensatory postural adjustments in people with low back pain: a systematic review and meta-analysis. Spine J. 2018; 18:1934–49. doi: 10.1016/j.spinee.2018.06.008 .
    1. Moseley GL, Hodges PW, Gandevia SC. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine. 2002; 27:E29–36. doi: 10.1097/00007632-200201150-00013 .
    1. Ebenbichler GR, Oddsson LIE, Kollmitzer J, Erim Z. Sensory-motor control of the lower back: implications for rehabilitation. Med Sci Sports Exerc. 2001; 33:1889–98. doi: 10.1097/00005768-200111000-00014
    1. Tsao H, Galea MP, Hodges PW. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain. 2008; 131:2161–71. doi: 10.1093/brain/awn154 .
    1. Brumagne S, Diers M, Danneels L, Moseley GL, Hodges PW. Neuroplasticity of Sensorimotor Control in Low Back Pain. J Orthop Sports Phys Ther. 2019; 49:402–14. doi: 10.2519/jospt.2019.8489 .
    1. Hodges PW, Barbe MF, Loggia ML, Nijs J, Stone LS. Diverse Role of Biological Plasticity in Low Back Pain and Its Impact on Sensorimotor Control of the Spine. J Orthop Sports Phys Ther. 2019; 49:389–401. doi: 10.2519/jospt.2019.8716 .
    1. Hides JA, Donelson R, Lee D, Prather H, Sahrmann SA, Hodges PW. Convergence and Divergence of Exercise-Based Approaches That Incorporate Motor Control for the Management of Low Back Pain. J Orthop Sports Phys Ther. 2019; 49:437–52. doi: 10.2519/jospt.2019.8451 .
    1. Martinez-Valdes E, Wilson F, Fleming N, McDonnell S-J, Horgan A, Falla D. Rowers with a recent history of low back pain engage different regions of the lumbar erector spinae during rowing. J Sci Med Sport. 2019; 22:1206–12. doi: 10.1016/j.jsams.2019.07.007 .
    1. McGregor AH, Patankar ZS, Bull AMJ. Spinal kinematics in elite oarswomen during a routine physiological "step test". Med Sci Sports Exerc. 2005; 37:1014–20.
    1. Ng L, Campbell A, Burnett A, Smith A, O’Sullivan P. Spinal Kinematics of Adolescent Male Rowers with Back Pain in Comparison with Matched Controls During Ergometer Rowing. J Appl Biomech. 2015; 31:459–68. doi: 10.1123/jab.2015-0012 .
    1. Caldwell JS, McNair PJ, Williams M. The effects of repetitive motion on lumbar flexion and erector spinae muscle activity in rowers. Clinical Biomechanics. 2003; 18:704–11. doi: 10.1016/s0268-0033(03)00117-7
    1. Thornton JS, Vinther A, Wilson F, Lebrun CM, Wilkinson M, Di Ciacca SR, et al.. Rowing Injuries: An Updated Review. Sports Med. 2017; 47:641–61. doi: 10.1007/s40279-016-0613-y .
    1. Wilson F, Gissane C, McGregor A. Ergometer training volume and previous injury predict back pain in rowing; strategies for injury prevention and rehabilitation. Br J Sports Med. 2014; 48:1534–7. doi: 10.1136/bjsports-2014-093968 .
    1. Wilson F, Gormley J, Gissane C, Simms C. The effect of rowing to exhaustion on frontal plane angular changes in the lumbar spine of elite rowers. J Sports Sci. 2012; 30:1481–9. doi: 10.1080/02640414.2012.711486 .
    1. Trompeter K, Weerts J, Fett D, Firouzabadi A, Heinrich K, Schmidt H, et al.. Spinal and Pelvic Kinematics During Prolonged Rowing on an Ergometer vs. Indoor Tank Rowing. J Strength Cond Res. 2019. doi: 10.1519/JSC.0000000000003187 .
    1. Shirazi-Adl A. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. Journal of Biomechanics. 2006; 39:267–75. doi: 10.1016/j.jbiomech.2004.11.022 .
    1. Faisal AA, Selen LPJ, Wolpert DM. Noise in the nervous system. Nat Rev Neurosci. 2008; 9:292–303. doi: 10.1038/nrn2258 .
    1. Owen PJ, Miller CT, Mundell NL, Verswijveren SJ, Tagliaferri SD, Brisby H, et al.. Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br J Sports Med. 2019. doi: 10.1136/bjsports-2019-100886 .
    1. New CC, Dannaway J, New H, New CH. Motor control exercise for chronic non-specific low-back pain (PEDro synthesis). Br J Sports Med. 2017; 51:1037–8. doi: 10.1136/bjsports-2016-097266 .
    1. Macedo LG, Maher CG, Latimer J, McAuley JH. Motor control exercise for persistent, nonspecific low back pain: a systematic review. Phys Ther. 2009; 89:9–25. doi: 10.2522/ptj.20080103 .
    1. Macedo LG, Saragiotto BT, Yamato TP, Costa LOP, Menezes Costa LC, Ostelo RWJG, et al.. Motor control exercise for acute non-specific low back pain. Cochrane Database Syst Rev. 2016; 2:CD012085. doi: 10.1002/14651858.CD012085 .
    1. Saragiotto BT, Maher CG, Yamato TP, Costa LOP, Menezes Costa LC, Ostelo RWJG, et al.. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst Rev. 2016:CD012004. doi: 10.1002/14651858.CD012004 .
    1. Niederer D, Engel T, Vogt L, Arampatzis A, Banzer W, Beck H, et al.. Motor Control Stabilisation Exercise for Patients with Non-Specific Low Back Pain: A Prospective Meta-Analysis with Multilevel Meta-Regressions on Intervention Effects. JCM. 2020; 9:3058. doi: 10.3390/jcm9093058
    1. Arampatzis A, Laube G, Schroll A, Frank J, Bohm S, Mersmann F. Perturbation‐based exercise for prevention of low‐back pain in adolescent athletes. Transl Sports Med. 2021; 4:128–37. doi: 10.1002/tsm2.191
    1. Slade SC, Dionne CE, Underwood M, Buchbinder R. Consensus on Exercise Reporting Template (CERT): explanation and elaboration statement. Br J Sports Med. 2016; 50:1428–37. doi: 10.1136/bjsports-2016-096651
    1. Des Jarlais DC, Lyles C, Crepaz N, Trend Group. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. Am J Public Health. 2004; 94:361–6. doi: 10.2105/ajph.94.3.361
    1. Boutron I, Altman DG, Moher D, Schulz KF, Ravaud P. CONSORT Statement for Randomized Trials of Nonpharmacologic Treatments: A 2017 Update and a CONSORT Extension for Nonpharmacologic Trial Abstracts. Ann Intern Med. 2017; 167:40–7. doi: 10.7326/M17-0046 .
    1. Caldwell AR, Vigotsky AD, Tenan MS, Radel R, Mellor DT, Kreutzer A, et al.. Moving Sport and Exercise Science Forward: A Call for the Adoption of More Transparent Research Practices. Sports Medicine. 2020; 50:449–59. doi: 10.1007/s40279-019-01227-1 .
    1. Borg G, Hassmén P, Lagerström M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. European Journal of Applied Physiology and Occupational Physiology. 1987; 56:679–85. doi: 10.1007/BF00424810
    1. Korff M von, Ormel J, Keefe FJ, Dworkin SF. Grading the severity of chronic pain. Pain. 1992; 50:133–49. doi: 10.1016/0304-3959(92)90154-4
    1. Smith BH, Penny KI, Purves AM, Munro C, Wilson B, Grimshaw J, et al.. The Chronic Pain Grade questionnaire: validation and reliability in postal research. Pain. 1997; 71:141–7. doi: 10.1016/s0304-3959(97)03347-2
    1. Klasen BW, Hallner D, Schaub C, Willburger R, Hasenbring M. Validation and reliability of the German version of the Chronic Pain Grade questionnaire in primary care back pain patients. Psychosoc Med. 2004; 1.
    1. Claudino JG, Cronin J, Mezêncio B, McMaster DT, McGuigan M, Tricoli V, et al.. The countermovement jump to monitor neuromuscular status: A meta-analysis. J Sci Med Sport. 2017; 20:397–402. doi: 10.1016/j.jsams.2016.08.011 .
    1. Blosch C, Schäfer R, Marées M de, Platen P. Comparative analysis of postural control and vertical jump performance between three different measurement devices. PLoS ONE. 2019; 14:e0222502. doi: 10.1371/journal.pone.0222502 .
    1. Lakens D, Scheel AM, Isager PM. Equivalence Testing for Psychological Research: A Tutorial. Advances in Methods and Practices in Psychological Science. 2018; 1:259–69. doi: 10.1177/2515245918770963
    1. Cook JA, Julious SA, Sones W, Hampson LV, Hewitt C, Berlin JA, et al.. DELTA2 guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial. BMJ. 2018; 363:k3750. doi: 10.1136/bmj.k3750 .
    1. Ostelo RWJG, Deyo RA, Stratford P, Waddell G, Croft P, Korff M von, et al.. Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine. 2008; 33:90–4. doi: 10.1097/BRS.0b013e31815e3a10 .
    1. Buchheit M. Magnitudes matter more than beetroot juice. Sport Perform Sci Rep. 2018; 15:1–3.
    1. Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019; 16:565–6. doi: 10.1038/s41592-019-0470-3 .
    1. Gardner MJ, Altman DG. Confidence intervals rather than P values: estimation rather than hypothesis testing. Br Med J (Clin Res Ed). 1986; 292:746–50. doi: 10.1136/bmj.292.6522.746 .
    1. Amrhein V, Trafimow D, Greenland S. Inferential Statistics as Descriptive Statistics: There Is No Replication Crisis if We Don’t Expect Replication. The American Statistician. 2019; 73:262–70. doi: 10.1080/00031305.2018.1543137
    1. Blume JD, D’Agostino McGowan L, Dupont WD, Greevy RA. Second-generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses. PLoS ONE. 2018; 13:e0188299. doi: 10.1371/journal.pone.0188299 .
    1. Committee for Medicinal Products for Human Use. Guideline on adjustment for baseline covariates in clinical trials. 2015. Available from: .
    1. Atkinson G, Williamson P, Batterham AM. Issues in the determination of ’responders’ and ’non-responders’ in physiological research. Exp Physiol. 2019; 104:1215–25. doi: 10.1113/EP087712 .
    1. Cortés J, González JA, Medina MN, Vogler M, Vilaró M, Elmore M, et al.. Does evidence support the high expectations placed in precision medicine? A bibliographic review. F1000Res. 2018; 7:30. doi: 10.12688/f1000research.13490.5 .
    1. JASP Team. JASP (Version 0.14).; 2020.
    1. Perich D, Burnett A, O’Sullivan P, Perkin C. Low back pain in adolescent female rowers: a multi-dimensional intervention study. Knee Surg Sports Traumatol Arthrosc. 2011; 19:20–9. doi: 10.1007/s00167-010-1173-6 .
    1. Thornton JS, Caneiro JP, Hartvigsen J, Ardern CL, Vinther A, Wilkie K, et al.. Treating low back pain in athletes: a systematic review with meta-analysis. Br J Sports Med. 2020. Epub 2020/12/21. doi: 10.1136/bjsports-2020-102723 .
    1. Niederer D, Vogt L, Wippert P-M, Puschmann A-K, Pfeifer A-C, Schiltenwolf M, et al.. Medicine in spine exercise (MiSpEx) for nonspecific low back pain patients: study protocol for a multicentre, single-blind randomized controlled trial. Trials. 2016; 17:507. doi: 10.1186/s13063-016-1645-1 .
    1. Moore A, Derry S, Eccleston C, Kalso E. Expect analgesic failure; pursue analgesic success. BMJ. 2013; 346:f2690. doi: 10.1136/bmj.f2690 .
    1. Hecksteden A, Kraushaar J, Scharhag-Rosenberger F, Theisen D, Senn S, Meyer T. Individual response to exercise training—a statistical perspective. J Appl Physiol. 2015; 118:1450–9. doi: 10.1152/japplphysiol.00714.2014 .
    1. Brachman A, Kamieniarz A, Michalska J, Pawłowski M, Słomka KJ, Juras G. Balance Training Programs in Athletes—a Systematic Review. J Hum Kinet. 2017; 58:45–64. doi: 10.1515/hukin-2017-0088 .
    1. Imai A, Kaneoka K, Okubo Y, Shiraki H. Effects of two types of trunk exercises on balance and athletic performance in youth soccer players. Int J Sports Phys Ther. 2014; 9:47–57.
    1. Saunders NW, Hanson NJ, Koutakis P, Chaudhari AM, Devor ST. Figure skater level moderates balance training. Int J Sports Med. 2013; 34:345–9. doi: 10.1055/s-0032-1327653 .
    1. Thompson LA, Badache M, Cale S, Behera L, Zhang N. Balance Performance as Observed by Center-of-Pressure Parameter Characteristics in Male Soccer Athletes and Non-Athletes. Sports (Basel). 2017; 5. doi: 10.3390/sports5040086 .
    1. Barbado D, Barbado LC, Elvira JLL, van Dieën JH, Vera-Garcia FJ. Sports-related testing protocols are required to reveal trunk stability adaptations in high-level athletes. Gait Posture. 2016; 49:90–6. doi: 10.1016/j.gaitpost.2016.06.027 .
    1. Thiele D, Prieske O, Chaabene H, Granacher U. Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers: A systematic review with meta-analysis. J Sports Sci. 2020:1–10. doi: 10.1080/02640414.2020.1745502 .
    1. Granacher U, Gollhofer A, Kriemler S. Effects of Balance Training on Postural Sway, Leg Extensor Strength, and Jumping Height in Adolescents. Research Quarterly for Exercise and Sport. 2010; 81:245–51. doi: 10.1080/02701367.2010.10599672
    1. Hodges PW, van Dieën JH, Cholewicki J. Time to Reflect on the Role of Motor Control in Low Back Pain. J Orthop Sports Phys Ther. 2019; 49:367–9. doi: 10.2519/jospt.2019.0104 .
    1. Hodges PW. Hybrid Approach to Treatment Tailoring for Low Back Pain: A Proposed Model of Care. J Orthop Sports Phys Ther. 2019; 49:453–63. doi: 10.2519/jospt.2019.8774 .
    1. Sørensen HT, Lash TL, Rothman KJ. Beyond randomized controlled trials: a critical comparison of trials with nonrandomized studies. Hepatology. 2006; 44:1075–82. doi: 10.1002/hep.21404 .

Source: PubMed

3
購読する