Hemostasis, endothelial stress, inflammation, and the metabolic syndrome

Gerald Grandl, Christian Wolfrum, Gerald Grandl, Christian Wolfrum

Abstract

Obesity and the metabolic syndrome (MS) are two of the pressing healthcare problems of our time. The MS is defined as increased abdominal obesity in concert with elevated fasting glucose levels, insulin resistance, elevated blood pressure, and plasma lipids. It is a key risk factor for type 2 diabetes mellitus (T2DM) and for cardiovascular complications and mortality. Here, we review work demonstrating that various aspects of coagulation and hemostasis, as well as vascular reactivity and function, become impaired progressively during chronic ingestion of a western diet, but also acutely after meals. We outline that both T2DM and cardiovascular disease should be viewed as inflammatory diseases and describe that chronic overload of free fatty acids and glucose can trigger inflammatory pathways directly or via increased production of ROS. We propose that since endothelial stress and increases in platelet activity precede inflammation and overt symptoms of the MS, they are likely the first hit. This suggests that endothelial activation and insulin resistance are probably causative in the observed chronic low-level metabolic inflammation, and thus both metabolic and cardiovascular complications linked to consumption of a western diet.

Keywords: Coagulation; Endothelial stress; Hemostasis; Inflammation; Metabolic syndrome; NO; Nitric oxide; Obesity; Platelets; ROS; Reactive oxygen species; Type 2 diabetes.

References

    1. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: insights from yesterday, today, and future trends. Popul Health Manag. 2017;20(1):6–12. doi: 10.1089/pop.2015.0181.
    1. Mayer-Davis EJ, Ma B, Lawson A, D’Agostino RB, Liese AD, Bell RA, et al. Cardiovascular disease risk factors in youth with type 1 and type 2 diabetes: implications of a factor analysis of clustering. Metab Syndr Relat Disord. 2009;7(2):89–95. doi: 10.1089/met.2008.0046.
    1. Chillarón JJ, Flores Le-Roux JA, Benaiges D, Pedro-Botet J. Type 1 diabetes, metabolic syndrome and cardiovascular risk. Metabolism. 2014;63:181–187. doi: 10.1016/j.metabol.2013.10.002.
    1. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract Hindawi Publishing Corporation. 2014;2014:1–21.
    1. Goldberg RJ, Nakagawa T, Johnson RJ, Thurman JM. The role of endothelial cell injury in thrombotic microangiopathy. Am J Kidney Dis Elsevier Inc. 2010;56(6):1168–1174. doi: 10.1053/j.ajkd.2010.06.006.
    1. Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–358. doi: 10.1152/physrev.00016.2011.
    1. Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica. 2009;94(5):700–711. doi: 10.3324/haematol.2008.003178.
    1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435. doi: 10.1038/nature07201.
    1. Semple JW, Italiano JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–274. doi: 10.1038/nri2956.
    1. Carestia A, Kaufman T, Schattner M (2016) Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol 7: doi: 10.3389/fimmu.2016.00271
    1. Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 2007;21(2):99–111. doi: 10.1016/j.blre.2006.06.001.
    1. Bardini G, Rotella CM, Giannini S. Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro- and macrovascular complications. Rev Diabet Stud. 2012;9(2-3):82–93. doi: 10.1900/RDS.2012.9.82.
    1. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat rev Immunol. Nat Publ Group. 2011;11(2):85–97.
    1. Carr ME. Diabetes mellitus: a hypercoagulable state. J Diabetes Complicat. 2001;15:44–54. doi: 10.1016/S1056-8727(00)00132-X.
    1. Jones RL, Peterson CM. Reduced fibrinogen survival in diabetes mellitus. A reversible phenomenon. J Clin Invest. 1979;63(3):485–493. doi: 10.1172/JCI109326.
    1. Hughes A, McVerry BA, Wilkinson L, Goldstone AH, Lewis D, Bloom A. Diabetes, a hypercoagulable state? Hemostatic variables in newly diagnosed type 2 diabetic patients. Acta Haematol. 1983;69:254–259. doi: 10.1159/000206901.
    1. Ceriello A. Coagulation activation in diabetes mellitus: the role or hyperglycaemia and therapeutic prospects. Diabetologia. 1993;36(11):1119–1125. doi: 10.1007/BF00401055.
    1. Assert R, Scherk G, Bumbure A, Pirags V, Schatz H, Pfeiffer AFH. Regulation of protein kinase C by short term hyperglycaemia in human platelets in vivo and in vitro. Diabetologia. 2001;44(2):188–195. doi: 10.1007/s001250051598.
    1. Skibowska A, Raszeja-Specht A, Szutowicz A. Platelet function and acetyl-coenzyme a metabolism in type 1 diabetes mellitus. Clin Chem Lab Med. 2003;41(9):1136–1143. doi: 10.1515/CCLM.2003.176.
    1. Roshan B, Tofler GH, Weinrauch L a, Gleason RE, Keough J a, Lipinska I, et al. Improved glycemic control and platelet function abnormalities in diabetic patients with microvascular disease. Metabolism. 2000;49(1):88–91. doi: 10.1016/S0026-0495(00)90813-8.
    1. Kajita K, Ishizuka T, Miura A, Kanoh Y, Ishizawa M, Kimura M, et al. Increased platelet aggregation in diabetic patients with microangiopathy despite good glycemic control. Platelets. 2001;12(6):343–351. doi: 10.1080/09537100120078386.
    1. Keating FK (2003) Effects of Increased Concentrations of Glucose on Platelet Reactivity in Healthy Subjects and in Patients With and Without Diabetes Mellitus 92: 13–15. doi:10.1016/j.amjcard.2003.08.032
    1. Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, Moran-Salvador E, Titos E, Martinez-Clemente M, Lopez-Parra M, Arroyo V, Claria J. Obesity-induced insulin resistance and hepatic steatosis are alleviated by −3 fatty acids: a role for resolvins and protectins. FASEB J. 2009;23(6):1946–1957. doi: 10.1096/fj.08-125674.
    1. Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, Pascoe WS. Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science. 1987;237(4817):885–888. doi: 10.1126/science.3303333.
    1. Spectre G, Östenson C-G, Li N, Hjemdahl P. Postprandial platelet activation is related to postprandial plasma insulin rather than glucose in patients with type 2 diabetes. Diabetes Elsevier Ltd. 2012;61:2380–2384. doi: 10.2337/db11-1806.
    1. Zaccardi F, Rocca B, Rizzi A, Ciminello A, Teofili L, Ghirlanda G, de Stefano V, Pitocco D. Platelet indices and glucose control in type 1 and type 2 diabetes mellitus: a case-control study. Nutr Metab Cardiovasc Dis The societies SID, SISA and SINU and the Department of Clinical Medicine and Surgery at Federico II University in Italy. 2017;27(10):902–909.
    1. Feldman RD, Bierbrier GS. Insulin-mediated vasodilation: impairment with increased blood pressure and body mass. Lancet. 1993;342(8873):707–709. doi: 10.1016/0140-6736(93)91708-T.
    1. Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY, et al (2003) The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. 111: 1373–1380. doi:10.1172/JCI200315211.Introduction
    1. Denninger JW, Marletta MA. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta Bioenerg. 1999;1411(2-3):334–350. doi: 10.1016/S0005-2728(99)00024-9.
    1. Wang GR, Zhu Y, Halushka PV, Lincoln TM, Mendelsohn ME. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1998;95(9):4888–4893. doi: 10.1073/pnas.95.9.4888.
    1. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837. doi: 10.1093/eurheartj/ehr304.
    1. Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by Wortmannin: direct measurement in vascular endothelial cells. J Clin Invest. 1996;98(4):894–898. doi: 10.1172/JCI118871.
    1. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher a M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–605. doi: 10.1038/21224.
    1. Hespel P, Vergauwen L, Vandenberghe K, Richter EA. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes. 1995;44(2):210–215. doi: 10.2337/diab.44.2.210.
    1. Baron AD, Alain D, Johnson a (1994) Skeletal muscle blood flow independently modulates inuslin-mediated glucose uptake. 248–253
    1. Cleland SJ, Petrie JR, Ueda S, Elliott HL, Connell JMC. Insulin-mediated vasodilation and glucose uptake are functionally linked in humans. Hypertension. 1999;33(1):554–558. doi: 10.1161/01.HYP.33.1.554.
    1. Wang H, Wang AX, Liu Z, Barrett EJ. Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes. 2008;57(3):540–547. doi: 10.2337/db07-0967.
    1. Kolka CM, Richey JM, Castro AVB, de Broussard JL, Ionut V, Bergman RN (2015; ajpendo.00015.2015) Lipid-induced insulin resistance does not impair insulin access to skeletal muscle. Am J Physiol - Endocrinol Metab. 10.1152/ajpendo.00015.2015
    1. Barrett EJ, Eringa EC. The vascular contribution to insulin resistance: promise, proof, and pitfalls. Diabetes. 2012;61(12):3063–3065. doi: 10.2337/db12-0948.
    1. Schwartz MW, Bergman RN, Kahn SE, Taborsky GJ, Fisher LD, Sipols AJ, et al. Evidence for entry of plasma-insulin into cerebrospinal-fluid through an intermediate compartment in dogs - quantitative aspects and implications for transport. J Clin Invest. 1991;88(4):1272–1281. doi: 10.1172/JCI115431.
    1. Banks WA, Jaspan JB, Kastin AJ. Selective, physiological transport of insulin across the blood-brain barrier. Novel demonstration by species-specific radioimmunoassays. Peptides. 1997;18(8):1257–1262. doi: 10.1016/S0196-9781(97)00198-8.
    1. Schwartz MW, Sipols A, Kahn SE, Lattemann DF, Taborsky GJ, Bergman RN, et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am J Physiol. 1990;259:E378–E383.
    1. Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49(9):1525–1533. doi: 10.2337/diabetes.49.9.1525.
    1. Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, Kawai T, Hashimoto S, Kobayashi T, Sato M, Tokuyama K, Nishimura S, Tsunoda M, Ide T, Murakami K, Yamazaki T, Ezaki O, Kawamura K, Masuda H, Moroi M, Sugi K, Oike Y, Shimokawa H, Yanagihara N, Tsutsui M, Terauchi Y, Tobe K, Nagai R, Kamata K, Inoue K, Kodama T, Ueki K, Kadowaki T. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab Elsevier Inc. 2011;13(3):294–307. doi: 10.1016/j.cmet.2011.01.018.
    1. Szendroedi J, Frossard M, Klein N, Bieglmayer C, Wagner O, Pacini G, Decker J, Nowotny P, Muller M, Roden M. Lipid-induced insulin resistance is not mediated by impaired transcapillary transport of insulin and glucose in humans. Diabetes. 2012;61(12):3176–3180. doi: 10.2337/db12-0108.
    1. Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D, Jelenik T, Müller J, Herder C, Nowotny P, Shulman GI, Roden M. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci. 2014;111(26):9597–9602. doi: 10.1073/pnas.1409229111.
    1. Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, Kirk EA, Chait A, Schwartz MW. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28(11):1982–1988. doi: 10.1161/ATVBAHA.108.169722.
    1. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R, International Brachial Artery Reactivity Task Force Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. A report of the international brachial artery reactivity task force. J Am Coll Cardiol Elsevier Masson SAS. 2002;39(2):257–265. doi: 10.1016/S0735-1097(01)01746-6.
    1. Raitakari OT, Celermajer DS. Flow-mediated dilatation. Br J Clin Pharmacol. 2000;50(5):397–404. doi: 10.1046/j.1365-2125.2000.00277.x.
    1. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, Yasue H. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999;34(1):146–154. doi: 10.1016/S0735-1097(99)00168-0.
    1. Vasodilation E, Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J et al (1997) Elevated circulating free fatty acid levels impair. J Clin Invest 100
    1. Keogh JB, Grieger JA, Noakes M, Clifton PM. Flow-mediated dilatation is impaired by a high-saturated fat diet but not by a high-carbohydrate diet. Arterioscler Thromb Vasc Biol. 2005;25(6):1274–1279. doi: 10.1161/01.ATV.0000163185.28245.a1.
    1. Berry SEE, Tucker S, Banerji R, Jiang B, Chowienczyk PJ, Charles SM, et al. Impaired postprandial endothelial function depends on the type of fat consumed by healthy men. J Nutr. 2008;138:1910–1914. doi: 10.1093/jn/138.10.1910.
    1. Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M. Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. J Thromb Haemost. 2006;4(5):1003–1010. doi: 10.1111/j.1538-7836.2006.01914.x.
    1. Dow CA, Stauffer BL, Greiner JJ, DeSouza CA. Influence of habitual high dietary fat intake on endothelium-dependent vasodilation. Appl Physiol Nutr Metab = Physiol Appl Nutr métabolisme. 2015;40(7):711–715. doi: 10.1139/apnm-2015-0006.
    1. Gill JMR, Al-Mamari A, Ferrell WR, Cleland SJ, Packard CJ, Sattar N, Petrie JR, Caslake MJ. Effects of prior moderate exercise on postprandial metabolism and vascular function in lean and centrally obese men. J Am Coll Cardiol Elsevier Masson SAS. 2004;44(12):2375–2382. doi: 10.1016/j.jacc.2004.09.035.
    1. Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med Elsevier. 2014;73:383–399. doi: 10.1016/j.freeradbiomed.2014.05.016.
    1. Bender SB, Herrick EK, Lott ND, Klabunde RE. Diet-induced obesity and diabetes reduce coronary responses to nitric oxide due to reduced bioavailability in isolated mouse hearts. Diabetes Obes Metab. 2007;9(5):688–696. doi: 10.1111/j.1463-1326.2006.00650.x.
    1. Robert M, Weisbrod, Shiang T, Leona AL, Sayah, Jessica L, Fry, Bajpai S, Reinhart-King CA, Lob HE, Santhanam L, Mitchell G, Cohen RA, FS Arterial stiffening precedes systolic hypertension in diet- induced obesity. Hypertension. 2013;62:1105–1110. doi: 10.1161/HYPERTENSIONAHA.113.01744.
    1. Philip L, Hooper M. Diabetes, Nitric Oxide, and Heat Shock Proteins. Diabetes Care. 2003;26:959–959.
    1. Williams IL, Wheatcroft SB, Shah AM, Kearney MT. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes Relat Metab Disord. 2002;26(6):754–764. doi: 10.1038/sj.ijo.0801995.
    1. Gruber H-J, Mayer C, Mangge H, Fauler G, Grandits N, Wilders-Truschnig M. Obesity reduces the bioavailability of nitric oxide in juveniles. Int J Obes. 2008;32(5):826–831. doi: 10.1038/sj.ijo.0803795.
    1. Choi JW, Pai SH, Kim SK, Ito M, Park CS, Cha YN. Increases in nitric oxide concentrations correlate strongly with body fat in obese humans. Clin Chem. 2001;47:1106–1109.
    1. Codoñer-Franch P, Tavárez-Alonso S, Murria-Estal R, Megías-Vericat J, Tortajada-Girbés M, Alonso-Iglesias E. Nitric oxide production is increased in severely obese children and related to markers of oxidative stress and inflammation. Atherosclerosis. 2011;215(2):475–480. doi: 10.1016/j.atherosclerosis.2010.12.035.
    1. Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis Elsevier Ltd. 2014;237(1):208–219. doi: 10.1016/j.atherosclerosis.2014.09.001.
    1. Sailer M, Dahlhoff C, Giesbertz P, Eidens MK, de Wit N, Rubio-Aliaga I, Boekschoten MV, Müller M, Daniel H. Increased plasma Citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome. PLoS One. 2013;8(5):e63950. doi: 10.1371/journal.pone.0063950.
    1. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100(9):2153–2157. doi: 10.1172/JCI119751.
    1. Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B. Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One. 2015;10(9):1–17. doi: 10.1371/journal.pone.0138609.
    1. Yu Y, Rajapakse AG, Montani J-P, Yang Z, Ming X-F. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-uncoupling in obesity. Cardiovasc Diabetol. 2014;13(1):113. doi: 10.1186/s12933-014-0113-z.
    1. Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, Mikhed Y, Münzel T, Daiber A, Förstermann U, Li H. Uncoupling of endothelial nitric oxide synthase in perivascular adipose tissue of diet-induced obese mice. Arterioscler Thromb Vasc Biol. 2016;36(1):78–85. doi: 10.1161/ATVBAHA.115.306263.
    1. Higashi Y, Sasaki S, Nakagawa K, Matsuura H. Effect of obesity on endothelium-dependent, nitric oxide–mediated vasodilation in normotensive individuals and patients with essential hypertension. Am J Hypertens. 2001;7061:1038–1045. doi: 10.1016/S0895-7061(01)02191-4.
    1. Jawalekar SL, Karnik A, Bhutey A. Risk of cardiovascular diseases in diabetes mellitus and serum concentration of asymmetrical dimethylarginine. Biochem Res Int. 2013;2013:189430. doi: 10.1155/2013/189430.
    1. El Assar M, Angulo J, Santos-Ruiz M, de Adana JC, Pindado ML, Sánchez-Ferrer A, et al. ADMA elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbid obese humans. J Physiol. 2016;11(11):3045–3060. doi: 10.1113/JP271836.
    1. Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M, Tsuji H, Reaven GM, Cooke JP. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. 2002;106(8):987–992. doi: 10.1161/01.CIR.0000027109.14149.67.
    1. Kraus RM, Houmard JA, Kraus WE, Tanner CJ, Pierce JR, Choi MD, Hickner RC. Obesity, insulin resistance, and skeletal muscle nitric oxide synthase. J Appl Physiol. 2012;113(5):758–765. doi: 10.1152/japplphysiol.01018.2011.
    1. Boe FF, Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. Njupdipoesjbm Cjphfoftjt Jo Gbu Boe Nvtdmf Pg Pcftf Spefout. 2006;116:2791–2798.
    1. Perez-Matute P, Neville MJ, Tan GD, Frayn KN, Karpe F. Transcriptional control of human adipose tissue blood flow. Obesity. 2009;17(4):681–688. doi: 10.1038/oby.2008.606.
    1. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2017) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol Elsevier Inc. 10.1016/j.vph.2017.05.005
    1. Touyz RM, Briones AM, Sedeek M, Burger D, Montezano AC (2011) NOX isoforms and reactive oxygen species in vascular health. Mol … 11: 27–35. doi:10.1124/mi.11.1.5, 1
    1. Koppenol H, Koppenol H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Phys. 1996;50(1):277–303.
    1. Sugamura K, Keaney JF. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med Elsevier Inc. 2011;51(5):978–992. doi: 10.1016/j.freeradbiomed.2011.05.004.
    1. Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal. 2011;15(6):1517–1530. doi: 10.1089/ars.2010.3642.
    1. WJ F, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, et al. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr. 2005;135:714–721. doi: 10.1093/jn/135.4.714.
    1. Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee M-J, Smith SB, Spencer TE, Fried SK, Wu G. Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr. 2009;139(2):230–237. doi: 10.3945/jn.108.096362.
    1. Clemmensen C, Madsen AN, Smajilovic S, Holst B, Bräuner-Osborne H. L-arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances. Amino Acids. 2012;43(3):1265–1275. doi: 10.1007/s00726-011-1199-1.
    1. Monti LD, Setola E, Lucotti PCG, Marrocco-Trischitta MM, Comola M, Galluccio E, Poggi A, Mammì S, Catapano AL, Comi G, Chiesa R, Bosi E, Piatti PM. Effect of a long-term oral l-arginine supplementation on glucose metabolism: a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2012;14(10):893–900. doi: 10.1111/j.1463-1326.2012.01615.x.
    1. Hurt RT, Ebbert JO, Schroeder DR, Croghan IT, Bauer BA, McClave SA, Miles JM, McClain CJ. L-arginine for the treatment of centrally obese subjects: a pilot study. J Diet Suppl. 2014;11(1):40–52. doi: 10.3109/19390211.2013.859216.
    1. McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids. 2010;39(2):349–357. doi: 10.1007/s00726-010-0598-z.
    1. Piatti P, Monti L, Valsecchi G, Magni F, Setola E, Marchesi F, et al. Long-term oral L -arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care. 2001;24(5):875–880. doi: 10.2337/diacare.24.5.875.
    1. Bogdanski P, Suliburska J, Grabanska K, Musialik K, Cieslewicz A, Skoluda A, Jablecka A. Effect of 3-month L-arginine supplementation on insulin resistance and tumor necrosis factor activity in patients with visceral obesity. Eur Rev Med Pharmacol Sci. 2012;16(6):816–823.
    1. Ayala JE, Bracy DP, Julien BM, Rottman JN, Fueger PT, Wasserman DH(2007) Chronic Treatment With Sildenafil Improves Energy Balance and Insulin Action in High Fat–Fed Conscious Mice 56: 1025–1033. doi:10.2337/db06-0883.2
    1. Ramirez CE, Nian H, Yu C, Gamboa JL, Luther JM, Brown NJ, Shibao CA. Treatment with sildenafil improves insulin sensitivity in prediabetes: a randomized, controlled trial. J Clin Endocrinol Metab. 2015;100(12):4533–4540. doi: 10.1210/jc.2015-3415.
    1. Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012;111(9):1176–1189. doi: 10.1161/CIRCRESAHA.112.266395.
    1. Bonora EE. Al. Plasma glucose levels throughout the day and HbA 1c interrelationships in type 2 diabetes. Diabetes Care. 2001;24:2024–2029. doi: 10.2337/diacare.24.12.2023.
    1. Miles JM, Wooldridge D, Grellner WJ, Windsor S, Isley WL, Klein S, Harris WS. Nocturnal and postprandial free fatty acid kinetics in normal and type 2 diabetic subjects: effects of insulin sensitization therapy. Diabetes. 2003;52(3):675–681. doi: 10.2337/diabetes.52.3.675.
    1. Kim F, Tysseling KA, Rice J, Pham M, Haji L, Byron M, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKK{beta} Arter Thromb Vasc Biol. 2005;25(5):989–994. doi: 10.1161/01.ATV.0000160549.60980.a8.
    1. Gerstein HC, Bosch J, Dagenais GR, Díaz R, Jung H, Maggioni AP, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–328. doi: 10.1056/NEJMoa1203858.
    1. Holman RR, Paul SKBM, et al. 10-year follow-up of Inten- Sive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–1589. doi: 10.1056/NEJMoa0806470.
    1. Inoguchi T, Li P, Umeda F, HY Y, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate protein kinase C – dependent activation of NAD ( P ) H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–1945. doi: 10.2337/diabetes.49.11.1939.
    1. Boden G (2008) Obesity and free fatty acids. Endocrinol Metab Clin N Am:81–91
    1. Susztak K, Raff AC, Schiffer M, Böttinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and Podo. Diabetes. 2006;55(1):225–233. doi: 10.2337/diabetes.55.01.06.db05-0894.
    1. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial. Morphology. 2006;103:2653–2658.
    1. Dominguez C, Ruiz E, Miguel G, Carrascosa A. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care. 1998;21(10):1736–1742. doi: 10.2337/diacare.21.10.1736.
    1. Francescato MP, Stel G, Geat M, Cauci S. Oxidative stress in patients with type 1 diabetes mellitus: is it affected by a single bout of prolonged exercise? PLoS One. 2014;9(6):e99062. doi: 10.1371/journal.pone.0099062.
    1. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167. doi: 10.1089/ars.2012.5149.
    1. Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, et al. (2007) Toll-Like Receptor-4 Mediates Vascular Inflammation and Insulin Resistance in Diet-Induced Obesity doi: 10.1161/CIRCRESAHA.106.142851
    1. Chiang S, Bazuine M, Lumeng CN, Geletka LM, White NM, Ma J, et al (2010) The protein kinase IKKε regulates energy expenditure, insulin sensitivity and chronic inflammation in obese mice. ;138: 961–975. doi:10.1016/j.cell.2009.06.046.The
    1. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH, American Heart Association., Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the obesity Committee of the Council on nutrition, physical. Circulation. 2006;113(6):898–918. doi: 10.1161/CIRCULATIONAHA.106.171016.
    1. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–1143. doi: 10.1161/hc0902.104353.
    1. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science (80- ) 1993;259:87–91. doi: 10.1126/science.7678183.
    1. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29(1):415–445. doi: 10.1146/annurev-immunol-031210-101322.
    1. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72(1):219–246. doi: 10.1146/annurev-physiol-021909-135846.
    1. Satoshi Nishimura, Ichiro Manabe, Mika Nagasaki, Kinya Seo, Hiroshi Yamashita, Yumiko Hosoya, Mitsuru Ohsugi, Kazuyuki Tobe, Takashi Kadowaki, Ryozo Nagai and Seiryo Sugiura (2008) In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest 118. doi:10.1172/JCI33328DS1
    1. Cleuren ACA, Blankevoort VT, van Diepen JA, Verhoef D, Voshol PJ, Reitsma PH, van Vlijmen BJM. Changes in dietary fat content rapidly alters the mouse plasma coagulation profile without affecting relative transcript levels of coagulation factors. PLoS One. 2015;10(7):e0131859. doi: 10.1371/journal.pone.0131859.
    1. Sato C, Shikata K, Hirota D, Sasaki M, Nishishita S, Miyamoto S, Kodera R, Ogawa D, Tone A, Kataoka HU, Wada J, Kajitani N, Makino H. P-selectin glycoprotein ligand-1 deficiency is protective against obesity-related insulin resistance. Diabetes. 2011;60(1):189–199. doi: 10.2337/db09-1894.
    1. Badeanlou L, Furlan-Freguia C, Yang G, Ruf W, Samad F. Tissue factor–protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation. Nat Med Nature Publishing Group. 2011;17(11):1490–1497. doi: 10.1038/nm.2461.
    1. Hundal R, Petersen K. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Densitom. 2002;109:1321–1326.
    1. Anderson K, Wherle L, Park M, Nelson K, Nguyen LD. Salsalate, an old, inexpensive drug with potential new indications: a review of the evidence from 3 recent studies. Am Heal Drug Benefits. 2014;7:231–235.

Source: PubMed

3
購読する